goooboooogn
O 7430 1991 0 164-187

Restrictions of reproducing kernel Hilbert spaces to subsets
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1. Introduction.
Let E be an arbitrary set and K(p,q) be a complex valued
positive matrix on E in the sense of Aronszajn-Moore [3]; that

is, for any finite points {pj}?=1 of E and for any complex
' n
umbers {C.}.
numbe { J}J=l

n
2 C, C., K(p,,p,) 2 0.
i=1 =1 1 3 I

MB

Then, by the fundamental theorem of Aronszajn-Moore [3], there
exists a uniquely determined functional Hilbert (possibly finite

dimensional) space H, (reproducing kernel Hilbert space

K ;
admitting the reproducing kernel K(p,q)) composed of functions

f(p) on E such that
K(p,q) € HK for any fixed q € E

and, for any f € H, and for any q € E,

K

(£(p), K(p,a))y = f(a).
K

For the general properties of reproducing kernel Hilbert spaces,
see Aronszajn [3] and Saitoh [10].

The general properties of the subspaces of reproducing kernel
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Hilbert spaces were examined by Chalmers [5]. Some special
subspaces of the Bergman spaces were examined by Davis [6] from
the viewpoint of doubly orthogonal functions, approximation and
analytic extension problems.

Meanwhile, Okubo [7] examined a special and new subspace of
the SZegé space on the unit disc in the investigations of the
high energy physics. See also Aikawa-Hayashi-Saitoh [1] for
some subspaces of this type for the Hilbert spaces of Szego type
on strip domains. For the Bergman and the Szego spaces, see
Bergman [4] and Saitoh [10].

We will examine the subspaces of Okubo type for reproducing
kernel Hilbert spaces from the viewpoint of the general fheory
of reproducing kernels by Aronszajn [3]. Here, the subspace of
Okubo type will be stated in a general situation as follows:

For a subset X c E, we consider a Hilbert (possibly finite
dimensional) space H(X) composed of complex-valued functions on

X. We assume that

(a) for the restrictions fIX of the members f of HK to the
set X, f]X belong to the Hilbert space H(X),

and

(b) the linear operator Tf = fIX is continuous from HK into
H(X).

The subscript in Tp indicates that T is applied on a function

of p.
We introduce the inner product (f’g)HK[H(X)] for the members
f and g of HK by the sum
(f’g)HK[H(X)] = (f,g)HK + (Tf,Tg)H(X). (1.1)

We will examine this Hilbert space HK[H(X)] of Okubo type
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equipped with the inner product (1.1) in connection with the

Hilbert spaces H, and H(X).

K

When the two Hilbert spaces HK énd H(X) are reproducing
kernel Hilbert spaces on the same set E (i.e. E = X) without
assumptions (a) and (b), the Hilbert space HK[H(X)] for HKnH(X)
equipped with the inner product (1.1) was examined by Ando [2].
The construction of the reproducing kernel of this Hilbert space
seems to be abstract. Ando's theorem ([2, p. 34, Theorem 2.3])
and our argument in the special case will be understood as a
"dual” of those for the Hilbert space ([3, pp. 352-354])
admitting the reproducing kernel which is the sum of reproducing
kernels. '

Meanwhile, recall that the norms of the type (1.1) are
similar to those of the Sobolev spaces in the framework of
Hilbert spaces. ‘ ‘

In this paper, we will furthermore examine some related
extremal problems and approximations in connection with the

linear operator T. The contents are as follows:

§2. Properties of the restriction operator T.
83. Hilbert spaces derived from the space H(X).
84. Extremal function of sup ITE

IIfIIHKs 1
§5. Best approximation of g € H

H(X) "~

by H, functions taking

K K

assigned values.
§6. Best approximation of F € H(X) by HK functions.
§7. Examples.

For the sake of the nice properties of T and its adjoint
operator T* in our situation, we will be able to give
"algorithmics"” to get constructively the reproducing kernel for
the space HK[H(X)], the extremal functions in 8§4, and best
approximations in §5 and §6. Indeed, we shall give intrinsic

relations and representations of these functions in terms of the



given data. This point of view will be important in this paper.

The authors wish to express their sincere thanks Professors
Saichi Izumino and Fumio Hiai for valuable comments on this

paper.

