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Propagation of Gevrey singularities for a class of

microdifferential operators

T. ARISUMI

R §& R A 2

§0 Introduction

We study the microlocal solvability in the space of ultradistributions
D* and the propagation of Gevrey singularities for a microdifferential
operator P with multiple involutive characteristics.

Bony and Schapira [3] have shown the microlocal solvability in the
space of hyperfunctions B and the propagation of analytic singulari-
ties for a microdifferential operator P with multiple involutive char-
acteristics. Explicitly, they assumed that its real characteristic vari-
ety V is regular involutive and P is non-microcharacteristic along V€
(cf.(A) (B) (C) given below). Moreover Bony [2] has shown the microlo-
cal solvability in the space of distributions D' and the propagation of
C®—singularities under the Levi condition in addition to the assump-
tions of Bény-Schapira.

- In this article, W;E: interpolate the above two results. That is, we replace

the Levi condition by the irregularity condition and show the microlocal
solvability in the space of ultradistributions D*' and the proﬁagation of
Gevrey singularities corresponding to the irregularity of P.

More explicitly, let %*R” denote the cotangent bundle of R with the

zero section removed. Let (z;£) be its coordinate system. Fix a point
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: (:‘5,2) of T*R” and a conic neighborhood U of (;:,2) Let P(z,D,) be a
microdifferential operator on U of order u (refer to [11],[12] for the sheaf

€x of microdifferential operators).

We assume the following conditions (A),(B),(C),(D) for P.

(4) { The real characteristic variety V = Ch(P) N T*R of P

o
is a non-singular manifold of T*R"” of codimension n.

( The principal symbol o(P) of P vanishes on V
exactly of order m ; i.e.

o(P)(z + eAz,§ + eAE) = ae™ + o(e€™) (a #0)
| forV(@6) eV WAz, Af) ¢ TiyV.

(B)

( V is regular involutive ; i.e.
there exist n homogeneous functions ¢;(z,£),-- - , gn(z, )
(C) ¢ of degree 1 satisfying the conditions q;lv =0,

{qiyqj} |V=0(7".7=1’ 1n) a'nddql A"'Adqn/\w#o)

* \ where w is the canonical 1-form of T*R”.

D) Irregularity of P along V€ is not greater than o on U
D
(refer to §1.1 for its definition).

In this situation, we will show
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THEOREM 0.1 (EXISTENCE). Let v belong to C*, 2y We assume that
z;§
* < (2Z;). Then there exists u € C*, . satisfying Pu = v.

5

THEOREM 0.2 (PROPAGATION). Let U be a neighborhood of (:‘E;E) in
S*R”, and u € C*(U) be a solution of Pu = 0. We assume that * <
(3%7)- Then the wave front set W F,(u) of u in the class * is an union

of bicharacteristic leaves of V.

Refer to §1.1 for C*, WF, and the order of *.

§1 Notation and reduction

1.1 NOTATION AND DEFINITIONS.

We recall the definitions of irregularity of microdifferential operators,
the wave front set in the Gevrey class and so on.

We work in the situation of the Introduction. Let @; be microdiffer-

‘ential operators with a(Q.-)(a:,f) = gi(z, £).

DEFINITION 1.1.1(IRREGULARITY): Assume R has the form

R(z,D)= ) Ad(z,D)Q%(z,D)

lal<m
with

o(Aa)(3;€) #0.

Then we define the irregularity o of R along V€ at (:(;:, E ) by

:=max<{1 m — |e]
7= "ordR — |a| —ord Aq J
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Remark that the above definition is independent of the choice of Q);.
Thus the irregularity o in the above definition is stable under quantized
contact transformations. Moreover Laurent[8] has proved the stability of
Newton polygons of microdifferential operators under quantized contact
transformations. We also remark that the Levi condition coincides with

the condition o = 1.

REMARK 1.1.2. Let * denote (s) or {s}. Here s moves in |1,00[. If
s < §', then (s) < {s} < (s') < {s'}.

