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1. Introduction. We consider the radially symmetric solutions

for the semilinear elliptic equation

(1.1) Au + g(u) = 0, Tz € Q,
(1.2) u =0, T € 2%,
where Q={z€e€R*: |zl <1}, n=2, and g(s) is a

continuous function such that

g(0) = 0, lm g, 9(8)/s = @ and
(gl)

g'(0) = 1im _ o g(s)/s  exists.
The equation for radially symmetric solutions u# = u(t), ¢ =
lzl, 1is the following form.
(1.3) wr o+ B2 Loy + gu = o, t e (0, 1),
(1.4) u'(0) = 0, (1) = 0.

Under some conditions on g(s), Ambrosetti and Rabinowitz
[1] established that for any bounded domain Q@ the problem
(1.1)-(1.2) possesses infinitely many solutions and moréover
Hé(Q) norms of solutions assume arbitrarily large values. The

related problems are treated in {2, 5, 8, 10, 12, 13, 14]. In



the case where  1is the unit ball, the existence of infinitely
many radially symmetric solutions has been investigated by
Castro-Kurepa [4] and Struwe [15] (see [3] for =n = 1). In
fact, Struwe [15] has proved by a variational method that there
is an integer ko such that for any k 2> k0 the problem (1.3)-
(1.4) admits a solution with exactly k =zeros in [0, 1]. On
the other hand, ﬁsing a shooting method, Castro and Kurepa [4]
have showed the same results under weaker assumptions on g(s).

Therefore we will study the relation between Hé(ﬂ) norms of

radially symmetric solutions and the numbers of their zeros.

2. Main results. Recall that Q 1is the unit ball in R™". We

denote by Lr(Q) (1 < r <« ) and by Hé(Q) the usual

Lebesgue and Sobolev spaces, respectively. The norm of Lr(Q)
is denoted by H‘Hr. The Hé(Q) norm is defined by
9 1/2 '
hul = lvul,, - (f | vu(z) | dm) :
HO(Q) Q

Let H be the subspace of Hé(Q) which consists of radially

symmetric functions. We define the norm H'HH of H by
_ 1 _ 1/2
hul, = mnl/z hul - (f u' (¢)2¢"L dt)
HO(Q) 0 ’
where ®, mMmeans the surface area of the unit sphere 23fQ. We

write S for the set of all solutions u € cz(o, 1) n Cl[O, 1]

of (1.3)-(1.4). For kX € N, S denotes the set of all

K
solutions which have exactly &k =zeros in the interval [0, 1].

Let n° be defined by n* = « if =7 =2 and =" = gig if
n oz 3. We state our first result which gives the lower bounds

of solutions.
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Theorem 1 (lower estimates) Stuppose the condition (gl)
and there are constants p € (1, n*) and a;, > 0 such that

p+l

(gz) sg(s) < allsl + a, for altlt s € R.

Then there are constants C1s Cy > 0 such that

(p+1)/(p-1) _ -
clk c, < uuHH for any u € Sk and k = 1.

Theorem 1 may assert nothing for small k 1in the case of

Cl < 02.

solution is bounded away from the trivial solution.

However, as stated below, we see that any nontrivial

Theorem 2. In addition to conditions (gl) and (gz)

suppose that g'(0) is not an eigenvalue of the prqblem:

(2.1) Y L 7 v’ = v, t € (0, 1),

(2.2) ; v'(0) = vw(1) = 0.
Then there is a constant ¢ > 0 such that

e < HuHH for all u € § \ {0}.

The result stated in Theorem 1 is optimal, since we also

have upper estimates for the solutions.

g
Theorem 3 (upper estimates). Set G(s) = f g(r) dr. In
: 0
addition to (gl) suppose the following two conditions:
. sg(s) *
(g3) Hm S jgise Gey <t 1

There are constants p € (1, n'), b, >0 and R >0 such that
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|p+1 Ip+1

(g4) blls < s8g(s8) s‘bzls for all lIsl > R.

Then there is a constant ¢ > 0 such that

and k = 1.

hul, < ek (P*¥1)/(p-1) forany u € S

k

»Finally, we consider the Emden-Fowler eqpation which

involves a typical nonlinear term g(8).

