oooooogooon
g 736 0 19900 27-60 - 27

Robustness Issues of Learning Control

for Robotic Motions
Suguru Arimoto

Department of Mathematical Engineering
and Information Physics

Faculty of Engineering

University of Tokyo

- Bunkyo-ku, Tokyo, 113 Japan

Abstract

A clss of simple learning control algorithms with a forgetting
factor and a long-term memory and without use of the derivative of
velocity signals is proposed for motion control of robot manipulators.
The robustnes of such learning laws with respect to initialization
errors, fluctuations of the dynamics, and measurement noises is
studied extensively. As a result the uniform boundedness of motion
trajectories is proved based on the passivity analysis of robot
dynamics. It is also proved that motion trajectories converge to a
neighborhood of the desired one and eventually remain in it provided
the content of the long-term memory is refreshed adequately every

after a sufficient number of trials.
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I. Introduction

Amongst all creation man is the most skillful with his fingers
and hands. We humans owe such skilled motions to inherent abilities
of learning. Our babies are so clumasy with their hands that they are
unable to manipulate a knife and fork. But they are able to improve
their motions from repeated excercise.

The above observation led recently to the proposal of learning

control theory for improvement of robot motions [1]~[9]. The concept

of learning control differs from that of conventional control
methodology. It is a discipline for a class of mechanical robots and
mechatfonics systems, which is based on autonomous self-training. It
relies on’the repeatability of operation characteristic to present
industrial robots. The ideal principles that underlie the proposed
concept of learning control are summarized as a set of postulates in
the following way [10]:

Al) Each operation ends in a finite time duration T>O0.

Az) A desired output yd(t) is given a-priori over that time
duration tel0,T]. |

A3) Repeatability of the initialization is satisfied throughout
repeated trainings, namely, the initial state xk(O) of the system can
be set the same at the beginning of each operation in such armanner
as-

0

x, (0) = x ' for k = 1,2,...

i {

where k denotes the trial number of operation.



29

A4) Invariance of the system dynamics is assured throughout
repeated trainings.
AS) Each output trajectory yk(t) can be measured without noise

and thereby the error signal
e (t) = vq(t) - v, (t)

can be used in construction of the next command input.

: A6) The next command input u (t) must be composed of a simple

k+1

and fixed recursive law

Upeqp = F(uk(t),ek(t)).

For the purpose of eésy impiementation of the learning law, the
simpler the recursive form in A6), the better it is. However, it is
implicitly expected thaf the recursive updation law given in A6)
gives rise to the convergence of motion trajectories, namely, outputs
yk(t) approach the desired one yd(t) in some sense as k increases.

In case of motion-trajectory tracking of robot manipulators, two
types of recursive updation wefe proposed by the author and his

colleagues [1]~[9], which are described as follows (see Fig.l and Fig.

2):

Upep(t) = up(t) + My (e) -y, (£)), (1)

U (B) = u (£) + @(yg(t)-y, (). (2)
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In both cases both measured output i and desired output Y4 stand for
velocity signals of joint coordinates, and I' and ® are constant gain
matrices. It bas been shown in [1]~[4] that the D-type learning
control defined by eq.(1) with an appropriate constant gain matrix I

is convergent in a sense that the output trajectory approaches the
desired one with the repetition of operation, namely, yk(t) - yd(t)
uniformly in te€{0,T] as k » «. A similar but weaker result on
convergence of the P-type learning control described by eq.(2) has
also been obtained by Arimoto and Kawamura [5], [7] and [8], but the
argument in its proof is based on a linearized dynamics model of the
robot manipulator around the desired motion trajectory and the
ignorance of higher terms. In addition, it was implicitly assumed in
both cases that the manipulator must take the same initial position
and velocity at every operation trial and none of fluctuations of
dynamics and measurement noise arises, namely, postulates from A3) to
A5) must be satisfied throughout the repetition of exercise. Although
most of present industrial robots may satisfy approximately these
postulates because of their superiority of repeatability precision,
it is crucial to assure thé technical soundness and robustness of the
learning control with respect to small but persistent errors of
initialization, fluctuations of dynamics, and measurement noise
during operation. In other words, it is important to relax conditions
posed in postulates A3)~A5) to some extent in the following way:

