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Introduction.

The stationary exterior Navier-Stokes problem consists
in the study of a flow past a compact region 3, when all
data are supposed to be independent of time. If we attach at

a point C interior to T a reference system ﬁs{C,xl,xz,xai
having the xi—axis parallel to the velocity vw of ¢C, the
steady exterior Navier-Stokes problem 1is formulated as

follows:
Boundary value problem:

Av - Vp = R v.Vv - £,
v.v = 0, in Q=R’\3; (1)
vix) = v, (x) X€0Q;

Data at infinity:

v(x)-»v00 as Ixlsm, (2)

where R is a Reynolds number, f the external force and v;,vm
the ‘velocity at the boundary and at infinity, respectively.
Generally, the usually adopted requirement on v, 1is the
condition of’vanishing at the boundary, when 8 is a rigid
body fixed in ®. However, other conditions can be easily
figured out such as: i) 3 rigidly rotates around C; ii) Qvis
fixed, but there is a device, composed by sinks and sources,
by which fluid is removed from or<added to the boundary 8Q -
at a prescribed rate v, . In this 1atter case the boundary
" will be né more impermeable, i.e., v,.n #0, where n is the

outer normal to 9N.
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The objective of this paper 1is to‘investigate when the
above boundary conditions are compatible with -the
circumstance in which the full momentum contributed into the
liquid by the boundary of the flow 1is =zero, momentumless
flows, for v®=0. The momentumless flow condition 1s
analytically formulated as a restriction upon the drag

F=F(v,p) to be zero, i.e.,
- F(v,p) = J {-T(v,p)*n+R v v, -nidZ = 0
: N
where T is the stress tensor with components

Tij(v,p) = —péij + Dij(v) ,

and Dij is the deformation rate tensor. It appears evident
from the definition of the drag that the boundary data (2)
do not control the drag, hence, the condition ¥(v,p)=0
should be derived appropriately. In other words, a first
question to be set <could be the following one: “Aré
compatibility conditions in the exterior problem needed? If
ves, what kind of conditions are they?". It has long been a
general belief that, in order to obtain momentumless flows,
even 1n linear theories, some consistency condition upon Vv,
should be required, cf., e.g.,Finn (1965), Avudanayagam et
al. (1986), Pukhnachov (1989). However, the first comnplete,
satisfactory answer to the problem in the linear Stokes
approximation has been provided only recently by Galdi &
Simader (1990), where it is rigorously proved, among other
things, that momentumless flows are possible if and only 1if
a consistency condition is satisfied by the data. Thus a
characterization of such flows is explicitly given 1in the
linear case.

In the present paper we' furnish an answer to the
momentumless problem for the full nonlinear Navier-Stokes
equations, when v®=0. For the sake of simplicity, we shall
confine ourselves to the case of zero external forces and to
Qcma, since the non-homogeneous n dimensional case does not
preéent conceptual difficulties even - though the relative
changes have to be clarified. The case V®¢0 will be anlyzed

in a forthcoming work.



The paper is organized as follows: 1in section 1, we
recall the results of Galdi & Simader (1990) on the
existence of momentumless flows for the linear Stokes
problem; next, in section 2, under the assumption of small
Reynolds number, we prove that flows past a fixed obstacle
suffering zero drag are possible i1f and only if the data at
the boundary satisfy the same compatibility condition
derived in Galdi & Simader (1990) for the Stokes problen,
cf. equation (5) below. For instance, when ® is a ball, the

condition becomes

Jan*do = 0.

1 - The linear Stokes problem.

In the present section we gilve some preparatory
results concerning existence of solutions to the Stokes
problem, in the Lebesgue space L9, with zero external force.
This is a particular case of the general theory developed by
Galdi & Simader (1990).. As is well known, the Stokes problem
is described by

Boundary value problem:

Av - Vp = 0, (3)
v.v = 0,
vix) = v, (x) x€3Q;

Data at infinity:

vi{x)-0 as Ixlsm». (4)

In the sequel, it is assumed Q of class C2+6, 5>0.

