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An Efficient Algorithm for Finding All Solutions

of Piecewise-Linear ResistiveVCircuits

BHERFIFZTERLEH
Wikt #EEE  (Kiyotaka Yamamura)

Abstract This paper presents an efficient algorithm for finding all
solutions of piecewise-linear resistive circuits. First, a technique is
proposed which dramatically reduces the number of function evaluations
needed in the piecewise-linear modeling process. Then a simple and very
efficient sign test is proposed which markedly reduces the number of linear
simultaneous equations to be solved for finding all solutions. An
effective technique is also introduced which makes the sign test further
more efficient. All of our techniques make use of the separability of the
nonlinear mappings. Some numarical examples are given, in which all
solutions are computed very rapidly. Our algorithm is simple, efficient,
and can be easily programmed.

I. INTRODUCTION

Let us first consider nonlinear circuit analysis. A nonlinear
resistive circuit can be described by a set of nonlinear equations

fl(xl’x?.’”' ,Xn)'-'o

fz(xl,XZ,"',Xn):O (1)
fn(xlsxz; Tt ’Xn)=0

or
f(x)=0, (2)

where f is a continuous nonlinear mapping from R" into itself and x is a
point in RY. 1In the piecewise-linear analysis of nonlinear circuits, the
operating region of the nonlinear circuit element is divided into a finite
number of subregions, and the nonlinear mapping f is approximated by a
piecewise-linear mapping F which is linear on each subregion. Then the
system of piecewise-linear equations

F(x)=0 (3)
can be expressed by the following set of linear simultaneous equations
A(m)x+w(m)=0, m=1,2,-,L, (4)

where A(m) is an nxn matrix, w(m) is an n-vector and L is the total number
of regions on which F is linear.
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Equation (3) or (4) has extensively been studied by many authors. To
find all solutions to (3), we generally solve L linear simultaneous
equations in (4) and decide whether each solution lies in the assumed
region.

Related to this subject, Fujisawa, Kuh and Ohtsuki [1] showed that if
the LU-factorization of A{(m) is known, the LU-factorization of the matrix
which differs from A(m) by rank one can be performed through about n2/3
multiplications. Chua [2] gave a method which calculates the inverse of a
matrix which differs from A(m) by one diagonal element through O(nz)
multiplications when A(m)‘l is known. Chua and Ying [3] gave an efficient
method to find all solutions of (4). In their method, the number of linear
simultaneous equations to be solved is reduced by an appropriate sign test,
which gives a necessary and sufficient condition on the existence of a
solution in each region. Although this method is one of the most efficient
methods, the total number of multiplications required exceeds O(an).
Moreover, the number of performance of the sign test exceeds L in the worst
case, and the sign test itself is not a simple procedure. Huang and Liu
[4] proposed a method which is more efficient than Chua and Ying's method
by several times. Nishi [5] proposed a method which requires O(Ln)
multiplications to find all solutions for large n. His method seems to be
best, but it will be more efficient if the number of regions which can have
solutions is reduced by a simple procedure.

In this paper, we present an efficient algorithm for finding all
solutions of piecewise-linear resistive circuits. First, a technique is
proposed which substantially reduces the number of function evaluations
needed in the piecewise-linear modeling process. Then a simple and very
efficient sign test is proposed which markedly reduces the number of linear
simultaneous equations to be solved for finding all solutions. An
effective technique is also introduced which improves the computational
efficiency of the sign test. All of our techniques make use of the
separability of the nonlinear mapping f. Our algorithm is simple and can
be easily programmed, but the effectiveness is very large.

IT. PIECEWISE-LINEAR MODELING OF SEPARABLE MAPPINGS

In this paper, we assume that the nonlinear mapping f is separable,
that is, there exist £l : RLSR? (i=1,--,n) such that

no.
£(x)=2 1 (x;). (5)
i=1

Notice that fi depends on component X4 only. Nonlinear circuit equations
have separable mappings if the circuits contain separable elements such as
Ebers-Moll transistors or two-terminal resistors. It has been shown that
the nonseparable mappings in Shichman-Hodges models of MOSFET's can be
transformed into separable mappings by introducing some auxiliary variables
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[6]. Therefore most practical resistive circuits are allowed.