A;) Repeatability of the initializétion is satisfied within an
admissible level of deviation, i.e., the initial state xk(O) of the

system can be set as follows:
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0 :
Xk(O) = X = 5k, lakl < 81 (3)
for some 81>O, where the norm |x| of vector x=(x1,...,xn)T is defined
in this paper as
x|l = max Ixt).
i=1’|no’n

b
A4) Fluctuations nk(t) which may appear in robot dynamics must

astisfy
in l, < €9 (4)
for some 82>0, where the function norm is defined as

n, I, = sup In.l.
k te[0,T] K

, .
A5) Each output trajectory yk(t) can be measered within a small

specified noise level, i.e.,

e(t) = yqa(t) = (y (t)+£,. (L)) (5)
where &k must satisfy

H&kllm S &4 (6)

for some 83>0-
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H b
The robustness problem in which postulaters A3)~A5) are assumed

instead of A3)~A5) was first discussed by Arimoto et al [10] in case

of the PID—type learning scheme under an assumption that the initial
trajectory (and thus all subsequent ones) lies in a neighborhood of
the desired trajectory and hence the robot dynamics can be considered
to be\subject to a linearized madel (a linear time-varying mechanical
system). Very recently, Heinzinger et al [11] attacked the same
robustness pggblem for a class of D-type learning control andrproved
without useréf any linearization that the learned input and thé
corresponding output trajectories converge to neighborhoods of their
desired ones. They also made a comment by illustrating a
counter-example that such a robustness property is not Valid for a
class of PI-type learning.

In the present paper we introduce a forgetting factor o>0 into

PI-type learning schemes in the following manner (see Fig.3):

g (8) = (Lme)uy (£) + @{yg(t)=(y (t)+E, (£))}.  (7)

We study in details robstness problems of such a learning control
with respect to initialization errors, fluctuations of dynamics, and
measurement noise. The original idea of use of the forgetting factor
into learning schemes is due to Heinzingér et al [11], but it was
introduced into only D-type learning. In a previous paper [12] we
proved with aid of linearization that even in case of P—fype learning
control schemes with a forgetting factor the motion trajectories
converge to a neighborhood of the desired one and eventually remain

in it. This paper pproves this under full robot dynamics with



nonlinearity by fully using the following two basic characteristics
inherent to robot dynamics: 1) Genefalized passivity of the joint
velocity vector (output) with respect to the torque input vector and
2) Existence of an energy-like Lyapunov function weighted
exponentially5 Furthermore, we show that the size of attraction
neighborhoods can be chosen small dependently on the magnitudes of
initialization errors and other desturbances. Hence, if an initial
input u, is chosen carefully and put into a long-term memory as in

Fig.4 and the updation law

uk+1(t) = (l—a)uk(t) + uuo(t)
+ Q{Yd(t)—(yk(tH&k(t))} (8)

is adopted, then the refinement of trajectories becomes noteworthy.
In the next section we present basic inequalities deduced from
the generalized passivity valid for dynamics of displacement joint
»vector rk(f) = qk(t)+qd(t). The uniform boundedness of a succession
of trajectories through repeated trainings follows immediately from
these inequalities. They also play a vital role in the proof of

convergence of the learning scheme.
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II. Generalized Passivity of Robot Dynamics and Uniform Boundedness

of Trajectories.

When the velocity signals yk(t).at joints are measured,
numerical differentiation is inevitable in digital implementation of
D-type learning schemes. This may cause an additional noise in input
updation in eq.(1) if yk(t) is contaminated with noise. Although this
effect can be reduced to some extent by employing an adequate digital
filter that approximates the operator of differentiation as pointed
out by Atkeson and McIntyre [13], it is reasonable to avoid further
troublesome operation. In reality, many experimental results reported
by the author and his colleagues [8] [9] have shown that the P-type
learning algorithm without use of differentiation works well in
tracking given jbint trajectories. However, theoretical treatments of
the case of P-~-type learning are considerably a;fficult in comparison
with the case of D-type learning. Our previous prbof of convergence
of the P-type learning algorithm found in [5] and [9] is far from
strong as pointed out in the following : 1) It was based upon a
linearized madel of robot dynamics around the given desired
trajectory, 2) the remaining terms of higher order were igﬁored in
the model, and 3) the uniform boundedness of velocity trajectories
for consecutive trials k was implicitly assumed. To clear all these
defects of the proof, it is vital to gain an insight into the basic
characteristics of dynamics inherent to robotic manipulators.