Let us denote by H79(Q) the completion of Cz(Q) in the

norm Iw|1q= (flequ“q, by B 7'9(Q) its dual space, with
' Q

norm |wl The corresponding vector spaces will be

'1:q.
“denoted with the same symbol. By D;””Q) we indicate the

subspace of H;’q(Q) of solenoidal vector fields.
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The first step concerns the study of the boundary Valué
problem (3). Denoting by Yq the linear subspace. of
Hé’q(Q)qu(Q) constituted by solenoidal velocity fields v
(e H;’q(Q)) and corresponding pressure p (€L9(Q)) -“solving
the homogeneous system (3), it can be proved that Yq={0} 1f
q<3, while dim Yq=3 if g23, cf. Galdi & Simader  (1990)).
Moreover, we set

sq={D;"‘(meq<m he

1-t/ad.a a0y (cf., €.g.,

and, for v, in the trace space W
Adams (1974)) we put

v, | = b
*'1-1/q,q,0Q q

where 1.1 is the norm of wi-(V/ad,a 50y It
holds:

(a) If g»3/2, there exists one and only one solution

1-(1/q),q,00

(v, p)eSq to (3). This solution verifies
vl o+ pll” < cb
1,q q q

where the left hand side denotes the norm of (v,p) in the
quotient space Sq .
(b) 1If g<3/2, the problem has a solution if and only if

J v, 'T(h,n)-ndZ=0 for all (h,m)e¥ (35)
aQ a

In such a circumstance the following estimate holds

vl + Ipl s c¢cb .
1,9 q q

As a corollary to the case (b), we have veLP, p=3g9/(3-q)s3,
if and only if the compatibility condition (5) is satisfied.
Let us, now, recall some asymptotic representation

formula for the solution to the boundary value problem (3).

To this end, let us denote by UE{Ui j}, qa{qi} . the
fundamental solution of the Stokes system (3)1 2" i.e.,
. XX
U (x) =c_[8 _IxI7+ —2 1
i, 1 i, IxI3
(6)
. xi
qi(x) =c, 3
Ixi



with ci:ci(n). Thus for all v, p ec”(Q) solutions to (3)1 2
corresponding to fecz(Q) with VGH;'q(Q), 1<g<3, the
following asymptotic representation formula holds, see Chang

& Finn (1961) and Galdi & Simader (1990).

vix) U(x).t + o(x)

as x| =» o (7)

p(x) g(x).t + n(x),

where T = faQT(v,p).ndZ, and the derivatives of order m20 of

-3-m

-2-m
and I x| ,

o(x), n{x) are infinitesimal of order Ixl
respectively. Frém the répresentation (7) we recognize at
once that solutions with veL%(Q), gs3, can exist if and only
if the drag t is zero. Thus, the linearized Stokes problem
provides an éxplicit asymptotic behavior and momentumless

flows are thus characterized in the Lebesgue space L9, gs<3.

In the next section, we shall characterize the class of
momentumless flows for the full non-linear system. To reach
this goal, we shall need to recall some properties of the
Green tensor. As is well known, this tensor 1is defined by

the formulae

G (x,y)
" XrY

i,

U (x,y)+g, (x,y)
, J i,

yi(x,y) = qi(x,y)+gi(x,y)

where U, j,qi is the singular solution (6), and g  _,

’

9, is the regular solution to

Ag, (x,¥)+9 g (x,y) = 0
yIi, YT 9T

v . (x,y) = 0, , YEQ

y it oy

9i,j(x'¥"yean = Ui,j(x,y)lyeaQ, lim gi,_(x,y)=0, vxeQ.
oy lylow

The Green's tensor exists, cf., e.g., Finn (1965), and
verifies the Stokes problem with v,=0. Moreover, we have,

see, e.g., Babenko (1972)

ID:Gij(x,y)lsM/lx—yI“a oy s/ ix-yi? o, (9)

for all x,yeQ, i,3,k=1,2,3 and a=0,1.

g1



n.2 The non-linear Navier-Stokes problem.

Concerning the non-linear Navier-Stokes problem (1),
(2), 1t is well known that a smooth solution always exists,
for any large data; furthermore, it possesses a finite
Dirichlet integral and tends to zero at infinity, cf. Leray
(1933), Finn (1959). We call these solutions D-solutions.
This remarkable result could not have been predicted from
any known experimental observation (bifurcation of the
flow), nor it is in any way obvious from the mathematical
structure of the equations. However, since the . speed at
which~v—v® tends to zero at infinity 1is in general not
given, it cannot be proved that the structure of the flow at
infinity fits the one known for the linear probleml.