Example (Emden-Fowler Equation). Consider the equation
(2.3) u" o+ B 7 Lu + Pty - o, t € (0, 1),
(2.4) u'(0) = u(1) = 0,
where p € (1, n*). We shall show that for each k = 1  the

problem (2.3)-(2.4) possesses a unique solution which has
exactly k zeros in [0, 1] and satisfies u(0) > O. If we
denote the solution by uk(t), then it follows that

Sk = {uk, —uk} and S={0}) v { = k € N}.

ukA:
To prove these assertions, we consider (2.3) on [0, «) together

with the initial condition,
(2.5) w'(0) = 0 and u(0) = 1.

It is easy to verify that equation (2.3) with (2.5) possesses a
unique global solution w(t) on [0, «). Furthermore the
solution w(t) 1is oscillatory (see [11, Corollary 6.7]). Here
w(t) 1is said to be oscillatory if w(¢) has an unbounded
sequence of zeros in [0, «). Since w(t) has at most finite
Zeros 1in ény bounded interval, we may denote the set of all
zeros of w(t) as {Sk}k:1 (0 < S) < 8, < ceeT ), First we

2/(p-1)

observe that 2a w(at) (A > 0), as well as w(t), satisfies

- 4 -



equation (2.3) on [0,=). Set uk(t) = si/(pfl)

w(skt). Then
the function uk(t) is a solution of (2.3)-(2.4) Which has
exactly k zeros in [0, 1] and satisfies uk(O) > 0. Such a
solution is unique, since any solution of (2.3) satisfying
©'(0) = 0 and u(0) > 0 can be written ih the form
12/(p_1)w(lt) (x> 0). In view of these‘facts we see thét

Sk = | Up> uk} and S = {0} v { = ﬁk : k € N}. We now
apply Theorems 1 through 3 to find the asymptotic distribution
in Hé(Q) of solutions of (2.3)—(2.4). That is, there exist
constants ci, Coy > 0 such that |

clk(p+1)/(p—1) < Czk(p+1)/(p—1)

< "uk"H fortany k € N.

3. Proofs of Theorems 1 and 2

Proof of Theorem 2. We prove Theorem 2 by contradiction.

a©

Suppose that there is a sequence of nontrivial solutions {uj}g=1

c S\ {0} such that 1lim fo "uj“H = 0. Then using " Moser's
iteration technique " (e¢f. [6, 9]), we have limj*m Hujﬂm = 0.

-1 . .
Set . = . . ;  each . satisfies
vJ(x) A, uJ(m) v,
- AV . = U/ v, f r € Q.
p (g( J)/ 3) j or Q

Since the right hand side is bounded in LT (), {vj}j:1 is
bounded in Wz’q(ﬂ) and is relatively compact in \Wl’q(Q) for
any q € [1, «=). | Hence one finds a subsequence of {vj}j:1
which converges to some function w(z) 1in both Wl’q(Q) and

LTQ). This together with ijﬂm = 1 implies
- Av = g'(0)v, (z € Q); v =0, (z € 3Q); ol , = 1.
Since v(z) 1s radially symmetric, g'(0) becomes an eigenvalue

_5_.
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of (2.1)-(2.2). This contradicts the assumptions of Theorem 2

and the proof is complete. 0

To prove Theorem 1 we need the following two lemmas.

Lemma 1. For each u € S, we have
1 2,n-1 1 n-1
(3.1) f u (£)2¢" 1 qt - f u(t)gu()) t® 1 at.
0 0
Proof. Multiplying (1.3) by u(t)f;n—1 and applying
integration by parts, we obtain the desired relation (3.1). g

The next lemma is obtained by applying Sturm's comparison

theorem.
Lemma 2 ([7, p346, Corollary 5.2]). Let q(t) be a
continuous function on [a, bl. Let wv(t) 2 0 be a solution

of the equation:
U" + Q(t)v = 09 t € [a’ b]-

Assume that v(t) has exactly k zeros in (a, b]. Then

)1/2 + 1,

k < %[(b—a)qu+(t) dt
a

where q+(t) = max{ q(t), 0 }.