In this paper we consider a class of serial-link manipulators of
all revolute-type joints. It is then well-known that the dynamics of

such a monipulator can be described in terms of the joint coordinates

¥



vector 4 in the following way:

(J+H(a))d + (By+i(a))d - §§ + g(a) = Kv, (9)

We also suppose that a linear PD feedback servo
v = u + Ko(qd—q) - K,4 (10)

is employed as an inner control loop. In these equations, a4 is a
given desired command input, H an inertia matrix, J a positive
diagonal matrix representing inertial terms of internal load
distribition of actuators, T=QT(J+H(q))é/2 the kinetic energy, g(q) a
vector of gravity terms, v a vector of input voltages or currents to
actuators, B0 a positive definite matrix representing damping factors
and coefficients of electro-motive forces, and K, Ko and Klvdiagonal
matrices of positive gains respectively. Then, it is possible to
assume that at the k-th trial of operation the robot motion is
subject to

(J+H(qy))d + (B+H(q))4, - %%l; + g(qp) + Algqp-a4q) = u + np (11)

where Kuk is rewritten into uy renewedly without loss of generality,

b
n, refers to the fluctuation term mentioned in Postulate A4)

Previously, and

B = B,+KK

0 1° (12)



Note that the inertia matrix H(q) is symmetric and positive definite
and, moreover, each entry of H is constant or a trigonometric
function in components of joint vector q. Hence, H(q) and any of
partial derivatives of H(q) with respect to qi are uniformly
Lipschitz continuous in q. Next observe that eq.(11) can be written

in the form

(J+H(qy))d, + (B+ SH(q)))d,

+ Clap,qy)qy + glqy) + Algp-ayq) = u, + ny (13)
where
Clay,d, )4, = $H(a)q, - 52;{%qﬁﬂ<qk)qk}. (14)
As was pointed out first by Arimoto and Miyazaki [14] [15] and later

but independently by Koditschek [16], C(qk,qk) is skew symmetric, in

other words,

.T . 3

4 C(gq,4)q = 0 (15)
It should be also noted that the invertibility of robot dynamics
implies the existence of the unique desired input ud(t) for a given

desired output yd(t)(=éd(t)) provided that yd(t) is differentiable

and &d(t) is piecewise continuous on te[O,T]. This yields

/0
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(J+H(Qd))§d + (B+ %ﬁ(qd))qd + C(qd’qd)qd + g(qd) = ud' (16)

Then, it is convenient to introduce the displacement vector r.= e B

and important to see that ry satisfies the equation

(‘J"H(qk))f'k + (B+ %ﬁ(qk))i‘k + C(qk’qk)fk
+ Arp + £ = Aup + 0y (17)

where

Auk = uk—ud’ rk = qk—qd’
£, = P(ry, b)) = {H(agtr,)-H(ag)}ay + S{H(agtr,)-H(ay) )y
t {Claytr) 44+, )-Clay,qy) 1y + glagtry) - glay) (18)

Note that fk can be written in the form

fie = Exlagrdq:99)7k + Frlag 99 99) 7
+ hy (a4,94,84, T T ) (19)
where hk represents the remaining higher terms of Ty and fk.
Now, remind that one of the basic characteristics of robot
dynamics (for example, eq.(9)) is the passivity of the velocity
output with respect to the actuator input. A similar result must be
obtained by taking the inner product of vectors fk and Auy in eq.(17)
and taking the integration over [0,T]. However, for the purpose of

proving the convergence of P-type learning, we need a slightly

//



38

generalized and more‘powerful result, which can be obtained by taking
the exponentially weighted inner product of fk and auy in eq.(17).

