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A simple system of equations describing the propagation of
Langmuir turbulance in an unmagnetized, completely ionized hydrogen
plasmé was first obtalned by Zakharov [12] by means of a two-fluid
description of the plasma. The system consisting of the ion sound
equation and the electric field propagation equation with nonlinear
coupling terms is derived from Maxwell's equations and linearlized
hydrodynamical equations. Another derivation from a Lagrangian
formalism is given by Gibbons, Thornhill, Wardrop & ter Haar [5]..

In a suitably scaled coordinates, the Zakharov equations are the
following:

iatE + AE = nE, ) : (1.1)

2

2252

°n - 4n = AlEIZ, (1.2)

where E and n are functions on the time-space RXRN with values
in CN and R, respectively, and A > 0 is a parameter. In these
equations E 1is the slowly varying complex amplitude of the electric
field é of the Langmuir waves with plasma frequency mp:
§(t,x) = Re(E(t{x)exp(—itwb)),

n 1is the deviation of the ion density ffom its equilibrium, x is
the ion sound speéd, the RHS of (1.1) describes the shift of plasmon
frequency caused by thé slow density variation n, and the RHS of
(1.2) describes the driving force caused by the pressure of plasmon
gas. '

In the 1limit X — « 1in (1.2) we formally get the equation
A(n + |E|2) =0 sothat n = - IEI2 if n + IEI2 vanishes at



infinity. Therefore in the 1imit the Zakharov equations (1.1)-(1.2)
reduce the nonlinear Schrodinger equation '

iatE + AE = - |EI

Thus the Zakharov equations can be regarded as a natural extension
of the nonlinear Schrodinger equation in order to take a finite
response time of the nonlinear medium of the ion part of the plasma
into account and the limit X — o turns out to be related to an

instant response of the medium.

We consider the Cauchy problem for the Zakharov equations and
the nonlinear Schrodinger equation and examine the rate of
convergence of the solutions as a1 — «. The Cauchy problem for the
Zakharov equations are written with the subscript x by

o _ N
latEA + AEA = HAEA’ t >0, x € R,
-2,2 _ 2 N
b Stnl AnJL = AIEAI , t >0, x € R, (ZA)

E, (0,x) = Eo(x), n, (0,x) = ny(0,x), 8., (0,x) = n,(x),

where X > 1 and (E are given initial data. We consider

0'Mo M)
the Cauchy problem for the nonlinear Schrodinger equation with the

same initial condition EO as in (ZA):

2E, t >0, X € RN,
} (NLS)

iatE + AE = - |EI|

E(0,x) = Eo(x)

From now on we assume that the initial data (Eo,no,nl) are in
the Schwartz space ¢ for simplicity.

It was shown in H. Added & S. Added [1][2], Ozawa & Tsutsumi
[7]}, Schochet & Weinstein [9], and C. Sulem & P. L. Sulem [10] that

if n, € i1 and 1 <N < 3, then (ZA) and (NLS) have unique
solutions n,, EA’ E € C ([O,Tmax); H') with the maximal existence
tlme Tmax’ such that for any T with 0 < T < Tmax and any m € N
there exist two positive constants C0 and 10 satisfying
sup sup (IE_(t) + In, (t)N ) < C,, (1.3)
az2a, ost<t  * ™t ATyl 0



where H Y =(wev; (-0) V24 12y, = n v T is

‘ k=0 max
independent of 2, and in particular, Tmax = o jf N = 1.
Moreover, it is shown in [2] that if n, = v-¢ with ¢ € ¢, then

for any T with 0 < T <’TmaX and any m € N there exist two

positive constants C and 2x such that for any x =z 2

1 1 1
2 1/2 2
sup (IE (t)-E(t)I + lIn, (£)+1E_(t)]1°-(cosat(-a) Y(n +TEL TSR o)
0<t<T X ‘Hm A Py 0 0 Hm 1
c.a71/2 if n+lE12%0 and N < 2, (1.4)
1 0 0
-1 . 2 _
< 9 Cx “logx if n0+lE0| #0 and N = 3, (1.5)
-1 . 2 _
. Cix if ny+lEyIT = 0. (1.8)
2

