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1. Introduction ‘

It has been recently recognized by several mathematicians, Sone
(So) (for the first time), Bardos, Golse and Levermore (BGL1), and De
Masi, Esposito and Lebowitz (DMEL), that the incompressible
Navier—Stokes equationn can be obtained as the limit of the Boltzmann
equation, when both the Mach number and the Knudsen number go to zero.
It is the only maéroscopic limit with a finite Reynold number and
therefore the only case where global‘in time solutbons exist. In
(BGL2) the relation between the global weak solutions of the
incompressible Navier—Stokeé equation due to Leray (L) and the
renormarized solutions of the Boltzmann equation introduced by
Diparna and Lions (DL) is discussed. However, the proof cannot be

completed without some additionaI\ESSumptions, namely,
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—— that the corresponding renormalized solution of Diperna ‘and Lions

satisfies the equation of the conservation of momentum,
8t<vf8> + v <v viE> = 0,

—— and that some concentration phenomenas ‘are avoided.

On the other hand it is known that with initial data small enough
(in the Sobolev space HC(Ri) with £>n/2) with respect to the
viscosity, the incompressible Navier—Stokes equation has a classical
solution. Similar results concerning the Boltzmann equation were
proved by Ukai (U1).

In the present paper a rigorous proof of the connection between
these two‘points of view is done, precising and completing some
results which were announced in (BGL1). The point to be stressed is
that exactly the same type of hyposesis are made on the initial data
for the Navier—Stokes equation and the Boltzmann equation. Such a
result is obtained by sharp estimates of the linearized operator (cf.
Lemmas 2. 1-3 below, and references (Ul) and (U2) for the same
technique)!

LLet € > 0 be the Knudsen Number (=Mach number/Reynblds number).
According to (BGL1), the Boltzmann equation gives the incompressible
Navier—Stokes equation in the limit € » 0 if the time scale is
measured with € and if the solution f° remains near an abolute
Maxwellian M = M(v) with the distance of order 8  Thus, the

scaled Boltzmann equation

£ . e _ 1 € €
(1. D Sft+vvxf _EQ(f , 9
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is to be solved assuming € = M + 8M1/2g8, that is, the solution to

the equation

1.2 sgf + V'Vx88 = éLg8 + T (g%, g%

is sought (the definition of the operators L and I' follows Ul)). . Let
< , > denote the inner product of LZ(RS). The following theorem is

due to (BGL1), with the assumption slightly modified.

Theorem 1.1 ((BGL1)).  Suppose that as & = O,
(1. 3 € L, ¢% 4n o (distribution sense)
. g g t, X,V ,
0 0

:g0)> in @’

<¢.g8> - <y, g >, <W,F(g8,g83> » <y, T (g b xe

for any ¢ € L2(R3), with some limit gO. Then-g0 must have the form
(1. 4) e = o+ v+ ddviZmaneml’Z

and the coefficients p, v and 68 must satisfy the equations,

(1.5 vip + 8 = 0,
1. 8 gﬂ - VAu + u-vu + vp = 0,
t
v.u = 0,
a.m %% - kAG + u-v8 = 0.

where v and x are positive constants determined by the operator L.

The aim of this paper is to prove the convergence (1.3) for the
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Cauchy problem to (1.2) with the initial condition

€ —
1. s g It=0 = gq»
assuming that the initial g0 is indepéndent of £. Throughout the
paper Grad’s cutoff hard potential ((G)) is’aésumed. Then, it is

known ((U1)) that for each fixed £>0, thE'Cauchy problem to (1.2) has
a unique (strong) solution globally in t if g0 is small in some norm.
In the below we shall show the following.
—— The smallness condition on g0 for the global existence doas not
depend on & €(0, 1), and
- g8 converges to some limit gO as €& » 0 strongly enough to
substantiate the assumption\(l.B).
We can go farther:
—— In general, the convergence is not uniform near t=0.
—— However, the limit gO is strongly continuou$ up to t=0.
~— The coefficient u in (1.4) is a unique global strong solution to
the Cauchy problem for the incompressible Navier—Stokes equation

(1.6) with the initial condition
(1.9 ult=0 = Puo,
while it holds that

(1. 10 p+ 8 =0

and 8 is a unique global strong solution to the heat convective

equation (1.7) with the initial condition

(1. 11 0l = 5(8g=pg)-
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Here, P is the projection to the divergence—free subspace;and

Py YUg gnd GO are given respectively by

(.12 g = M2 g ug = <Ml Z g >, 0y = d<clviZ-moMlE g

The breakdown of the uniform convergence near t=0 is the initial
layer to the Boltzmann equation (1.2). But we can’ show:
—— The necessary and sufficient dondition for the uniform

convergence up to t=0 is that the initial g9 has the form

2

(1.13) = (py * ug'v + %(|v|2~n)90}M(v)1/ ,

€0
with the coefficients Pgr Ugs 90 satisfying

(1. 14> Veoug = 0, Py
To state our result precisely, we need some function spaces. Let

C2;X)> and Lw(Q;Xj denote the spaces of functions continuous and

bounded on € < R™ with values in a Bénach space X, respectively. As
usual, X is omitted when X = C. Denote the’norm of the Sobolev
space HC = HE(Rz) by § H€ and define the spaces
H = (=1, w| a+ivibt e L=®";nH,
£, 8 v
sup_ (A+IvD Pt v, > 0 ® > 00,
[vI|>R
Xt,B = C((O’w);HC,B) ﬁ’L (O,w;H€’B),

L% = w=uwm| a+lvDPlua | e L"®RM).
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The norm of.HC 8 is defined by

11l g = sup (1+]v|)8ﬂf(°,v)H£.