2. Properties of the restriction operator T.
Since the restriction operator Tf is continuous from HK into
H(X), we can define the continuous adjoint operator T from H(X)

to HK by the rule

*

(F, Tg)H(X) (T F, g)HK for all F € H(X) and for all g € HK'
Then, we obtain the following fairly simple expression of the
adjoint operator T':

Lemma 2.1. We define the linear mapping from F € H(X) into
the functions on E by
f(p) = (F(+), TK("p))H(X)’ p € E. (2.1)
Then, we have
f = T'F (2.2)
and so, in particular, f € HK. Furthermore, we obtain the
identity
2
f = (F , T (F(-), TK(-, ) . 2.3
ey (), T (F(-), TKC2)yx) )Juix) (2.3)
Proof. We set Kp(') = K(-,p). Then, we have directly
£(p) = (F(+), TK(-.P))y x)
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(T*F, K_)
p HK

(T*F) (p),

which proves (2.2).

Furthermore, we have

2 *_ .2
HfHH T FHH

K K

(T*F, T'F)
Hy

(F, TT'F)

H(X)

(F(p). T (F(*), TK(*.P))yxy)p(x)"

which is the desired identity.

Lemma 2.2. The following items are equivalent:

(i) K(p,a) >> (TK(-,q), TK(~,p))H(X);

that is,

K(p,q) - (TK(-,q), TK(~,p))H(X)

is a positive matrix.

(ii) ITI < 1.

*

(iii) For any F € H(X) and for f = T F, ﬂfHH < lFI

K H(X) "

Proof. Since K(p,q) = (K_, K

q from the identity

Yy
P Hy
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(TK(-,q), TK(- (TK , TKP)

*

H(X) p)HK

we have

K(p,q) - (TK(-,q), TK(',p))H(X)

= ((r-T T)Kq. Kp)H

We thus have the desired results:
K(P.Q) - (TK(‘,q), TK(.’p))H(X) >> 0
*
<=> I -TT>0

ITH < 1
<=> HT*H < 1.

A
1]
\'

The images f(p) = (T*F)(p) in (2.1) for F g H(X) belong
intrinsically to the Hilbert space HIK admitting the reproducing

kernel

K(p.a) = (TK . TK )y x)

and we have the inequality

IIfIIHlK < "F“H(X)

([10, p. 83, Theorem 3.2). Hence, if an item in Lemma 2.2 is

valid, then we have the sharp inequalities in (iii)

it < Ifil < IFl .
Hy HIK H(X)

Furthermore, for the inverse of the mapping f(p) = (T*F)(p),
see [9] and [10, chapter VI].
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Lemma 2.3. The mapping f(p) = (T*F)(p) from H(X) into HK is

onto H, if and only if there exists a positive constant L such

that

K

Proof. That the mapping T* from H(X) is onto HK is

equivalent to the relation HK c HK‘ The relation HK c HIK is
equivalent to the condition in Lemma 2.3 ([3, p. 383, Corollary

IV2]), and so, we have the desired result.

When the norm in the space H(X) is realized in terms of a o

finite positive measure dpy on X in the form

2 2
IFIG ) = Jx  [F)I? dute),

there exists a general method to check our basic assumption (b).

Indeed, from the reproducing property of K(p,q) for H we

K!
have the inequality

It 1% < K@.p) W12,
K

and so, it is sufficient to see that
J'X K(p,p) du(p) < =,
for the validness of (b).

3. Hilbert spaces derived from the space H(X).
By definition, we note that for any f € HK[H(X)]
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(b 2 Ity (3.1)

Hy [H(X) ] K

and so, there exists a reproducing kernel K
space HK[H(X)] such that

H(X)(p,q) for the

KH(X)(p,q) << K(p,q) (3.2)

([3, p. 355, Theorem II]).
Meanwhile, since f € HK[H(X)] for any f € HK,
graph theorem ([3, p. 382, Theorem IV]), we see that there

from the closed
exists a positive constant M satisfying

K(p,q) << M KH(X)(p,q)

and so, forvény f € HK

-1
w2 (V hel :
Hy (V) H, [H(X) ]