It is known that piecewise-linear modeling of separable mappings can
‘be performed on a rectangular subdivision [7]. We first divide the
solution domain into rectangular regions whose boundaries are parallel to
the co-ordinate axes. 1In this section, we use two vectors:

a=(a;,ay,-~,a)7 and  b=(by,by, -, by)T . (6)
to designate a typical rectangle:

R={xeR"|a;<x;<b;, i=1,2,-,n}. (7)
Rectangle R has 2M vertices of the form v;(vl,-,v ) , where each Vi is
either aj; or bi Also, any point x—(xl,--,x ) &R can be expressed as

x;=(1-3;)aj+A;by,  0<)y<1, 1=1,2,---,n (8)

for some unique 1=(11,~-,)n)T. Given a separable f, let us now define a
linear approximation F of f on a rectangle R by

n
F(x)= Y [(1-27)f (ap)+2;21 (b)) 1. (9)
i=1 :

Evidently, F is linear on R. Also, for any vertex v&R
F(v)=f(v). (10)

Therefore we have created a linear approximation F of £ on the rectangle R
which equals f on the 20 vertices of the rectangle. Performing such
linearization on each rectangle, we obtain a piecewise-linear approximation
F of f on the rectangular subdivision.

The system of linear equations

F(x)=0 (11)

can be rewritten as follows:

i}zli(fi(bi)—fi(ai))+izl=l:lfi(ai)=0, | (12)
or, in matrix form,

A2 +w=0 . (13)
where

A=[£1 () -f1(ay), -, 1M (b ) -f"(a) ]

n
'=Zf1(ai). (14)
i=1

If the solution of (13) satisfies
Oixj_il’ j-:l’z!'”’n’ (15)
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then the solution
Xi=(1'21)ai+xibi, i=1,2,"',n (16)

lies in the rectangle R. )

In piecewise-linear analysis of nonlinear circuits, a system of
nonlinear equations is generally given first and then it is approximated by
piecewise-linear equations. In this modeling process, it is necessary to
determine the function values at all break points. 1In this section, we
shall propose an efficient technique which dramatically reduces the number
of function evaluations in the modeling process.

We first give a two-dimensional example to illustrate geometrically
the basic idea. Fig.1 shows that the domain of f is partitioned into a
rectangular lattice with edges parallel to the co-ordinate axis. Assume

that we have already evaluated the function values at 7 vertices al, az,“',

a'. That is, fi(a§) (i=1,2, k=1,2,--,7) have been computed. Then, since
all edges of the rectangular lattice are parallel to the co-ordinate axis,
it is easily seen that the function values at all of the vertices can be
obtained by simply combining fi(a¥) (i=1,2, k=1,2,---,7). For example, the
function value at 36 is given by fl(a§)+f2(ag).

This technique can be extended to the n-dimensional case. Assume that
fi is approximated by ki line segments. Then, the function values at all
of the vertices can be obtained by combining fi(a¥),(1=1,2,"-,n, k=1,2,-"",
ki+1). Although there are (k1+1)(k2+1)~-(kn+1) vertices in the n-
dimensional domain, the number of evaluations of f required in the modeling
process is less than max{ki}+1, which is a very small number compared with
the total number of vertices (kq+1)(kg+1l)--- (k,+1). Moreover, once the
function values fl(a¥) (i=1,2,--,n, k=1,2,~~,k1+1) are computed, then the
function value at an arbitrary vertex can be easily derived when it is
necessary.

X, 7

36 6

Xy

1

a

Fig.1 Partitions in the domain of f.

4
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ITTI. SIMPLE SIGN TEST

To find all solutions of (3), we generally solve L linear simultaneous
equations in (4) and decide whether each solution 1lies in the assumed
region, where L=k1k2~-kn. Chua and Ying's algorithm requires at 1least
O(an) multiplications, and Nishi's algorithm requires O(Ln) multipli-
cations. Since L is generally very large, a simple test is required to
eliminate regions which do not contain solutions.