,Our results are as follows.

Theorem 1.2, Let £>n/2 and B8>n/2+1. Then there are positive
constants ag and ay such that for any €€(0,1) and for any g4 € HC B

with Hgoﬂt 8 < ags there exists a unique global solution g8 to (1.2)

and (1.8) satisfying

(1. 15 - Xy g

£

Remark 1.3. Under the additional condition g9 € H£ Bﬁ Ll(Rg;LZ(RS)),

we can have the decay

g Ct) I < a (l+t)_n/4(ﬂgoﬂ

L, 8 1 c,3+"go“L1,2)'

Theorem 1.4, Let g8 be as in Theorem 1. 2. Then, as € - 0,

0

(1.17 g - g weakly* in L¥C0,«:H, ,) and

£, 8

strongly in CC(s, T) xK;L™ &y,

for any T>6>0 and any compact K < Rﬁ, with the limit

1.18) g0 ¢ Xp g

Remark 1.5, (i) (1.17) is strong enough to satisfy the convergence
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assumptions (1. 3). In particular, (1.:17) 'assures that

0

rg®, g% - re?, ¢% weaklyx in LY(0,=;H

L, 8-12"

(iid Accordingly, go must be of the form (1.4)‘But the initial g9
is not necessarily of the form (1.°13).

Ciiid (1.18) says that gO'is céntinuéus up to t=0. This

does not come automatically from (1.15) and (.17 if & = 0.

1/2

Since {l,v,lvlz—n}M forms an orthogonal system, p,u and 8 in

(1.4 are given by (1.12) with g replaced by go. Define pg,usand

6% by (1.12) with gy replaced by g€,

Theorem 1.6. (i) As g - 0,

(1.19 %, u%,6% > (p,u, 8  weakly* in LT(0,=;H and

strongly in C((5,T)xK),
for any T>&8>0 and any compact K ¢ Ri, and

(1.20) b, u, @ € CC(0,=):HD n L=, «~;n%.

(ii) (1.10) holds, and u isra unique global solution to (1.6) and
(1.9) while so is 8 to (1.7) and (1.11).
(iii> It holds that

(.21 g% g = ta #bev - BdvF-ul/E
where
(1.22) a = %(p0~90), b = Pug,
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po,uo,eo being given by (1.12) in terms of gg-

Remark 1.7. (i) Because of (1.18), (1.5) is equivalent to (1. 103.
(iid) A theorem similar to Theorem 1.2 is known for the Cauchy
problem to the Navier—Stokes equation (1.6): Let £>n/2. Then theré
are positive constants ag and ay such that if beHC with HBH£$aO and
v:b=0, (1.6) has a unique global solution.u belonging to the class

1

(1. 20) and satisfing ult:0=b. If, in addition, bechL (Ri), then,

-n/4
Hu(t)ﬂ€s a1(1+t) (NbH£+Hbﬂ l)'

L .
(iii) Write the right hand side of (1.21) as Pogo. Then, PO is the
projection on H€ 8 onto its subspace consisting of functions N of

the form (1.13) with the coefficients satisfying (1. 14).

Theorem 1.8, S = 0 is allowed in (1.17), and hence in (1.19, if and
only it g, = P'g.

2. Outline of the Proof

First, we write (1.2) in the form of the evolution equation,

2. 1 i = B'g + g I'ig, ), gli=g = &g

where
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€ - 1_ gy
2.2 B® = 2 C -gv-v, + L.

Let Us(t) denote the semigroup generated by BS;

e
2. 3 U (1) = etB7.

Then, (2.1) can be reduced to an integral equation
2. 4 g = N® (@),
where NE is a map define by
€ e 1 t € '
(2.5 N¥(g) (t> = U (t)go + EI U (t—-edr(g(e),g(c)) de.
0

We will prove Theorem 1.2 by showing that the map N8 is a contraction
for all € € (0,1) in a ball of XC 8 with radius independent of ¢g.
This requires

—— uniform estimates of U®(t) and the integral
€ 1 pt €
2. 6 Y= (g,h) (t>) = EI U (t-odrig(o,gle)ldr.
0

We will derive the estimates
—— by using the spectral representation ((U1)) of Us(t) in the

space H{ = L2(Rn;HC), and
v’ix

—— by following Grad’s idea (G} to derive the estimates in HC 8
from those in HC‘
The unbounded factor 1/g (e » 0 in (2.6) is controlled by using

again the spectral representaion and the fact ((G)) that
2. D I'lg,h) is orthogonal to Ker (L), for any g,h.

