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Reproductive property of the Boussinesq equations
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(School of Science and Technology, Meiji University)

Let Q@ be a bounded domain in R with the boundary 98 such
that @Q = ryuvrs , rinr, = ¢, We consider the following

initial boundary value problem:

%% + (u-Yu -1 vYp + VAu + Bgé,

0
(1) divu = 0, : : X €Q, t >0,
28 g = |
ot * (u-v)86 = kA9, |
u({x,t) = 0, 9(x,t) = £(x,t), x€r, , t>o0,
(2)
ui{x,t) = 0, %‘ 6(x,t) = 0, X €T->, t >0,
f n
{ u(x,0) = apg(x),
(3) 0(x,0) = tolxy, x € Q,
where u = (ul,uz,,..,un) is the fluid velocity, p is the
L 3 20
pressure, 0 is the temperature, u-v = 2 u, 9%.° ®n denotes the
EEE G N

outer normal derivative of 8 at x to 9Q, g(x,t) is the
gravitational vector function, and p{(density), v(kinematic
viscosity),B(coefficient of voiume expansion), K(thermal
conductivity) are positive constants. E(x,t) is a function
defined on 'y X (0,T), and ap(X) (resp. To(X) ) is a vector
(resp; scalar) function defined on Q.

This system of equations describes the motion of fluid of
heat convection (Boussinesq approximation). The existence of a

weak solution of this system and its reproductive property are
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discussed in this report. For the definition of weak solution,
we use the following auxiliary function and solve the system of

equation corresponding to it.

Let 60(x,t) be a function defined on @ x [0,T] such that

0o (x,t) = E(x,t), x €Iy, t»>o0,
%; GQ(X,t) = 0, X € FQ, t > 0.

We can transform the equations (1),(2), (3) for u and ¢ =

8 - 6, , and we obtain the following:
%% + (u*VYyu = - % Vp + vAu + Bgld + Bglo,
(4) "divu = 0, x € Q, t > 0,
i : AL
g—? + (0l = kAT + kA8, - (u-V8, - ﬁ ,
ulx,t) = 0, P(x,t) = 0, X €, , t>o0,
(5)
u(x,t>=o,%~n~'€(x,t)=o, x €T, , t >0
u({x,0) =-apg(x)
(63 P(x,0) = Tolx) - 80(x,0), x €0

We suppose boundary 2f of @ satisfies the following:

Condition (H)

30 is of class C% and devided as follows:
N =T, v I, , v n Ty, = ¢,

measure of | # 0,

and the intersection F1 N Fg is a n-1 dimensional
c! manifold.
This condition is used in order to extend the function

E(x,t)(Lemma 2).
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Now we define the solencidal function spaces:

Do = {vector function mecm(Q)Isupp p cQ, div ¢=0 in Q},
H = completion of Do under the LZ(Q)—norm s
V = completion of D  under the H! (@) -norm
Dy = ( scalar function ¢ € C ()]
@ = 0 in a neighborhood of Fl) )
W = completion of D, under the HI(Q)—norm

Let V be the completion of Do under the norm NuHLn(Q)+ Huuv ,

and W the completion of D, under the norm 16 + HGHW

L
For 2 < n < 4, V =V and W = W because of Sobolev's imbedding

theorem(e.g.Adams[1] ).
First we study the auxiliary problem (4), (5),(6). We take
the inner product of v € V (resp.t€ W) and the first equation

of (4) ( resp. the third equation of (4)) and we obtain:

d_ .
at (u,v) + ((u-9u,v)

= -v(vu,vv) + (Bgl,v) + (Bgh,,v), v €V,

%T (F,t) + ((a-M,t)

= - k(vl,9Tt) - ((u-¥)8y,T) - (8n,T) -K(Y8y,VT),

d_
dt
T € W.

Definition 1.

A pair of functions (u,d) is called a weak solution of
(4),(5), if u € L?(0,T:V) and 8 € L?(0,T:W) and they satisfy the
equation (7) in distribution sense 2'(0,T).