Perhaps the simplest test is checking the signs of the functions at
the boundary vertices [8],[9]. Let us consider an n-dimensional rectangle
R with 20 vertices. Since F is linear, the following necessary condition
is easily verified.

Solution validation test:
If fj(v) (=Fj(v)) has the same signs at all of the 2" vertices of R for
some j, then R contains no solution of (3). ‘ O

Therefore we have the followign sign test, which is much simpler than
Chua and Ying's test. For any vertex v of R, we first evaluate fl(v) and
check the sign. Then we seek another vertex which has a different sign
from that of v. If there is no such vertex, then (3) does not have a
solution in R. If there exists a vertex with a different sign, then we
continue the same procedure for fz, f3,---,fn, successively. This test
allows us to discard a region once the sign test fails for any one of {fj}.
The idea of checking the signs of the functions at all of the vertices was
proposed first by Ushida and Nakamura [8]. However, this test requires 20
function evaluations per one region in the worst case, and is not so
efficient.

Utilizing the separability of f, this sign test can be made markedly
more efficient. As noted previously, each vertex vy is either a; or bi'

and from (5),
n .
f(v)=)_ £ (v;). (17)
i=1
Therefore it is clear that

n .
max{f; (v)}= 2} [max{f](a;),£](b;)}]

veR

n
min{f;(v)}=Y" [min{fi(a;),fl(b;)}]. | (18)
ninly (3=, mintfylay). 150,

Suppose that max{fj(v)} and min{fj(v)} have different signs for j=1,2,---,n.
In other words, assume that

3 i
2, Imax{£](ag), £5(by)}120
i=1
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n
12 (min{f}(a;),e(b)31<0,  j=1,2,0.m (19)
=1

holds. Then, it is clear that there exist two vertices with different
signs, and there may be a solution in R. If (19) does not hold for some j,
then the signs of fj(v) are all the same at 2D vertices of R, and (3) does
not have a solution in R.

In this sign test, the number of function evaluations is only two per
one region. If the function values fi(a§) (i=1,2,-",n, k=1,2;",ki+1) are
already computed in the modeling process, then no further function
evaluation is required and the test (19) can be performed by additions and
comparisons only. It is also worth noting here that this sign test does
not require multiplications.

After the sign test, we solve linear simultaneous equations to regions
which passed the test. Although our test does not give a necessary and
sufficient condition on the existence of a solution as that of Chua and
Ying, it is very simple and efficient. As seen in Section VI, most of the
regions are discarded by our sign test in many practical applications.

Remark 1: In [8] and [9], an efficient way of performing the sign test
is proposed. In general, circuit equations have sparse Jacobians and most
of f; contain only a few variables. Therefore, we should not perform the
sign test in the order fl,f2,~~,fn; instead, we perform the test in the
order that functions which contain fewer variables first. For example,
consider a system of nonlinear equations ‘

fl(xl,XZ,X3,X4,XS)=O

fz(xl,X2)=0
f3(X2,X3,X4)=0
f4(X4)=0

f5(X1,X3,X4,X5)=0.

For this problem, the sign test should be performed in the order
f4,f2,f3,f5,f1. It is easily seen that the determination of max{f4(v)} and
min{f4(v)} in (18) requires fewer additions and comparisons than that of
max{fl(v)} and min{fl(v)}, because f4 contains only one variable. Also, if
max{f4(v)} and min{f4(v)} have the same signs, the sign tests to fz,f3,f5
and fl are not necessary. Therefore, the test will terminate in 1less
computation time in this order. O

IV. IMPROVING THE EFFICIENCY OF THE SIGN TEST

The sigh test proposed in Section III requires at least 2(n-1)
additions and n+2 comparisons per one region. In the worst case, the
number of additions is 2n(n-1) and the number of comparisons is n(n+2) per
one region. (This is the case when the Jacobian matrix of £ is full. When
the Jacobian matrix is sparse, the number in the worst case is much
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Fig.2 Rectangles arranged in X direction.

smaller.) Although the sign test itself is a simple procedure, the total
computation time grows exponentially with the dimension n, because there
are k1k2-~-kn regions to be tested. In this section, we propose an
effective technique for improving the computational efficiency of the sign
test.