As is well known, the following representation formula

for D-solution p,v of problem (1), (2) holds
vix) = U(x).t + [ vi{y).W(y).U(x-y)dy +o(x)

8 (10)
p(x) = U(x).t +n(x),
with 7, o0 and n defined after (7). From (10) it can Dbe
proved that veL?, gs9/2, implies Ivl=0(|x|'a), oazl/2, cf.

Galdi, forthcoming. Till now, the problem of the asymptotic
decay of the D-solutions has been solved with the additional
assumption of summability with power g greater than 9/2,
(cf., e.g. Galdi, forthcoming, also for more generél
n-dimensional results). An alternative resolution to the
problem can be given by changing the existence class and it
is Jjust the direction pursued in this work. To this end, we

first prove the following key regularity lemma:

Lemma 1- Let v, p be a smooth solution to the

non-homogeneous Stokes problem

Av - Vp = divF, _ » (11)
vV.v = 0,
1

To be precise, this problem arises only when v®=0, since,
if v®¢0, D-solutions behave asymptotically as solutions - to

the linear Oseen equations, cf. Babenko (1973).
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with FEL®(Q). Then, if veL>(Q) it follows Wv,peL>’?(q).
Proof- In order to prove Vv,p€L3/2(Q) it 1s enough to
show Vv,p€L3/2H2), Q. ={xeQ: |x1 >R} for sufficiently large R.

R R
To this end, we apply the Helmoltz decompositon, see

Solonnikov (1977), to the vector FijejeLalz(Q), where (e |

is a basis in R. It follows (in the distributional sense)

F =V + V(u+Va) ,
3
a_ v . _
Liowax 7O
1
Au = divF +Vn , (12)
divu=0,

5 u =0, on 99,

and Vu€L3/2

(Q), ueL’(Q). Subtracting (11)1 from (12)3 we

thus get, in particular,

A(v-ul)=Vp,, : :
div(v-u) =.0, ’ , (13)

Observing that, by well-known results on the Stokes problem,
(v-u)ecw(Q)nLg(Q), see e.g. Cattabriga (1961), we can enmploy
the representation formula (7) which holds, in particular,
for any solution to the problem (13)1 2 which is summable in

>

a neighbourhood of infinity:

(v-u)(x) = U(x).t +0(Xx)

P (x) = U(x).T +n(x). (14)
for suitable vector 1. Since GGLQ(QR), while U(x)-t¢L3(QR)
for all non-zero T, 1t must be =0 . As immediate

v 3/
consequence we deduce p,, V(v-u)eL 2

(QR) which 1in turn
372 ‘

imply Vv,peL (QR). The proof of the lemma is then

completed.

We are, now, in position to prove the following

Theorem 1- Assume R sufficiently small. Then a solution

v, p to the problem (1),(2) with v®=0 such that
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velL’(Q), p,wer? 2(qQ),

exists 1f the consistency condition (5) 1is satisfied.

Remark 1. The consistency condition (5) is exactly the
same one required in the linear case.

Remark 2. Since the functions h,n are explicitly given,
it is not difficult to check, that in the case of a flow

past a sphere condition (5) reduces to

JBQ v,df = 0,

cf. Galdi & Simader (1990).

Proof -Let the consistency condition (5) be satisfied,
we shall prove here that there exists a solution v,p to the
full non-linear Navier-Stokes problem such that v€L3(Q), and
p;VvELB/Z(Q). To this end it is suitable to transform the
starting differential problem to the following non-linear

Fredholm integral system, cf. Finn (1965):

vix)

vo(x) + J u(y) .vG(x,y) .uly)dy;
Q

p(x) po(x) +J ul(y) .vy(x,y) .u(yl)dy. (15)
Q

3IZ(Q) denotes the solution to the

Here, voeLa(Q), poeL
linear Stokes problem (3), (4), which exists because of (5).
Moreover, G(x,y) is the Green tensor defined in (8). We
prove now that the non-linear integral Fredholm operator
I{u) = v defined via (15)1 is a bounded contraction in the
space W of functions having gradients in L32(Q) and
vanishing (in the mean) at infinity. It is known that if wew
then weLg(Q), see, e.g., Galdi, forthcoming. The first step
is to prove that I(weL*(Q). This is a consequence of the
estimate (9) and of the Sobolev theorem. Specifically, £from
(9) we deduce that