This is done in the following manner:

t
f e 2T §Aukdt
0

[’th
Jo® TETL(I+H(y ) ) F+(B+ Sy ) ) B,

+ C ( qk ] ék ) fk+Ark+ fk“nk]dt

st

t
IO%—[e‘*‘{fi(J+H(qk))fk+r§Ark}]dt

|
[sS]

t t t
-at,T P -xt,T _ P =T, T
Joe t Bfkdt + Joe fkfkdt JOe fknkdt
, 1r

At

t
2l 2 e AT{tl(J+H(qy (t))}E +riAr Jdx
= e “"V(r

k(t)#p(t)) - V(r, (0),,(0))

e At[AV(rk,rk)+rkBrk]dt

TATel (£ -0y )dT, (20)
where
V(r, b ) = T(#T(J+H(q,) )i +riAr, }. (21)
k’ k 2 'k k k' "k k
For the time being, we assume the uniform boundedness of rk(t) and

fk(t) in k, which will be eventually proved in this section. In other

words, there are two neighborhoods N1 and N2 defined by

/<
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Nl(}’l) = {I‘(t):llr(t)"m<‘¥1},
Nolvg) = {F(E):HE(E)N <vy) (22)
such that
rk(t) € Nl(?l)) i'k(t) € Nz(]’z) (23)

for all k. Then, from the uniform Lipschitz continuity of H(q),

SH(Q)/Sql, and g(q), there are constants po>0, p1>0, and cz>0 such

that

HA

. T . T . T . . T T
Irk(fk—nk)l lrkEkrkI + IrkarkI + Irkhkl + Irknkl

T .T.
PorTk * P1TRTL + CoEy (24)

[[7aY

for all rkeNl(yl) and fkeNz(yz). Substituting this inequality into eq.

(20) yields
Pt -2t T -at - :
JOe tkaukdt 2 e V(rk(t),fk(t))
t
- V(rg(o),t, (o)) + foe‘*‘W(A;rk(t),fk(t))dt - cpe,.  (25)
where
W(AsT,By) "er(AA—Z I)r, + 12T[a{J+H(q,)}+2B-2p I]1¢ (26)
T T) = 2Tk Pot/Tk T 2Tk U Pptilk:-

Now we choose a1>0 large enough so that W(A;rk,ik) is positive

definite in ry and fk. Then it follows that

/3
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{;e—ktkaukdt 2 - V(rg(o),t (o)) - Co€g (27)
which shows the generalized passivity of velocity displacement fk-
>with respect to input Auk for the displacement dynamics described by
eq.(17).

Now we are in a position to show the uniform boundedess of
trajectories for the P-type learning algorithm described by eq.(7) of
more generally by eq.(8). To do this, first consider eq.(13) for the

case of k=0.

Lemma 1 If 0<®<2B and uo(t) satisfies the inequality

fo(uo—ud)TQ—l(uo—ud)dt $ 7o | " (28)

then there are constants 61>0 and BZ>0 depending on €11 €9, and Yo

such that

lag-agll, ¢ 8; and  Hq-d4ll, < B, (29)

Proof Taking the inner product of éo with u, via eq.(13)
when k=0, we obtain
Pt T ;
JquuOd’t = V(qO(t)’qO(t)) - V(Q0(0)$QO(O))

: . t : ' .
+ Glag(t)) - G(gqg(0)) + foqgtho—Aqd—no)dt (30)

/¥
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where G(q) is the potential energy for the manipulator from which the
gravity term g(q) is generated, namely, 8G(qa)/8q =g’ (q). Substitution

of inequalities

» o .
r.T ' : ir°.T
Joqo(uO+Aqd+n0)dt < zJoqomqodt
pt T, -1
+ Jo(u0+Aqd+no) (] (u0+Aqd+n0)dt,
t

ir T, -1 ,
2.]0(“0+Aqd+n0) ¢ (uo+Aqd+nO)d‘t

pt T, -1 pt -1 |
Jo(uo—ud) ® (uo—ud)dt + Jo(ud+Aqd+n0) ® (ud+Aqd+n0)dt

(] 7aN

into eq.(30) subsequently gives rise to

V(ay(t),d,(t)) + Glagt)) ¢ V(ag(0),a,(0)) + Glay(0))