The following two lemmas gives the desires estimates.
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Lemma 2.1. Let £ € R and B>n/2+1. For each € € (0,1, UBCt) is a
strongly continuous semigroup on H£ g and
2. 8 Fc, > o, Ve € (0, 1),
g
IS Ctggl 4 5 < Cillggly 4.

Lemma 2.2. Let £ > n/2 and 8 > n/2 +1. For each € € (0,1), %% is

a bilinear symmetric continuous map from X€ 8 X XC,B into XC,B' and

(2. 9 E&Cz > 0, Ve e <0, 1),
e v
I¥* (g, h) Il £, 8 < 02 gl c,ﬁ,uhﬂ L, 8
Proof of Theorem 1.2, Owing to Lemmas 2.1 and 2.2, N® maps XC 8

into itself, and it holds that

€ 2
IN® (g3 | £ B < Cl"gOHC,B + C2 lel L, 8

IN® gy -N® a1 < C,C gl + Ihli

£, 8 2 L, B > lig—hil

£, 8 £, 8’

This implies that there exist constants ag, a4 > 0 determined only by
C1 and C2 such that N8 is a contraction on a ball jn X£ 8 of radius
ay if "gOHC,ﬁ < ag. This proves Theorem 1.1 becauseicl, C2 are

independent of € and so are ag, ay-

The proof of Theorem 1.4 depends on
—— the existence of limits of U®(t) and ¥€ as &€ » 0, which is
establised by a stationary phase method of (U2) applied to the

spectral representation of US(t), and



—— a compactness argument.

These are stated in the following two lemmas.

lLemma 2.3. Let £ > n/2 and 8 > n/2 + 1. Thefe exists a linear

operator V(i) having the followfhg.properties (2.10-13).
2.10 For any gOGHC,B’ V(t)g0 € XC,B and

HV(t)goﬂﬁ’B < Cl“gOHC,B’
Qith the same coﬁstant C1 as in (2.8).
(2.1 vV = PO.
where P® is as in Remark 1.6 (iii).

(2.12) US(t)gO - Vitdg, (8-~ O

strongly in C((é,m)an;Lm’B) for any &>0.

0

2.13) =0 if and only if gq = Plgg

Lemma 2.4, Let { >n/2 and 8>n/2+1. Then, there exists a bilinear
symmetric operator € having the following properties (2.14-18).
2. 14 If g,h € XC,B’ thgn ©(g,h) € XC,B’ and

with the same constant 02 as in (2.9.
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(2. 15 e (g, h) |

(2.16) A o>0, N T>0, 3C>0,

fihil

€ - , S oy
[¥= (g, ) 0(g, < Cp & lgl ¢, 8

by 1y g ¢, 8
where | IT,B is the norm of the space Lm((O,TJxRi;L:’B).
2.1 For any bounded set {gk} c XC,B’ {G(gk,gk)) is compact in

C((O,TJXK;Lm’B) for any T>0 and any compact KcR™.

2.18 If {gk} is such that 8, ~ &g weakly* in Lm(O,w;HC 3), and

strongly in C((s, DxK:L™' %) for any T>8>0, KcR®, then,

O (g, g) > B(gg, gy) weaklyk in L7(0,=;H, p).

Proof of Theorem 1.4, Let g=g8 be the solution of Theorem 1.2, In
view of (1.16), {gg) is bounded in Xt g S© that we have, going to a

subsequence,

g€ » g0 weakly* in L0, T;H, ),

with a limit gOGLw(O,m;H£ ). Write (2.4) as

g% = Vitrgy + WEH-Vtdgy + 0%, g% +
+ w8 (g%, 51 -0g%, %

g £
3+g4.

]

g4 + gg + g

Apply (2.12) to gg, (2.16> to gi and (2.17) to gg. Then, again

passing to a subsequence,
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€ 3

(2. 19) g€ » g0 strongly in CC(s, TIxK;L™" 8y,
. 0 _ 0 0 . -
with g~ = g4 + 8gs where gg is a limit of a convergent subsequence of
{gg}. But, then, by (2.18), we get gg = O(go,goJ, and hence,
2. 200 e = vvgy + 0%, e%.
Since the constants Cl’ C2 are the same in Lemmas 2.1 — 4, we can

apply the same contraction mapping principle to (2.20) as to NE

Hence the limit g0 is a unique solution to (2.20) in Xt,B' Thus go
belongs to the class (1.18), and the uniqueness of go implies that
(1.17) is true for the whole sequence {gg}, not only for a
subsequence. This proves Theorem 1. 4.

Proof of Theorem 1.6. (1.19) comes from (1.17>, and (1.20> from
(1.18). Putting t=0 in (2.20) and applying (2.11)> and (2.15) prove
(iii) of the fheorem. Now,7(1.21) and (1.22) imply the initial
conditions (1.9) and (1.11). This completes the proof of the
theorem.

Proof of Theorem 1.8. This is evident from (2.13) applied to (2.19).

The proof of Lemmas 2.1 to 2.4 will be given elsewhere.
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