Suppose that n-dimensional rectangles are arranged in Xq direction
like Fig.2. Then we first compute f(al) and ‘f(az) on rectangle 1 and
determine pj and qj by

n S
pj=£§;[max{f}(a%),f}(a%)}]

n
qj=£§;lmin{f}(a%),f}(af)}l, j=1,2,-,n. (20)

Then, for k=1 to kl’ perform the sign test
max{f}(ag),f}(a¥*1)}z-pj
min{t}(af), e} af Mye-q5,  3e1.2,0m S (21

on rectangle k. Since rectangles are arranged in Xq direction, it is
easily seen that (19) and (21) are equivalent for all k. Therefore if (21)
holds, then rectangle k passes the test, and if (21) does not hold for some
j, rectangle k contains no solution.

Using this technique, the number of additions becomes zero and the
number of comparisons becomes at most 3n (at least 3) from the second
rectangle. Hence, the total number of computations is largely reduced.

When n-dimensional rectangles are arranged in all directions, we
repeat the above procedure in X; direction (instead of Xq direction) in
which the number of regions ki is largest. By choosing such a direction,
the number of additions becomes zero and the number of comparisons becomes
at most 3n (at least 3) in most of the rectangles.

There is another effective way of choosing a direction of the sign
test. That is, we select a variable X which is contained in the minimum
number of functions, and we perform the sign test in x; direction. If fj
does not contain Xj» the left-hand side of (21) becomes zero. Therefore,
if pjzo and qjgo hold, (21) necessarily holds for k=1,2,-,k;, and we can
skip thg sign test to fj in this line. Also, if pj<0 or qj>0 holds, then



the sign tests in this line are not necessary because fj does not satisfy
(21) on all rectangles. Hence, if we choose X4 which is not contained in
most of the functions, the number of comparisons in the worst case is
largely reduced. This technique is especially effective when the Jacobian
matrix is sparse.

From the above discussion, we have the following solution validation
test.

New solution validation test:

If there exists a subscript j such that f; does not contain x; and
pj<0 or qj>0 holds, then all rectangles in this line do not contain
solutions. Here, X4 is the direction of the sign test. ' O

When we compute Pj and qj (j=1,2,---,n) at the beginning of each line,
we check the signs of pj and qj if fj does not contain X;. If pj<0 or qj>0
holds for some j, we terminate the computation in this line and move to the
next line. This technique reduces the number of regions to be tested, and
makes it possible to apply our algorithm to large scale systems with sparse

Jacobians.
V. ALGORITHM FOR FINDING ALL SOLUTIONS

We now summarize our discussions in the previous sections and state
the algorithm.
Assume a system of nonlinear equations f(x)=0 is given.

Step 1 (modeling process)

Divide the solution domain into k1k2-~kn rectangular rpgions, where ki
denote the numbeg of line segments which approximates rl, Compute the
function values fl(a¥) (i=1,2,---,n, k=1,2,"-,k;+1).

Step 2 (sign test)
Perform the sign test (19) on all regions using the technique proposed
in Section IV. Discard regions which do not pass the test.

Step 3 (computation of solutions)
Construct linear simultaneous equations (12) for regions which passed
the test and solve them.

Remark 2: It is possile to perform Chua and Ying's sign test on regions
which passed the sign test in Step 2. O

VI. NUMERICAL EXAMPLES

We have programmed the proposed algorithm using the C programming
language on a Sun S-4/1 computer. The program became very clear and short
by using the recursive functions.

Example 1 ,
Consider the two-tunnel diodes circuit shown in Fig.3 [3],[8]. The
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Fig.3 Two-tunnel diode Circuit. 'Fig.4 Four-transistor multi-state circuit.

circuit equations are given by

E“Rgl (Vl ) - (V1+V2 ) =0
g1(v1)-g5(v9)=0

where E=30.0, R=13.3 and

gl(V1)=2.5v%—10.5v%+11.8vl
85 (Vy)=0.43V3-2.69v5+4.56v,.