t t
- IOQE(B-%¢)QOdt + fo(uo—ud)w_l(uo—ud)dt

pt T, -1
+ Jo(ud+Aqd+n0) ® (ud+Aqd+n0)dt

é }’0 + V(Qo(o)aéo(o)) + \G(QO(O))
pT T -1
+ Jo(ud+Aqd+n0) ® ~(ug+tAqy+nglde
Since the right hand side of this equation is bounded from above,
V(qo,é0)+G(q0) is also bounded from above. Since again V(qo,éo) is .
positive definite in q, and éo as defined by eq.(21) and.G(qO) is a
periodic function of Ay both qo(t) and éo(t) must be bounded, which

implies the existence of Bl~and 62 such that eq.(29) is satisfied.

/S



We are now going to prove the uﬁiform boundedness of position
and velocity trajectories for a class of P-type learning control
algorithms when errors of initialization, measurement noises and
fluctuations of system dynamics may arise to some extent.

Suppose that the system dynamics, the measurement process, and
the learning law are subject to egs.(13), (15), and (8) respectively.
First we take an appropriaté constant y>0, which need not be small
and call a control input u, "admissible" if it is piecewise
continuous, x0(0)=(q0(0)—qd(0),éO(O)-éd(O)) satisfies eq.(3), and

satisfies

T
JPO(uO-ud)T(l!—l(uO—ud)dt <y (31)

For a given admissible uo(t), denote by qo(t) the solution to the
system of eq.(13) at k=0. We also call such a solution qo(t)

admissible. Next define

where supremum is taken over all such admissible solutions. The
existence of such upper bounds is assured by Lemma 1. Then, according

to the form of fk described by eq.(18), there are constants p0>0 and

p1>0 such that

. T . T .T.
'rof(royro)l é pororo + plroro . (33)

/6
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for all aemissible solutions q, as in eq.(24), where roéqo—qd and

f0=qo—éd. Next we choése a small A>0‘solthat inequalities
(1-a){2B-2p, I+x(J+H(q))} - & > O, (34)
AA - 2p41 > 0 (35)

for all q and fix it for ever. Note that these inequalities of
matrices are similar to the positive definiteness of the quadratic

form appeared in eq.{(26) if ®=0 and a=0.

Now, it is important to note that since by definition
aup 4y = (1-a)au, + adug + L (36)
it holds

Pt o-ax T -1 -
Joe (Auk+1~aAuo) ® (Auk+1—uAuO)dt

t t
= Ioe_lteiwekdt + 2(1—a)f0e-ltAu§ekdt

T

t
+ (1—a)2f0e—ltAuk0_1

Aukdt. , (37)

We observe that ﬁhe last term of the right hand side can be bounded

from above in the following way:

t t
(l—a)zfoe-ltAuEG-lAukdt = foe_*t[(l—a)(Auk—aAuO)TO-l(Auk—uAuo)

T -1

+ a(l—a)zAuOO- Auo—u(l-a)(Auk-Auo)TO_l(Auk-Auo)]dt

/7
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Pt - Ty-1
< JOe lt[(l-a)(Auk-—ozAuo) o " (aug-odug)
+ a(1-o)2aule tau, Tdx. (38)

By uSing eq.(20), the second term can be rewritten in the following

way:

t t
- Ioe—ltAuiekdt = Ioe_ltAuﬁ(fk+gk)dt = e_ltV(rk(t),fk(t))
+ Vt TAT(LV £, )++1BE ldt - V(r,(0),#, (0))
Jo°  [AVIrg B )ty Bl Jde Ti(0) by
t t
+ foe‘*‘fﬁ(fk—nk)dt + foe_ltAuiﬁkdt (39)

Substituting eqs.(38) and (39) into eq.(37) gives rise to

Pt -AT T, -1
JOe (Auk+1—aAu0) ® (Auk-aAuO)dt

(l—a)Pteult(Au -aAu )TQ—l(Au -aAu, )dT
JO k 0 k 0

178N

2(1-a)e 2 V(r, (t), 5, (t))

t ,
JP e—)‘t[Z( 1-a)aVv( rk,f‘k)+2(1"a )fﬁBi‘k_‘kafk]dt
0
t
2(1-d)foe_ltf§(fk'nk)dt