If we suppose merely u € L?(0,T:V) and § € L?(0,T:W), the
condition (6) doesn't necessarily make sense but we have:

Lemma 1.
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Suppose

g € L@ x 0,7,

8, € C'C Q x [0,TD),

u € L?2(0,T:V),

g € L2(0,T:W)
and {u,d) satisfy (7). Then u (resp.d) is equal to an
absolutely continuous function from [0,T] into V'(resp.

W'),where V'(resp.W') is the dual space of V(resp. W).

Therefore conditions
u(x,0) = ap(x), 9(x,0) = To(x) - 0,(x,0

make sense.

Now we define the weak solution of (1),(2).

Definition 2

A pair of functions {u,8) is called a weak solution of

(1),(2) if there exists a function 85(x,t) € C'(Q X [0,T1)
such that

u € L2(0,T:V),

8 - 8, € L2(0,T:W),

0 (x,t) = i(x,t), x €My, t € (0,T),

%H 8p(x,t) = 0, x € Tyr, t € (0,T),
and (u,¥) (& =8 - 65 ) is a weak solution of (4),(5),

As for the boundary condition, we extend the function

E(x,t) defined on Fl x [0,T1, onto Q x [0,T] satisfying certain

smallness condition.
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Lemma 2 (Whitney)

Suppose Q satisfies Condition (H) and E(x,t) € CI(Fixto,T]).
Then for every € > 0 and p >1, there exists a function 8,5(x,t)

such that

6, € C1(Q x [0,T1),

8o (x,t) = E(x,t), x €y, t >0,

%E Bo(x,t) = 0, X €Ty, t >0,

02?2T Heo(t)HLp(Q) < €

The proof is similar to that in 8§84 of Morimotol71. See
also [61]. Using this result, the existence of a weak solution
of (1),(2) satisfying (3) is proved for 2 < n £ 4 , in a similar
way to J.L.Lions [4],[51, R.Temam [9]. The argument is based

on the construction of approximate solutions by the Galerkin
method and a passage to the limit where we use an a priori
estimate on a fractional derivative in time of the approximate
-solutions and a compactness theorem ( Morimoto [8]1).

Our results are the following theorems.
Theorem 1 (Existence of weak solutions)
n

Let n be an integer 2 < n £ 4,and  a bounded domain in R

with C? boundary satisfying Condition(H). If the function

g(x,t> is in LY@ x (0,T)), then for any & in Cl¢( Fl x [0,T1),
ap in H , Ty in L?(R), there exists a weak solution {u,8} of
(1),(2) satisfying the initial condition (3).

Furthermore |

u € L7(0,T:H) , 6 € LT(0,T:L2(Q)).
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Theorem 2 (Uniqueness for n = 2 )
Let n = 2. The weak solution {(u,08) of (1),(2) satisfying
the initial condition (3) is unique if

u € L0, T:H)Y, 8 € L7(0,T:L2(Q)).

Theorem 3 (Uniqueness for n = 3)

Let n 2 3. The weak solution {u,G}‘of (1),(2) satisfying
the initial condition (3) is unique on conditian that :

u € L2¢0,T:V)n L7(0,T:H)

6 € L2¢0,T:H ()N L”(0,T:L2(Q))
and

ue L50,T:LY@)> and 0 € L%¢0,T:LTQ)),

hold for some r > n, s = 2r/(r-n).

Let-{g,ﬂ}ﬂbe a weak solution of (1),(2). If they satisfy

the following condition:
(8) ui{x, 0’
g(x,0

then we say they have reproductive property{( Kaniel-Shinbrot

u(x,T),

8(x,T)y,

[31). Under some conditions on v,x,8,g and €, we can show the

existence of solutions with reproductive property.

Theorem 4
Let 2 £ n £ 4, and Q be a bounded domain in Rn with C2

boundary satisfying Candition (H). Let g(x,t) be in

L(Q x (0,T)) and £ in C'¢ T[,X[0,T1) Set g = lgl,
_ ’ L2 ) o L (Qx(o,T))"
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If “ﬁgmf is sufficiently small, then there exists a weak
/YK
solution of (1),(2) satisfying (8). Furthermore

u € L70,T:H),

8 € L°0,T:L2(Q)).

For the proof, we use Leray-Schauder's fixed point theorem
([2]1), and show there exist approximate solutions with
reproductive property. Passage to the limite is similar to the

nonstationary case.
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