Of course, as the sets of functions we have

Hy = HK[H(X)]-

For a characterization of the reproducing kernel KH(X)(p,q) we

obtain

Theorem 3.1. The reproducing kernel KH(X)(p,q) is
characterized as the solution K(p,q) of the functional equation

K(p.a) = K(p,a) + (TR(-.q), TK(-,p))y(x) (3.3)
satisfying the condition

R(-,q) € H, for all q € E. (3.4)

K
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Proof. We set Kp(') = K(-,p). Then, we have directly:
for every q € E,

(Kq, KP)HK = (Kq, Kp)HK + (qu, TKp)H(X) for all p € E
<=>
Kq = Kq + T TKq'
<=>
(f, K ), = (£, K), + (£, T"TK ) for all f € H
q HK : q HK q HK K
<=>

f(q) = (f(-), IK(-,q))H [H(X) ] for all f & Hg.
K

which implies the desired result.

If, for any f € HK

Ity = ITFI

K H(X)

and, equality holds if and only if f = 0, then we can introduce

the pre-Hilbert space H’ equipped with the inner product

In order to consider a functional completion of H’ admitting
a reproducing kernel, recall Theorem of N. Aronszajn [3, p.
3471]:

In order that there exists a functional completion of H’ it
is necessary and sufficient that (1) for every fixed p € E the
linear functional f(p) defined on H' is bounded and (2) for a
Cauchy sequence {fn} c H', the condition fn(p) - 0 for evéry P €
E implies “fn"H’ - 0. If the functional completion is/possible,
it is unique.

When the conditions (1) and (2) are satisfied, we denote the

functional completion of H’ by Hk[H(X)]. Then, for any f € Hy

- 9 -
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(B < Ifly

Hy [H(X) ] K

and so, HK is a subspace of Hk[H(X)]. We denote a reproducing
kernel for the Hilbert space HK[H(X)] by KH(X)(p,q). For this
reproducing kernel KH(X)(p,q), we obtain the similar
characterization as in Theorem 3.1 by exchanging + by - in (3.3).
This argument will be understood as a "dual”" of that for the
Hilbert space admitting the reproducing kernel which is a
positive matrix expressed by the difference of two reproducing

kernels ([3, pp. 354-3571]1).

4, Extremal function of sup "Tf"H(X)'

HfHHK$1
Under assumptions (a) and (b) for the linear operator T from

HK into H(X), we shall consider the extremal problem
sup ITE Il

e, <1
HK

H(X) "

For this problem, we have

Theorem 4.1. We obtain the identities

(Tgf (@), Tg(TEC) ., TRC )3 )i (x)

2
H(X)

sup
f€eH Tt

the maximum eigenvalue au ofrTT*
iT* 1% = atu?. (4.1)

When there exists, we set the extremal function
(eigenfunction) as f for this extremal problem. Then, we

obtain

- 10 -
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2
mgx "Tf“H(X)
HfHH <1

K

< n v (4.2)

and the extremal function h(p) attaining the equality is given by

(T#(-), TK(-, p))
h(p) = ; - H(X) - (4.3)
(T B (@), T (TR TR L))y 5y )i (X)

Proof. The identity (4.1) follows directly from the
identity

(Tof (@) TP, TRCL )y ey

= (Tf, TT*-Tf)H(X).

Furthermore, when there exists the extremal function ?. we have

rt*. T 4% =u7T?
and so,
™ T ('t ) = u 1T T %,

and we thus obtain (4.3).

5. Best approximation of g € HK by H, functions taking

K
assigned values.

For any fixed F ¢ H(X), we consider the subset HK(X,F) of HK
such that N

HK(X,F) = {f € H Tf(p) = F(p) on X}. - (5.1)

K °*

Then, we shall determine the best approximation of any g € HK by
HK(X,F) functions in the sense that

- 11 -
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min It - gnfI . (5.2)
fEHK(X,F) K