J ul(y) .VG(x,y).u(y)dy < M J 2
Q Q Ix-yl

u? 2
= A(u”),

where A(u®) is a weakly singular integral. Therefore, the

Sobolev theorem applies to show



_ 3.(3/2):
3-(3/2)

and in particular there exists a positive constant ¢ such that

w?eL?2(Q) s a(ud)eLP(Q),

2 2 _ 2
A (u )II3 < cliu ng/z-uuua. (16)

Relation (16) furnishes the boundedness of the operator I(u)
. 3 .
in L7(Q), in fact we have

2
III(u)lI3 < IIVOII3 + cHuH3.

The second step is to show that I(u)eW. To see this, assume
u smooth. Differentiating relation (15)1 we cbtain that the
solution of the integral equation (15)1 satisfies also the

differential equations

Av = Vp +div(usu),

divv = 0,

vIaQ = V.

with usuerL®/?(Q) . By known results on the Stokes systemn,
e.g., Cattabriga (1961), v,p 1is smooth in  Q and since
32().  1n
addition, the following estimate holds, cf. Galdi & Simader
(1990)

veL*(Q) we can apply Lemma 1 to deduce that p,VveLl

- ,
+ s + < .
IVl1,3/2 lpl3 C(b3,|u'3) c b3

Clearly, since the smooth functions are dense in W, this
latter inequality continues to hold for all ueW. From this
we éasily obtain the validity of the inequality

II(uz—ui)l

< c(lla + -u
1,3/2 I 1“3 Iluzlla)llu2 1"3

and we conclude that the operator I defines a contraction in
W, provided v, (i.e. the Reynolds number) is sufficiently

small. The proof is then completed.

We now give an important regularity result for our
solution which cannot be deduced from the classical results
of Cattabriga (1961) nor from the reasoning of Temam (1979,
bP'172)2' Specifically, we can prove

2Actually, Temam's regularity proof is based on the
following recurrence argument. If v is a solution (in the
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Lemma 2 - Let v,p be a weak solution to the nonlinear
Navier-Stokes equations such that Vv,peLglz(Q), then
v,pec>(C). Moreover, WveL?(Q). |

Proof - The first step is ~ the  proof that

Vv,pELB/Z(Q) implies pver?’?

(¢), for any compact set C
contained in Q. To this end, we notice 'that, given any
vector VELB(Q), for all arbitrary small positive constant €
there exists a decomposition of v 1into the sum of two

vectors v1€L3(Q), vzeLm(Q) such that

v I <e, v Il <c, (17)
13 2"

with ¢ positive constant, depending on v . Moreover,
denoting by C’a compact set contained in Q with CcC’, we let
@€C®(Q) be one in C and zero in C’'. Writing p’', v/ in place
of pp, vp and multiplying by ¢ equations (1) one easily

recognize that v’ ,p’ verify the equations

Av'-Vp’' = F'+v.VW’',
divv’'= g, in ¢’ ‘ (18)
\'4 IaC,=0,
where
F'adiv(Vpev]+Vp.Vv-pVp-(v.Vp) vV, g=v.Vp.
The summability properties of the solution v,p delivers
Fer?’2(Q), gew' 3%,

The key tool of our proof is a Lemma of Galdi, forthcoming,
where a regularity result 1is proved for the following

linearized version of the problem (1):
Aw-Yr = v.VYw + F’
divw = g in C’ (19)
w éO at ac’.

sense of distribution) to  Av=Vp+v:.Vv, starting with
v-VvEL?oc(Q), q>l, by Cattabriga's results on the Stokes

problem, one deduces VEW?;Z(Q). This implies that
v-VveLIoc(Q) for some r>q. Iterating this procedure as many

times as we please, we finally obtain vec®(Q). In our case,
the above argument fails since g=1 and the Cattabriga's
results do not hold. ‘ :

10
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In particular, for three-dimensional flows the Lemma asserts

that if F'eL9(c’), gew'’%(c’), 6/55q<3, and the solenoidal
vector v can be‘decomposed into the sum of two vectofs
V1€L3(C'), VZGLN(C') satisfying (17), there exists one
solution w, m to system (19) with wewz’q(Q), new’ Q)

enjoying the estimate
lwil +iirell
2,q 1.,q

sclliF It +ligl +iw JC1+lv ). (20)
q 1,q 2

2-1/q,q,0C

Furthermore, this solutions 1s unique in the c¢lass of
generalized solutions to (19) having vweL?(Q). Taking v as
the solution of equations (1) constructed in Theorem 1, it

372

follows VveL (Q), and so it is easy to recover that the

hypotheses of the Lemma are satisfied with g=3/2. Therefore,

we have Vv'eL?(C) and, by classical results, we conclude
v’,p’ecm(C).
We next prove vveL?(Q) . Multiplying (l)1 by v and

integrating over Q delivers

j v*[—v*.nv*+§;v+pn]d2 +J Vv:Vvdx +J
o QR ,ZR

v.[%gv+pn+v.nv]d2 =0

where QR is the intersection of Q with a sphere of radius R.