+

t
2(1—a)V(rk(0),fk(0))—2(1—a)foe‘*‘AuEgkdt

ot

a(l—a)zfoe—AtAugw—l

+

Auodt

+

Pt —xc,T Pt -xe, T
ZJOe *tfkwskdr + Joe *tgkmskdt. (40)

/¥
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At this stage, we bear in mind that, in accordance with postulates
’ ’
Ag) ~ Ag),s x,.(0)=(r(0),5,(0)), n, (t) and £, (t) satisfy eqs.(3), (4)

and (6) respectively. Hence, in particular for k=0, there exist

positive constants Cys Co» and Cqy such that

V(rg(0),14(0))

{1 28N

PT -1t
e Ifonoldt

A

CHE

7 :
JOe {2laugggl+21 b0 | +1E 0 | }dT < caeq

for all admissible qo(t). Substituting these inequalities and eq.(33)

intoleq.(40) at k=0, we obtain

Pte—"t(Au -aAu )Tw—l(Au -aAu, ) d
Jo \auy 0 1 o’d9t
pt -

3 2 xx, T, -1
< (1-a) e Aun~d
2 JO 0

Aundr

2(1-a)e 2 V(rg(t),54(t))
I.,t
Jo
2clef + 20,8, + o484 , (42)

e-ltU(x;rO,fo)dt

-+

where we define in general

U(x;rk,fk) = 2(1—a)xV(rk,fk) + 2(1—a)kafk
- i'kd)f'k - 2(1-U)Por£rk - 2(1'a)01f§i‘k

’T 12
= rk[(1—oz){2B—2911+A(J+H(rk+qd))}—Q]rk 7

+ (l—a)rk[xA—ZpOI]rk. (43)

77
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Since U(A;rk,fk) is positive definite according to eqsf(34)vand (35)

and in particular U(A;ro,fo) is so, we have

t
foe—lt(Aul-aAuo)T¢-1(Au1-aAu0)dt

t
< (l—a)zf e-ltAug¢-1Auodt + g (44)
- 0
where
- 2 ‘
g = 20181 + 20282 + cj€q. (45)

Finally, note that in general

(Auk-aAuO)To—l(Auk—aAuo)
_ 1, T -1 2. T -1
1 T, -1
+ E(Auk—ZaAuo) o (Auk—ZaAuo)

1. T - - .
EAukO lAuk - azAugO 1Au0 (46)

139

Substituting this equation at k=1 into eq.(44) yields

T T
f e-AtAu¥o_1Auldt < 2{a2+(1—a)2}f e_ltAuOO—lAuodt + 2g (47
0 - 0
Thus, if Auo satisfies
fr -A T, -1
JOe tAuo(b Auodt < Yo (48)

R0
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for a constant Yo suchvthat

2vy + 26 § e Ty, ) (49)
then

R xTpT_-xt, Tg-1, T

JOAu10 Auydt € e I “auje  aujde < v, (50)

In other words, ul(t) becomes admissible. To prove further the
admissibility of uk(t) for all k=2,3,..., we need a more restricted

condition on Yg than eq.(47).

Now we prove the following theorem by induction.

Theorem 1 Assume that 2B>®>0, all €1y €9 and €3 in
] ?
postulates A3) ~ A5) are small, and uo(t) is piecewise continuous and

satisfies
PTe'A‘{u (t)-ug(t)}To ™ ug(t)-uy(t) rde g v (51)
Jo 0 d 0 d =70

for a costant Yo such that
2vy + 2e/a ¢ e *Ty. (52)
Then all trajectories of solutions generated by the set of recursive

equations (17) and (8) with initializations

xk(0)=(qk(0)—qd(0),ék(O)-éd(O)) satisfying eq.(3) are bounded

X/
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uniformly in k. More detailedly, it holds

i qk_qd "m

[ 72N

71’ "ék-éd"m é 72 (53)

where constants Yy and v, are defined in eq.(32).