For this purpose, recall the construction of the Hilbert space HKIX

admitting the reproducing kernel K(p,q)|X restricted to the
subset X ([3, pp. 350-352]). The reproducing kernel Hilbert

space H is composed of functions on X which are obtained by

K|X

the restrictions f|X of HK functions f to X. The norm in HKIX

is given by

R = min Ihly

HKIX K

where, the minimum is taken over all functions h € HK whose
restrictions are f|y on X. ‘
For any f € HK{ we have the expression, by the reproducing

property of K(p,q)|X

f(p) = (fIX(-), K(~,p)|X)H | on X. (5.3)
K|X

Then, for fIX - F, we define the function f* on E by

£5(p) = (F(+), TK(-,p))y . (5.4)
, K|X

Then, for H(X) = HKlX in the general situation, assumptions (a)‘
and (b) are satisfied, and furthermore, the items in Lemma 2.2

are valid. From (5.3) and (5.4), we first see that
Tf*(p) = F(p) on X. ’ (5.5)

In particular, note that

*

*
f € H, and If "H = "FHH

K K K|X

We thus see that f* is the extremal function in the sense that

_12_
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Fal P min  Ifly . | (5.6)
K fGHK(X,F) K

By the translation f - g, we obtain

Theorem 5.1. For any given g € HK’ the extremal function £*
€ HK satisfying
min _ If - ghl = 0f* - gl
fGHK(X,F) K K

is given by

£%(p) = g(p) + (F(+) - Teg(+), TK(+,p))y |
KiX

6. Best approximation of F € H(X) by HK functions.
We will consider a fundamental approximation problem in the

two Hilbert spaces H(X) and HK such that for any F € H(X)

inf ITf - F

I .
H(X)
fEHK
When there exist the extremal functions f* € HK in the sense that
. _ ‘*_
min ITf F“H(X) = ITf F“H(X)’ (6.1)

fGHK

note that f* are characterized by the orthogonality

*
(Tf - F, Tf)H(X) = 0 for all f € HK’

which is equivalent to -

(T*(+) - F(+), TK(- =0 for all p € E.

,p))H(X)

- 13 -
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Furthermore, it is equivalent to

T'F € range (T*T).

When there exist the extremal functions ff from the relation

Ker (T*T) ® range(T T) = He,

we see that the mapping

*

T T | :
range(T*T)
is one to one and onto range(T*T). So, we denote its inverse by
(T*T)—l. Then, we note the identity
TR T T T P TGk DR o N
K K K

We shall give a realization of the abstract operator
(T*1)" 1.

by the functional equation

For this purpose, we shall determine the functions f*

(T£*(+), TK(- (T*F) (p) & range (T'T).

,p))H(X)

We have the expression

* *
(T*F)(p) = (T£° (), TK(-.P))y x)
= (£7 (), TUTK(-,p))y
K
= [£*(r), (TK(-,p), TK(-,r)) . (6.2)
( H(x>)HK

- 14 -
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In order to determine the natural Hilbert space formed by the
images of the transform (6.2) by, in general, HK functions, we

shall compute the kernel form on E

k(p,a) = (T'TK(-,@), T'TK(-,p))y
K
= (TK(-,q), TT*TK(-,p))H(X)
- (TrK(r,q). T_(TK(.p). TK("r’)H(X))H(X)- (6.3)

Then, the images belong to the Hilbert space Hk admitting

the reproducing kernel k(p,q) on E ({10, p. 83, Theorem 3.21).
In the transform (6.2), we shall determine the natural

inverse f'° g H, for T'F € H, in the sense that

K K
IE**0., = min NN (6.4)
Hy Hy
among all the functions f* £ HK satisfying the functional
equation
(TF)(p) = (£7(+), T" TK(-,p))y - (8.5)

K

In order to express £** in terms of T*F, we can use Theorem 4.1
& 4.2 in [9] and Theorems 4.1 & 4.2 in [10, chapter VI]. Here,
we shall write them formally

£"%(p) = (T'F(-), T'TK(-,p))y , (6.6)
k

5

in the sense of their Theorems, respectively. Then, we obtain
Theorem 6.1. We assume that T'F g range (T‘T). Then, there

exist the extremal functions f* in the sense of (6.1). Then, by
using the formal expression (6.6), the function

- 15 -
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£75(0) = ((F(s), TK(s. )y xy» T TK(-.P))y
k

gives the extremal function in the sense that

min W€0, = W€ "y
HK HK
among the functions f" £ HK satisfying the equation
. . _ *
min |[ITf - F"H(X) = |ITf F"H(X)'
szK

In order to assure a unique correspondence in the mapping

* *
TF -» f in HK,

we shall need the natural assumptions that

(c) {Tf; f ¢ HK} is complete in H(X),
and , ,
(d) Tf = 0 in H(X) for f ¢ HK implies f = 0 on E.