The operating region we consider is ([0,4],[0,4])T. In order to make the
number of regions very large, we first divide each [0,4] into 1,000
segments. Thus, there are 1,0002=1,000,000 regions. As noted in Section
II, function values at all of the vertices can be obtained through 1,001
function evaluations. In this example, we did not use the technique
prbposed in the last part of Section IV.

Most of the regions were eliminated by the sign test, and only 47
regions passed the test. Then we solved linear simultaneous equations to
these regions, and obtained 9 solutions as listed in Table I.

The total computation time was 10.0 seconds, most of which was
occupied by the sign test. This is because the sign test was performed
1,000,000 times, while the function evaluation was performed 1,001 times
and the linear simultaneous equation was solved 47 times. Although the
number of regions is very large, the computation time is very small.

Next, we divided each [0,4] into 10 segments. Then the number of
regions was 102=100. In this case, we could also obtain 9 solutions. Of
course, the accuracy of these solutions were much lower than that of the
solutions in Table I. However, the computation time was very small; only
0.002 seconds. '

Example 2
Consider the four-transistor multi-state circuit shown in Fig.4
[3]1,[8]. The circuit equations are given by

9
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TABLE 1 TABLE 11
SOLUTIONS OF EXAMPLE 1 SOLUTIONS OF EXAMPLE 2

vy v, vy Vy Vg A
1 0.19979 3. 175421 1 -1.14858 0.36582 0.37725 -4.78518
2 0.21986 1.67295 2 -0. 60453 0.36582 -0.60453 0.36582
3 0.22827 0.82863 3 -0. 74419 0.36582 0.31449 0.35944
4 1.66638 0.73935 4 0.37507 -4.3165% 0.32797 0.35559
5 1.70266 1.80903 5 0.37725 -4.78518 -1.14858 0.36582
6 1. 775861 3.70718 6 0.37200 -3.65900 0.37200 -3.65900
1 2.22472 3.69304 1 0.31449 0.35944 -0. 74419 0.36582
8 2.277589 1.85749 8 0.32797 0.35559 0.37507 -4.31655
9 2.30522 0.70557 9 0.31861 0.35827 0.31861 0.358217

4.36634v2+6103.168g(v1)+2863.168g(v2)—12=0
5.4v1+v3+3580g(v1)+6220g(v2)+700g(v3)+500g(v4)—22=0
4.36634V4+6103.168g(v3)+2863.168g(v4)—12=0
V1+5.4v3+700g(vl)+500g(v2)+3580g(v3)+6220g(v4)—22=0

where
g(v)=10"2[exp(40v)-1].

The operating region we consider is ([-10, 0.45], [-10, 0.45], [-10, 0.45],
[-10, 0.45])T, and in piecewise-linear modeling, each [-10, 0.45] is
divided into 10 segments [-10, 0],{0, 0.05],{0.05, 0.1],--,[0.35, 0.4] and
[0.4, 0.45]. Thus, there are 104=10,000 regions. Using the technique
proposed in Section II, function values at all of the vertices can be
obtained through only 11 function evaluations.

When we performed the sign test, 256 regions passed the test, and by
solving 256 linear simultaneous equations, we obtained 9 solutions as shown
in Table II. The total computation time was 0.2 seconds. Comparing the
results with those of the existing methods, the effectiveness of our
algorithm is clear.

Next, we divided each [-10, 0.45] into 100 segments. Thus, there are
1004=100,000,000 regions. When we performed the sign test, only 161
regions out of 100,000,000 regions passed the test, and by solving 161
linear simultaneous equations, we obtained 9 solutions with higher
accuracy. It can be seen that the number of linear simultaneous equations
to be solved is decreased although the number of regions to be tested
becomes 10,000 times larger.

VII. CONCLUSION

In this paper, we proposed an efficient algorithm which utilizes the
separability of the mapping f for finding all solutions of piecewise-linear
resistive circuits. The sign test proposed in Sections III and IV is very
simple and requires little additional work, but the effectiveness is very

10
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large. The technique proposed in Section II is also effective for
decreasing the number of function evaluations in the modeling process.

The proposed algorithm can be made further more efficient by reducing
the number of regions to be tested. This can be achieved by exploiting the
partial monotonicity of the nonlinear mapping f. Details will be discussed
in the succeeding paper.
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