There is a discrepancy between the non-compatible case n0+IE0I 0
and the compatible case no+IEO|2 = 0 concerning the rate of

convergence as A — =, This corresponds to an initial layer
phenomenon and the term Q(l)(kt) = (cos At(—A)l/z)(n0+IEOI2)
represents the first initial layer for (Zx)’ We note that Q(l)(t)
solves the wave equation

o2t — 4™ -0, t > 0, x e &Y,
e (0,0 = ny(x) + 1By (x)12, 8.2 (0,x) = 0.

On the other hand, if we perform a formal perturbation method
under the assumption

B = 50 4 37l 1 725(2) | ;-3

(1.7)

n, = n(® 4 () 4 322, g7y,

A

as x — o in a suitéble sense, with smooth functions E(J), n(J)

on RXRN independent of X, we get

zeroth order equations

n(® - - g(92, 10,00+ g0 - () 25(0),



first order equations

n(l)= . ZRe(E(O) ‘E(l)),

10, 1)+ ag) o - g0 ZE) _ p(gee(?) £ )E(D),

second order equations

a%ﬁO)- (2)

An (1),2

= A(IE + 2Re(E(Q).E(2)yy,

10,8® + 2@ o (0% e @ .£(1)))ED)

+

n(2)g(0).
with the initial conditions n(o)(O) = n,, tn(o)(O) =1,

E(O)(O) = Ej, and n(J)(O) = 0, E(J)(O) =0 for j =1, 2. From the
equation for E(O) we see that E(O) is eqhal to the solution E to
(NLS). For the equation of E(l), we compute the time derivative of
HE(l)(t)ng and use Gronwall's inequality to get E(l) = 0, where

H'Hz denotes the Lz— norm. This leads to

(1.8)
n, + 1E12% = 2722 4 2reE-E(?))) + 007,

which is exactly the same condition as the one used in Gibbons [4]
as the first step of his formal derivation of (NLS) from (Zl).
Under the assumption (1.7) we have for any k 2 0
%@ + 12 (0) - 0,

which implies

n, + (8 )(0) =n; + 2Im 2 GJ(E 6 Eq ) =0,

and so on. Hence we necessarily take a strong compatible case so
that this is a main drawback of the formal perturbation method, but

(1.8) suggests that the RHS of (1.6) should be replaced by Clx—z in
this strong compatible case.



Our aim is therefore on a detailed analysis of the rate of
convergence of solutions to (Zl). We use the weighted Sobolev space

Hm,s' m, s € R, defined by

m,s 2.,8/2 m/2

H

={y ey’ Wi, o= 1(Q+1x17) (1-4) Vi, < =}.

e 9o L.

Theorem 1. Let N < 3. Let E,, n, € ¢ and let n Let

1
(Ex’nk) and E be the solutions to (Zk) and (NLS) , respectively,

with the maximal existence time Tmax‘ Then:

(1) For anyr T with 0 < T < Tmax and any m € N there exist two

positive constants C and 2 such that for any x = x

0 0
sup_In (D+E (0 12-e P a2 P oo, s a™ @
0Lt<T : ’
where Q(l)(t) = (cos t(—A)l/z)(n0+lE0I2) and
Q@ (t) = (-a)Y2(sin t(-8)%)(n, + 2Imn 3 8. (E.-9.E.)). In
1 jop 40 770
particular, for any A = 10
sup_In, (©)+1E, (0)12-P vy < et (1.10)
o<t<T - '
.2 .
(2) Assume n, + IEol # 0. Then for any T with 0 < T < Tmax
and any m € N there exist two positive constants such that for any
Lz
sup IE, (£)-E(t)l_ , < el (1.11)
0<t<T i
(3) Assume n, + |E I2 = 0., When N < 2 assume that n takes the