Proof of Theorem 1. We shall prove Theorem 1 in the simple

case only where g(s) = Islp—ls, since the same methods are
valid for the general case of g(s) as well (see [9]). That
is, we consider the Emden—Fowier equation (2.3)-(2.4). Let u €
Sk‘ In what follows, we denote various constants independent

of ¥ and k by € (> 0). . In the case of n > 3, we employ'
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the following Liouville transformation:
r= e uir) = PPuct), 28 = (n-2)a ¢+ 1,

where o (> 1) is a constant to be determined later. Then

(2.3) is reduced to

v"(r) + g(r)v(r) = 0, r € (0, 11,

where  q(r) = o2r2® 2 (%) 1P _ g(p-1)r72.

Since gq(r) and wv(r) satisfy the assumptions of Lemma 2 on
the interval [g, 1] for sufficiently small g > 0, it follows

that

1 1 1/2
k < %{(1—8)f8 q+(r) dr} + 1 < %{IO q+(r) dr} + 1

1 _ _ 1/2
< C{f lu(r®) 1P 1p2272 4} + 1.
0
From Holder's inequality,
1 _ (p-1)/2(p+1)
(3.2) Kk < c{f lu(t) 1P ge)
0
1 1/(p+1)
x{f Y1) /2 1 s C,
0
where y =1 - 1/a - (n-1)(p-1)/(p+1). Since p € (1, n"), one
can choose o > 1 so large that y(p+1)/2 > -1. Then the
function tY(p+1)/2 is integrable over [0, 1]. From (3.2) and
(3.1) we obtain thé desired estimate for n = 3. In the case

of n =2, we employ the Liouville transformation

- 1 -
r = T T log 7 , v(r) = ru(t),

to reduce (2.3) to the equation,

v" + qg(r)v = 0, r € (0, 117,
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where q(r) = t21log(t/e) 1t 1u(t) 1Pt with ¢ = (P 1)/T

Applying Lemma 2 and using Holder's inequality, we obtain the
assertion for mn = 2 in the same way as in the case of n = 3.

The proof is complete. O

4. Proof of Theorem 3 The purpose of this section is to
prove Theorem 3. Here we deal with the only case where g(sg) =
ISIp_lS However, our methods are applicable to the nonlinear

term g(s8) satisfying the assumptions of Theorem 3 (see [9]);

In order to prove Theorem 3 we need several lemmas.

Lemma 3. There are constants 6 > 0 and ¢, > 0 (1<i<3)

such that

1
max lu(6) 1P < 6 f fu(e) 1P el g
0<t<1 1 0

1 Ip+1 2n-3+0

< czf lu(t) dt < cgmax lu(t) 1P
0

0<t<1

for any u € S.

Proof. Multiplying (2.3) by u'(t)tm (m > 0) and

integrating over [0, T], we have

T

' 2.m p+1
u (T) ™ + p+llu(T)|

(4.1)

T 7
T f () 1P g+ (Beion f w ()%™ 1 at.
0 0

First we substitute =m = n 1into (4.1) to obtain
p+l.n T p+l . n-1 1 p+1 -1
lu(T) 1P*IT" < nf lw(e) 1P e g < nf lu(t) | dt
0 0

for all T € [0, 1], which implies the first inequality of Lemma
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3. Secondly, the substitution of m = and T =1 into

(4.1) yields

: N ol
i ., 2 n n-2 p+1l,n-1
(4.2) s u (1 = (EII - —5—) fo lu(e) 1P g,
where we have used (3.1). ‘Thirdly, substituting m = 2n-2+0
and T =1 into (4.1), we have
. , i ,
Tu)? = 2By P 200 gy
p+1 0
ot 2 ,2n-3+0
+ 2 f w ()2 ¢ dt
0
(4.3) 1
< 2200 7y q) | PHL 4207340 4y
p+1 0
f o pt p+l ,n-1
. 8 f lw(e) 1P ¢ g,
0
where we have used (3.1) and nr-2+6 > O. Combining (4.2) and

(4.3), one finds

i

n__ n-2+0 p+l ,n-1
(2 - 25 IO lu(e) 1P 1 e
(4.4) 1 ,
< 20200 [T gy PHL 207340 4y
p+l
0
Since p € (1, n*), we can choose 6 > 0 so small that

n/(p+l) - (n-2+8)/2 > 0. Then (4.4) implies the second
inequality of Lemma 3. Finally it is not difficult to check

the last inequality of Lemma 3, and the proof is complete. 0O

In view of Lemma 3, we introduce the next notation for
convenience.
Definition 1. We define

max

M(w) lu(t) 1271 for u € S.