Proof The admissibility of ul(t) was already proved above.
Next we assume that ui(t) for all i=2,...,k are admissible. Then, ail
qi(t) for i=1,...,k are admissible and hence ri(t) and fi(t) for all

i=l,...,k satisfies

el € vqs ne. i < Yo for i=1,...,n. (54)

i = j e

Then, by the same reason as in derivation of eqs.(33) and (41), we

can derive the following inequalities for the same constants Py Py

and c, as in eqgs.(33) and (41):

.C17 2

. . T JT.
lrif(ri,ri)l $ pgriry + pyF T,
. ) 2
V(r;(0),r,(0)) < c €7,
T _ (55)
JPOe Atlfznildt g 0282;

PT -AT T T T

Substituting these inequalities into eq.(40), we obtain
¢ :
f 1(

-AT ’T'—

t
< (1—a)f0e—lt(Aui—aAu0)0*1(Aui>au0)dt

Q2
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- zpl-a)e'*tV(ritt),fi(t))

- foe_ltU(A;ri,fi)dt

¢ ,
+ a(l—a)zfoe—ltAugoﬁlAuodt + € (56)

where € is defined by eq.(45). Since both V and U are positive

definite in r, and fi, eq.(56) implies

1A

t
(1—a)k+1(1—a)zf e_ltAuEO_lAuodt
0

k+1 t

‘Tiii“ﬁi“”{“(1‘“’Zfoe_ltﬁugt—lﬁuodf+81

(l-a)zf e-ltAugw_lAuodt + /. | (57)
0

| 78

Applying again inequality (46) for the above inequality, we finally

obtain

Pt - T -1 et - T
JOe ltAuk+1tl> Auk+1dt < ZJOe AtAuOOAuOdt + 2g/«a

< 2y + 28/ ¢ e My, (58)

which implies the admissibility of the input u at the k+lth trial.

k+1
By induction, all uk(t) for k=1,2,..., are admissible and hence, by
Lemma 1, all qk(t) and ék(t) are bounded uniformly in k. Thus the

theorem has been proved.

-3
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The problem of.uniform boundeness of trajectories generated by
iterative learning control schemes was first treated by Bondi et al
[17] for the case of PID-type learning law for robotic motions.
However, the argument employed in the paper is based upon a
linearization technic around the desired trajectory. Hence, their
results are valid in a local senée that the initial command input u,
must be sufficiently close to the desired input uy- In contrast,
Theorem 1 in this paper assures the uniformrboﬁndedness for P-type

learning schemes in a global sense provided all errbrs €1 ~ E3 in

b b
~postulates A3) ~ A5) are not so large as the forgetting factor a. A
slightly weaker version of Thorem 1 was presented in our previous

paper [18] by using a similar but a little obscure argument.

27
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III. Convergence of Learning Control with a Forgetting Factor

We now turn to the convergence problem of motion trajectories.

To solve this, eq.(56) plays a vital role together with the uniform

boundedness of motion trajectories proved in Theorem 1. It is also

crucial to note that eq.(56) is valid for all x larger than the fixed

A determined at the stage of definitions of egs.(34) and (35). Hence,

by defining

t
s;(t) = Ioe—(l+1)t(Aui-aAuO)TO-I(Aui—aAuO)dt,

V(e (t), 5, (),

n

v, (t)

RS (59)
U, (x5t) = joe‘(*+1)‘U(x+1;ri(t),fi(t>)dr,

t
Q(A;Auo) = e—(l+1)tAugO—1Auo(t)dt
0

eq.(56) can be rewritten into the following form:

si01(t) & (1-a)s,(t) - 2(1-a)V,(t)

- Ui(x;t) + d(l—d)zQ(A;Auo) + g, (60)

The summation of this equation from i=0 to i=k-1 gives rise to

k-1 k-1
(t) < (t) - Zs.(t) - 2 {2(1-a)V.(t)+U.(x;t)
) < s ai=051 i=0{ o)V, 3 ( }
+ ka(1-a)%Q(x;4u,) + ke.  (61)

Dividing this by k and omitting the second term of the right hand

Q8
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side since si(t)gO for all i, we obtain