Indeed, when these assumptions (c) and (d) are valid, for

any f € H, satisfying

K

(f(-), T*TK(-,p))H = 0 on E
- K

we have

(Tf(-),TK(-
and, by (c¢)
Tf = 0 in H(X),

,P))H(X) =0

and so, by (d) we have the desired result that f = 0 on E.

- 16 -
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7. Examples.

(I). It is in general difficult to solve explicitly the
equation (3.3) satisfying (3.4) for a given reproducing kernel
K(p,q). For a general method, see also [7] in connection with
an integral equation. Here, we will examine two typical cases
where the solutions KH(X)(p,q) are explicitly determined.

First, in our general situation, we assume that

X = {El, &2, cees ﬁn} (7.
and, for f € H
K
n
2 2
Nt = 3 IfE)l”; (7.
H(X) 21 v
that is, H(X) is the usual Euclidean n-dimensional space.
Then, from (3.3) we have
n
K(p,a) = Ky x,(P,a) + v§1 Ki(x) (80 @) K(p,ﬁv). (7.
By setting p = &M, au=1,2,...,n, we have the linear equations
3 M
PR K(E, 8, Ky x) (8,0 @) = K(E,.), 7.
no=1,2, , N

Since the matrix

"53 * K(gu’gv)"

is positive definite, we denote its inverse by MA“vH. Then, we

have

_17_
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Hence, from (7.3)

Kr(x) (Pr )

In particular,

K (p,a) = K(p,q) -
H(X) 1+ K(Z,8)
(I1). We consider the positive matrix, for q > 0
_ 1 q . .= sin q(z - u)
K (z,u) = I o1t iUt 4¢ o —
9 27 -q n(z - u)

= K(P»Q) - Z

,4)

n M

A K(E ,q), v =1,2,...
u=1 Vi n
we obtain the explicit solution

n

v,u=1
for one point X = {&}, we have

K(p,&) K(§,q)

K(p.iv) Avu K(ﬁu,q)-

181

(7.5)

(7.8)

on the entire complex plane {. The positive matrix Kq(z,ﬁ) is

a reproducing kernel of Szego type in our sense [1] and the

Hilbert space HK
q

admitting the reproducing kernel Kq(z,ﬁ) is

composed of entire functions f(z) of exponential type £ q with

finite norms

Note that for f €

for any real numbe

So, we will consid

H

s+

f [f(x + ﬁi)lz dx < o

— o0

r £. For this fact, see also (7.10)

er

- 18 -
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X={¢g+p,d;v=12,...,n £€ (- =)}
and
2 a0 2
£l = 2 [f(& + p 1)[|“ d&. (7.8)
H(X) » v
v=] Y-
Then, KH(X)(z,ﬁ) satisfies the functional equation following (3.3)
sin q(z - u) _
- = K (z,u)
n(z - u) H(X)
n 1 ,o _ sin q(& + p,i - z)
v 3 — [ Ky &+ 1) - e, (1.9)
v=1l = - . E + pvi - Z
In order to find an explicit solution KH(X)(z,ﬁ), we use a

general method for integral transforms ([10, chapter 6]).
From the identity (7.6), we see that f(z) € H is

K
q
expressible in the form
1 a
£(z) = f F(t) el2% g (7.10)
2n -q
for a function F(t) satisfying
4 2
f IF(t) ]2 dt < =
-q
and, the identity
1 q
e - f IF(t) 12 at (7.11)
K 21 -q

q
is valid. Then, note that from Parseval's identity

1

2 4 2
(B = — IF(t)|© |1 +

q

n —vat
S e )dt. (7.12)
=1

- 19 -



This identity (7.12) and (7.10) conversely imply that the

reproducing Kkernel K )(z,ﬁ) is expressible in the form

H(X
. 1 q eth e—lut
K. o (z,1) f dt, (7.13)
H(X) 2n -q n —2put
1+ 2 e
v=1

which gives the desired solution.