0<Lt<1
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By Lemma 3 and (3.1) there is a constant 04 > 0 such that
1 2 ,n-1
(4.5) f wt)? " lat < e, M
0
for any u# € S. Hence, to prove Theorem 3, it is sufficient to
compute the value of M(u) instead of the Hé(Q) norm of u.
The next lemma, which follows feadily from Sturm's

comparison theorem, is useful for proving Lemma 5 below.

Lemma 4 (cf. [7, p336, Exercise 3.21). In the

differential equation

(4.8) (p(t)u')' + q(t)u = 0, t € [a, bl,

let p(t) € Cl[a, bl and q(t) € Cla, b] satisfy
p(t) = m and M = q(t),

where m and M are positive constants. If u(t) is a‘~
solution with a pair of zeros tl, t2 ( tl < t2 ) and u(t) #
0, then we have

my1/2
tz—tl = JI(M) )

To evaluate M(u) we subdivide the interval [0, 1] in the

following way:

Definition 2. Let u € 5, and {ti}ifl ( 0<t <t <---<tp
=1) denote its zeros. Let & € (0, 1/2). Moreover we set
6i = 6(ti+l— ti)’ 5y = 25t1.
Ii = [ti+ Bi, t£+1“ 5i]’ 1 <4i< k-1,
IO = [0, tl— 60],

_10_
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oI, end J=1[0, 11\ I.

In what follows, we denote various constants by Ce, CS’
08,6 and C; CS means a constant depending upon g, CS,6

represents a constant depending possibly on & and 8§, and

C denotes an absolute constant.

Lemma 5. Let u € Sk and & € (0, 1). Then we have

(1) f () 1P gl gy o T8 1< i< k-1
I ' . .

i

(i1) f ()Pl vl g < ¢
I

5;
0
(iii) 4if ti 2 g, then E——l‘_——r < CS M(U)(p—l)/z(p+l?
i+l i
Proof. Consider the eigenvalue problem
(t" ) - a(t)w = 2t Ly, t e (a, B),
v(a) = v(B) = O,
where o = t,, B = ¢t i=1 and a(t) = lu(t) 1Pt 71
i’ i+1’ v - "
We see that X = 0 1is the first eigenvalue. In fact, wv(f) =

u(t) and 2a ‘0 satisfy the above equation and moreover u(t)

has no zeros in the interval (o, B8) = (ti’ ti+1)' Therefore

A = 0 1is the first eigenvalue, and so we have the following

variational characterization:

8
f (v (£)2¢" L - a(t)w(t)?2) dt
. o —
(4.7) min .o 7 s 1 0,
f p(t)2 1 g¢
4

- 11 -
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where V denotes the set of all functions vy € Cl[a, 81

satisfying v(a) = v(B) = 0 and v =2 O. It follows from (4.7)
that
B 2,n-1 B 2
J’ v (02" g 2 J‘ a(H)v(6)? dt
o o

> [min teliv(t)zj fl a(®) at
1

for any v € V. We choose p(t) = (B8 - t)(f - o) € ¥V to get

2
26 -0 (2—)(3 - 0* [ ate) at.
I
i
This implies the assertion (i). Next we prove the assertion
(ii). In the same argument as above we have
tl 2 ,n-1 2
f v(t)2 L g > (min v(t))f a(t) dt
tel
0 0 IO

for any v € Cl[O, 1] satisfying wv'(0) = v(tl) = 0.