1kt 2
k.2 {2(1-a)V,(£)+U, (x3t)} € al(l-a)”Q(x;8uy) + &

i=0

+ lsy (£)-sg ()}, (62)

Since sk(t) are positive and bounded uniformly in k, there is an

integer K such that
1
g!sg(T)=-so(T)] < O(a) (63)

for all k such that k2>K. Then, from eq.(62) it follows that

K-1
£ {2(1-)V; (T)+U; (3T)} ¢ a(l-a)?Q(x;au,)
i=0 -

+ g + O(a). (64)

1
K

Next we bear in mind that g is sufficiently small and therefore the
small forgetting factor o is larger than g. We also note that Ui(x;t
takes the guadratic form of r, and fi as defined by eq.(43) via

eq.(59) and hence we see that
. Pt ‘(l+i)t T
Ui(l,t) 2 (l-a)J()e [I‘i(t)Ari(t)
+ F1(6) (J+H(r; () +ag(x)) ey (x) 1de

t .
= Z(I—a)foe—(l+1)tVi(t)dt v : (65)

for U(A;rk,fk) is nonnegative. Thus, we conclude from eq.(64) and

26



(65) that there is at least one k (0gkg¢K) such that

)
2(1—a)[Vk(T)+fOe“‘*+1)tvk(t)dt] < U(X;T)
< a(1-a)%Q(x;auy) + & + O(a) (66)
which results in
vory + Fem Dty (4)ae < La(1-0)a(a;8u0)
k Joe k T = za 94 A uO
+ 8/2(1-a) + O(a). (67)

Inequality (67) implies that the exponentially weighted squared

integration of I and fk over t€[0,T] is of order o. More

specifically, it holds

. |
[ ety (trat < ofa). (68)
0

Then, it is possible to show the following:
Lemma 2 Eq.(68) implies

ITe—(A+1)t

T -1, T
0 Auk(t)® Auk(t)dt

A

O(a). (69)

In this version of the paper, we omit the proof of the lemma
which is lengthy and rather mathematically tactic, because presently
we must show the generalized passivity of the dynamic equation

concerning the difference d r

kK Tk+1l Tk°

27



o4

Once inequality‘(69) is ascertained, it is possible to refresh
the content in the long-term memory by this input uk(t) and restart
the training from i=K+1 (see Fig. 4). Then, the term Q(A;Auo) in
eq.{(60) becomes of order o and hence eq.(60) can be written in the

form

s;,1(t) € (1-a)s, (t) + 0(a?) + &. (70)

If 8§O(a2), then si(t)§0(a) which eventually shows the existence of j

in nggZK such that

PTe-(A+1 )t
J0

V;(t)dt 0(x?). (71)

A

Thus, it is possible to say that if such a specific learning scheme

is adopted then

lim si(t)

ise

< O(g). (72)

We call this learning scheme a strategic learning, which consits of
the following steps:

1) Choose an initial command input uo(t) appropriately. For
example, it is possible to set uo(t)EO (which means Au0=—ud).

2) Repeat exercises until eq.(63) holds {say, i=K). At this
step, it is important to prepare a stack memory in which the best

input trajectory in the sense of the smallest value of the left hand

side of eq.(66) is stored.

28
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3) Read the input data uk(t) from the stack memory ﬁhich must be
the best among the trials from i=0 to i=l and refresh the content of
the long-term memory by this uk(t). |

4) Restart exefcises'(Return to step'1)).

We now conclude that

Theorem 2 Under the same assumptions as those in Theorem 1,
the strategic learning results in that motion trajectories approach

an g-neighborhood of the desired one and eventually remain in it.

1v. Conclusionsv

For a class of P-type learning control algorithms with a
forgetting factor, robustness with respect to initializatioﬁ errors,
fluctuations of dynamics and measurement noises has been discussed.
In particular, the uniform boundedness of motion trajectqries has
been proved by exploring the generalized possivity of the
displacement dynamics. It has also been shown that output

trajectories approach an g-neighborhood of thedesired one and

eventually remain in it provided a strategic learning introduced
first in this paper is used.
Both Theorems 1 and 2 can be extended to the case of PI-type

(Proportional and Integration) learning control.
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