0 0 1
form n, = v-$p for some ¢ € ¥. Then for any T with 0 < T < TmaX

and any m € N there exist two positive constants C and 10 ‘'such
that for any a 2 AO
sup IE, (£)-E(t)l_ o < Cx2. (1.12)
0LtLT '
Remark 1. (1) The assumption n, € ¢nfi’1  is redundant when N = 3

1
for N > 3. This fact follows by using the Hardy
inequality in the Fourier space.

since ¢ c A L



(2) Qz(t)’ in part (1) ‘solves the wave equation

2

_ ) . N
eth AQ2 =0, t >0, x €R

- N
QZ(O,X) = 0, ath(O,x) = nl(x) + ZIm‘jz1

The term: A—le(lt) in (1.9) represents the second initial layer for
(Zk).

8,(Ey-2Ey) (x)

The rate of convergence is turned out to be better when we
consider the problem locally in space or away from the initial time.
Theorem 2. Let N £ 3. Let EO' n 1. Let

0 1
(nA’EA) and E be the solutions to (Zx) and (E), respectively, with

€ ¥ and let n, € ¢nH

the maximal existence time Tmax' Then:

(1) For any T with 0 < T < Tmax’ any m € N, and any s > 0

there exist two positive conétants C and 2 such that for any

0
A2 AO
sup In (£)+1E, ()12 P aty-a e ey (1.13)
0<t<T '
ca 72 i s > 1,
< i el logn  if s =1,
ca~1-s if 0<s <1,

where S = s when N=1 and § = s+1 when N 2= 2.
(2) For any T with 0 < T < Tmax' any m € N, and any ¢, s > O

there exist two positive constants C and AO such that for any

Az lo

sup Hnl(t)+lEl(t)I2Hm y = os, (1.14)
g<t<T ' '

Remark 2. In addition to the assumptions above, assume that
N
+ 2Im 3 @

o J=1
for any T with 0 < T < Tmax’ any m € N, and any s with

(E.+9.E.) = 0. Then part (1) implies that

=1 307 %50

1
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0 < s <17 there exist two positive constants C and 1. 'such that

0
for any x = AO
| (ca? if s > 1,
2 -1 . _
~sup - In,_ (E)+IE_(t)1“} ~ £ Cx ~logx if s =1,
Py A m,-s
0o<t<T _ 1-s

_Cx if 0 <s < 1.

Some of the results in Theorems 1 and 2 are optimal.concerning
the rate of convergence with respect to .

Theorem 3. Let N < 3. Let E., n. € ¢ and let e‘gnﬁ"l, Let

o' To ny
(Ex’nx) and E 'be the solutions to (Zk) and (NLS), respectively,

with the maximal existence time Tmax'

(1) Let SEIEIZ(O) # 0. 'Then for any T with 0 < T < Tmax’ any

m€ N, and any s = 0

1im inf 2% suwp In (0)+1E () 12D P oy, > o.
A — @ 0<t<T ' ’
(1.15)

) - v
(2) Let (n0+|EO| )EO # 0. Then for any T with 0 < T < T and

any m € N

lim inf 2 sup IE, (t)-E(t)lI 4 > O. ’ (1.16)
A — ® 0<t<T ’ A
2 ' N —
(3) Let n, + IE.|“ =0 and let (n, + 2Im aj(EO-ajEO))EO # 0.

0 1

J=1
Then for any T with 0 < T < TmaX and any m € N

lim inf 22 sup IE, (£)-E(£)I_ o > 0. (1.17)
X — @ 0<t<T '

The theorems above give a.detailed description of formation of
initial layers with almost optimal rate of convergence for solutions
to the Zakharov equations. For any T with 0 < T < Tmax’ EA
‘behaves 1ike E on the interval [0,T] and n, behaves like
- IEI2 on the interval (0,T]. This difference between the time
intervals for convergence of these solutions is due to the initial
layer phenomena. The formation of initial layers also reflects the

rate of convergence for solutions to the Zakhrov equations.