Substituting wv(t) = ti - t2, we obtain the assertion (ii).
We then prove the last assertion (iii). The function u(t) € Sk
satisfies the differential equation (4.6) with p(f) = tn—l and
q(t) = lu(£) 1P71¢" 1 The functions p(t) and q(t) are
estimated as

p(t) = "1 and q(t) < Couw PTV/PTD ey g T,
where we used ti > E. Therefore assertion (iii) follows from
Lemma 4. The proof is thereby complete. o

Lemma 6. Let 8 ( > 0) be defined as in Lemma 3. Let

g € (0, 1). Then for tj = g, uwe get

- 12 -
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k-1 2n-3+0

(p+3)/2(p+1)
i=j ; k M(u) .

lu(t) 121 ¢ dt < C,

é

Proof. Let ti > €. We set £ = 0 - 2 + n(p-1)/(p+1).

Then Lemma 5 implies

f lu(g) |Pr1g2n-3+0 4
i

1

[ (a2t 2/ ) g% ey 1P ag
Ii
< max(sﬁy 1) M(u)z/(p+l) Cs SM(u)(p—l)/Z(p+1)

< ¢ iy (P*3)/2(p*1)

€,06
Summing up both sides with respect to i = g4, g+1, ---, k-1,
obtain the desired inequality. This completes the proof. 0
Lemma 7.
f lu(t) 1PT12773+8 4y
[e,11In]

< cefMw o+ ocg (2(P+1)/(p-1)

for any & € (0, 1/2), where a =n - 2 + 08 (> 0).

Proof. There are the two cases to be considered.
(A) There is an integer i € [1, k-1] such that ti € [g, 2g];

(B) Any ti (1 < i £ k-1) does not belong to [g, 2g].

We can find an integer J € [1, k-1] Such that tj—l

2g 1in case (A), where we understand that to = 0. On the

_13_

< g < t. <
J
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other hand, there is an integer 4 € [1, k] such that tj-l <

g€ < 28 < tj in case (B). In either case, it follows from

Lemma 6 that

4.8) [ lu(e) 1P 207308 gy
[e.11n]
< | () P20 gy ok () (PrR/2(P)
le.i;1nl;
Now suppose [g, tj] N Ij—l Z ¢. We want to estimate

K lu(t) | P120-3+0 4

(e.t 001, ;

First, in case (A) it follows from the direct computation that

2€ ' a
(4.9) K < [ a0 g o 2oL gl ),
g
Secondly, in case (B), we have
2/ (p+1)
K < C8 M(u) Kj_l,
where ,
K. | = f lw(e) 1P ¢ g
J I
j-1
Since tj—l < g < 28 < tj , Lemma 5 implies that
CS -1
K. ., < —~ < g~ C if j 2 2, and
J-1 tj tj—l L)
Kj—l < Cg if 4 =1
Therefore we obtain
(4.10) K < ¢, 4 mw?/ o)

From (4.8), (4.9) and (4.10), we have

f lu(t) |Pr12n-3+8 4y
[e,1]n]

- 14 -
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X ”(u)(p+3)/2(p+1) + C 5 ”(u)z/(p+1).

a
< Ce™ M(u) + Ce, e

)

Thus, we can apply Young's inequality to the right hand side to

get the conclusion. 0

We now give the proof of Theorem 3.

Proof of Theorem 3. We set a=1n-2+ 0 (>0) as in

Lemma 7. Let g, 8 € (0, 1/2). In order to evaluate M(u),

we estimate

1
f lu(t) |PHL ¢2n-3+0 4y

0

First, we see from Definition 2 that the measure of J 1is 28.

(4.11)

Therefore the first and the second terms can be estimated as

a

£ }
(4.12) f lu(t) 1P*L 27730 4 o By
0 a
and
(4.13) f lu(£) 1P 277340 hr o 0(s% 4+ ) M(uw),
[e,1]1nJ

respectively. The last term on the right hand side of (4.11)
has already been estimated in Lemma 7. Using (4.11), (4.12),

(4,13) and Lemmas 3 and 7, we have

(4.14) M) < Ce% + 8% + 5) M(u) + C, s 2(p+1)/(p-1)

where C 1is independent of u, k, &€& and §. We now choose

- 15 -
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€,

Thus,

> 0" so small that C(8a+5a+5) < 1/2. Then (4.14) implies

the desired assertion is obtained by applying (4.5).: The

proof is thereby complete. 0
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