From the properties V€L3(Q),p,Vv€L3/2(Q) and by the Hélder

inequality we have
3,1/3 3/245,2/3

IZ v.[T.n+v.nv]dZs(f2 v7) (f2 [T.n+v.nv]
R R R

r

and we conclude that the integral over ER tends to zero as
R'l, when Ro® (at least along a sequence), proving the
finiteness of “VV"Z- The proof of the Lemma 1is thus

completed.

A further regularity property regards the asymptotic
behavior of the solutions. Let us prove, in fact, that any
solution veL?(Q) is such that

lvi=o(ixI™Y). (21)
This will be achieved by using the representation formula
(8) and a method used in elasticity for studying the

Saint-Venant problem. in unbounded domains, see , e.g.,

11
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Galdi, Knops & Rionero (1985). Specifically, from the
representation (8) we have only to increase appropriately
the non-linear term:

J v.Vv.U0dx < J :V;Yv:dy+ J :XLVV: dy.
Q o, *7¥ o, 7Y

where Q1 is the intersection of Q with a sphere of fixed
radius R, sufficiently large to include the boundary 9Q,

while Q= [RB/Q1 and contains the point x for Ixl-w. We |use

different inequalities for the two integrals. Precisely, we
have

{v.Vvi 1
JQ W dy < TT——};:NIV"3"VV"3/2' y*eaQ1,

! (22)

2 B
J ::;VT'dy < ( J Y dy J‘ lvvi2dy )1’2.
Q Y Qzlx—yl Qz

2

The first integral behaves as Ix| ' at infinity, because vy,
varies in a bounded set. In order to prove the rate of decay

for the integral over Qz' we recall the following inequality

2
J 4 2dy$CJ ivviZdy,
Qzlx—yl Qz

cf. e.g. Finn (1965), so that (22), yields

JQ +§§§¥'dy < CJQ lvvi2dy. (23)
2 2

Set

(s3]
G(R) = I J Ivvi2dzdr
p

R
R

and observe that

G'(R) = —J lvvi? <o. (24)
ER
Multiplying (1)1 by v and integrating over Er for re(R,m)

and then integrating over R for Re€(0,®) furnishes

12
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J J J |vvi2dzdrdr +J J v.T(v,p).ndZdR = 0. (25)
T ) _

0 JR 0
R

From identity (25) we infer, at once, that

[vo)
J G(R)dR < w (26)
0

because veL® and TeL??. In view of (24), (26) 1t follows
G(R)sC/R and from (22), (23) we are thus allowed to conclude
that also the integral over Qz behaves as Ixi™! at infinity.

The proof is therefore completed.

The folldwing concluding result gives necessary
conditions for the existence of solutions determined in
Theorem 1. In particular, it shows that the momentumless

condition ¥(v,p)=0 must be satisfied.

Theorem 2 - Assume that there exists a solution v,p
with VweL® of the nonlinear Na?ier—Stokes problem (1), (2),
then necessarily:
(1) v,p verify Q@e momentumless condition F(v,p)=0;

(11) v, satisfies the consistency condition (5).

Proof - To show (i) we observe that from Lemma 2 we
have VveL?(Q) and so v obeys the asymptotic representation
(10). Integrating by parts in this relation the nonlinear
term and taking into account the definition of the drag &,

with the aid of (21) we deduce

vix) = U(x).F - va(y).VU(x—y).v(y)dy +0(x).
Since v, 0 and the nonlinear term belong to L3(Q), it
follows U(x).?ELa(Q) which is possible only if ¥=0.The proof
of (ii) is a consequence of  the integral representation

formula for v

vix) = vo(x) + [ v(iy) .VG(x,y) .v(y)dy
Q ,

which now tells us that v is in L3, and of a statement of
Galdi & Simader (1990), recalled as (b) in section 1 of this

paper, which ensures that, under such a circumstance,

13
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necessarily v, verifies (5).
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