- 7 -



- We should note that in the theorems above we only consider the
problem up to time T strictly less than the maximal time Tmax' It
cannot be expected that T = T even when X is large enough

since there are discrepancies ggﬁween global behaviors in time of
solutions to (Zk) and those of (NLS). For example in one dimension
(NLS) has an infinite number of conservation laws and has n-soliton
solutions with arbitrary n, whereas (Zl) has only three conserved
quantities for plasmon number, momentum, and energy, and has only one
set of single soliton solutions, which are usually called Langmuir
solitons (see Gibbons, Thornhill, Wardrop & ter Haar [5], Makhankov
[6]1, Zakharov [12]). In two and three dimensions (NLS) has blow-up
solutions and (ZA) is conjectured to have blow-up solutions. We
have, however, no results on the blow-up problem for (Zl)’
especially, on the relation between the maximal existence time of
solutions to (NLS) and that of (z,).

Our method of the proofs of the theorems above depends
essentially on the special propagation properties of acoustic waves

and of nonlinear Schrodinger waves. An outline of the proofs is
2

roughly given as follows. By setting Ql = nl+IEAI , (Zl) becomes
- - 2 _ \
13tEx + AE/I = IEAI El + QxEx’
-2 _ .=2,2 2
A 7Q, - 4AQ = TOLIE, 17,
2 4 (1.18)
EA(O) = Eo(x), Ql(o,x) = no(x) + IEO(x)l )
N . .
atQA(O’X) = n,(x) + ZImjélaj(Eo-aon)(x). J
which in turn yields the system of integral equations
t 2
B (8) = U(0)Eg + 1 [ 0(e-s) (1B, 178, - QuE,) (s)ds, (1.19)
Q1) = Mty + 2P (a) (1.20)

t
+ 271 fo(-A)'l/z(sin A(t-s)(-A)1/2)3§|E1|2(5)d5’

where U(t) = eitA and Q(j) is as in Theorem 1. Similarly, (NLS)
is rewritten as

. )
E(t) = U(t)E, + 1 f U(t-s) IEI12E(s)ds. (1.21)
0

- 8 -



Then the first step is to estimate the terms in the RHS of (1.20) to
conclude that Q,(t) behaves like APy @ ) as x — .

The next step is to consider the integral equation
t 2 2
E (t) - E(t) = i j' U(t-s) (1E. 12E. - 1EI12E) (s)ds (1.22)
X 0 X Py .
t .
- J'OU(t—s)Ql(s)Ex(s)ds,
which follows from (1.20) and (1.21). Our task is to estimate the
second integral in the RHS of (1.22) since the first integral is

t
easily estimated as C I NlE. (s)-E(s)1 ds. The integrand Q.E
0 A m,O0 AT

in (1.22) corresponds the interaction between acoustic wave Q,l and

nonlinear Schrodinger wave EA. Ql

Huygens principle. Qk(t,x) is localized in a neighborhood of the

propagates according to the

sphere Ix| = xt so that Q)L propagates very fast as x — «, On
the other hand, EA propagates with group velocity independent of .

HO’m invariant for

More precisely, the map EO — Ex(t) leaves
any t > 0 and any m € N, and furthermore, lIE)N(t)IIO,m is bounded
by a constant depending on t, m, HEOHO,m, but not on . Therefore
El(t,x) is localized (not in the strict sense) in a bounded domain
with radius independent of . Hence the product QlEl should be
proved to be small as x — « without using explicit Lm—decay
estimates for the wave equation. This is a main idea of our method,
and is different from those of H. Added & S. Added [2], Asano [3],
and Ukai [11], which rely heavily on explicit L”-estimates for

solutions to the linearized problem.

For detailed arguments see Ozawa & Tsutsumi [8].
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