(IITI). Let D be a bounded domain in { and we consider the
Bergman space ALZ(D) on D composed of analytic functions f(z)

on D with finite norms

1
2

{ffD 1£(z) |2 dxdy}? < w.

We denote the Bergman kernel for the Hilbert space AL2(D) by
K(z,u). Let {DJ.}S.I=1 be any finite number of open discs {|z - pjl
< rj} on D which are disjoint. Then, by the submean property of

|f(z)|2, we obtain the inequality

If(pj)|2 If(z)|2 dxdy,

|z~ p

and so we have

n
no2 r2 If(p.)l2 < If If(z)I2 dxdy.
j=1 J J D

We assume that for nonzero constants, the equality in the above
inequality does not hold. Then, we can introduce the Hilbert
space Hi{Dj} equipped with the inner product

n
2 [ ——
(f,g) _ = (f,g) -n2rs f(p,) g(p,)
HK{DJ} AL, (D) v=1 Y v 1Y

- 20 -
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for the members f and g € ALZ(D). The reproducing kernel
K(z,ﬁ;{DJ}) for the space H%{Dj} can be determined by the

functional equation

n -
K(z,a) = K(z,0;{D,}) - = 3 r2 K(p, .ua;{D,}) K(p.,Z).
J v=1 v v j v
By setting z = pu, u=1,2,...,n, we have
oo NN - -
vgl{av - T[rv K(pvypu)} K(pv;U;{DJ}) = K(pu,u), n = 1t2""!n'

2
v
its inverse by “Buv“' Then, we have

Since the matrix H&S - nr K(pv,ﬁu)ﬂ is non-singular, we denote

n —_—
K(pv.ﬁ;{DJ}) = > B K(u,ﬁu), v =1,2,...,n.

p=1 VM

Hence, we have

K(z,u;{D}) = K(z,u) HJ v Pup

n _ 9 E—
2 K(z,p,) rs B, K(u,p ),
u= v : M

1

In particular, for one dise¢ D(p,r) = {|lz - p| < r}, we obtain

_ _ nr? K(z,p) K(u,p)
K(z,u;D(p,r)) = K(z,u) +

1 - nr? K(p,p)

(IV). In the case of a finite point set X as in (7.1) with
(7.2), Theorem 4.1 was given by [8, Theorem 3] explicitly.

(V). In the case of a finite point set X as in (7.1),

- 21 -
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Theorem 5.1 was given by [8, Theorem 2] explicitly.

(VI1). We can refer to the approximation problem of Davis
[6] as a typical example satisfying the assumptions (c) and (d)

Let G and B be two domains which are bounded and such that
G c B. Let ALZ(G) and ALZ(B) be the Bergman spaces on G and B,
respectively. For a function F g ALZ(G), we are interested in

approximating F on G by a function f g ALz(B) such that

min IF - £l oy
2

From the point of view of the doubly orthogonal system which is
closed on both domains G and B, Davis {6, p. 117] assumed that B
and G are each bounded by a finite number of disjoint Jordan
curves and the inner region G is such that it separates no point
of B - G from the boundary of B. This assumption coincides with
our assumption (d). Of course, other assumptions (a), (b) and

(c) are trivially satisfied.

(VII). In the case of a finite point set X as in (7.1)
with (7.2), the extremal function f**(p) in Theorem 6.1 is given
explicitly by

T K(&,.p) K& 5])
v

T K(g,.p) K(E,,8,)
Vv

" (p) =

EK(g,.p) RTEED

- 22 -
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S F(g,) K(E,.E)

T F(g,) K&, .,y

<

X uk(&v,&u)n“ ‘ .

<M

F(g,) K(E ,E)

where

n
k(p,q) = f K(p.£&,) K(qnﬁu) K(ﬁv.ﬁu).

=1
Here, for a positive definite Hermitian matrix A, R = A—1 and, *
denotes the transpose of the complex conjugate vector. For a
K admitting the
reproducing kernel k(p,q) on X, see [10,pp. 12-13]. In the above

realization of the finite dimensional space H

. * * ) .
expression of f , we assumed that Hk(ﬁv,iu)unxn is positive

definite.
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