DEFINITION 1.1.3.(WAVE FRONT SET IN THE GEVREY CLASS): Let u

be an ultradistribution of class *. Then we define the wave front set
WPF,(u) of u in the class * as follows. For (;:,2) € f;"*R",

(3;6) ¢ WE(u) &5
there exists an ultradifferentiable function x(z) of class * which is equal
to 1 in a neighborhood of z, and there exists an open cone I' containing
2 for which Xu(¢) (the Fourier transform of u) satisfies the following
estimates on I' in case of x = (s) (resp.* = {s}); Vb, 3C (resp.3b, 3C)

Ixa(€)] < C exp(—bl€[*+).

DEFINITION 1.1.4: Let 7 : S*R” — R” and sp: #~™1B — C. Then we
define C* by

C* = Im(x "D - C).

We refer to [6] for the definition of the sheaf of ultradistributions D"‘",‘
where D* is characterized by the growth condition from the imaginary

4
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axis of defining functions as follows.

F(z +1iT0) € DY'(Q) for x = (s) (resp. *={s})
for any compact subset K(C ) 3L, C (resp. VL, 3C)
|IF(z +iy)| < Cexp(Lly|™™T) (= € K).

1.2 REDUCTION TO A PARTIAL ELLIPTIC OPERATOR.

We reduce the theorems in the Introduction to the study of a partial
elliptic operator. Let (z,t) be a coordinate system of R = R™ x R? with
= (Z1,""* ,Za)and t = (1, ,tp), and (§,7) the dual coordinates of
(z,¢).

On account of the stability of conditions (A),(B),(C),(D) under quan-
tized contact transformations (Q.C.T. for short), we may assume V =
{& = --- = & = 0}, (a: {) (0,0;0,79) with 7o = (1,0,-- ,0) € R?
by finding a suitable Q.C.T. Moreover, dividing the operator P by an

invertible operator of order 1 — m, we may assume P is of the form

P(z,t,D;,D;)= Y Aq(z,t,D;,D;)D2.
0<jal<m

Then P satisfies

(B") > 00(Aa)(2,1,0,7)E* £0 (V€ € R™\ {0})

lal=m

for (z,t,;O,'r) € U

(D) ~ led).

In the above situation, Theorem 1 and Therem 2 are reduced to
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THEOREM 1.2.1.
a) (existence)

 is a neighborhood of the origin in R**?, and K(C $™*?~!) a compact

set with @ x K C U. Then for any K'(3 K) and for any v € I'gx (2 x

SntP—1 C*) there exist a neighborhood Q' of the origin in R®*P and
u € Ik (Q x S™P~1 C*) satisfying Pu=v. '

b) (regularity)

Let w € I'(U,C*) satisfy Pu = v. Then there exist a neighborhood
U of (0,0;0,m0) in C™ x RP x $27+P=1 and & € I'(U;C*) which satisfy
85 =0(=1,-,n) and ¥p = u. | |

¢) (propagation)

Let u € I'(U,C*) satisfy Pu = 0, (0,0;0,7) € WF,(u). Let F denote

the connected component of (0,0;0,7,) in {(a:,t;f,‘r) Et=€(=0,7 =
70}. Then F C WF,(u).

Here * < (5%7)-

We can make a further reduction of the operator P, which is used in

the next section.

REMARK 1.2.2. By the division theorem of Weierstrass type, we can

assume

P(z,t,D,;,D)=D;,™+ Y Aa(z,t,Dy,D;)D;,*

05]0]Sm,30u<m

with

ordA, < g

—(m ~ |al)

Here z' = (21, ,Zp-1).
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§2 Cauchy problem for the microdifferential operafor in the complex domain

We solve the Cauchy problem in the complex domain with estimates

for microdifferential operators as follows.

Let (z,w) be a coordinate system of C* = C" x C? and ((,9) the
dual coordinates of (z,w). We set (z',2,) = (21, ,2n), (wy,w") =

(wl)“' ,wp), 00 foomnd (1,0’-.. ,0) E Rp.

In this situation, we assume that a microdifferential operator P is

defined in a neighborhood of (0,0;0,68y) € T*C” and has the form

P(z,w,D;,Dy)=D7 + Y Aa(z,w,Du,Dy)D

0<la|<m
ap<m

where ord Aq < ZZ(m —|af), [2n,44] = 0.

This can be rewritten as

- P(z2,w,D;,Dy,) =D — ) D D% D) Ba(z,w,D;,Dy)

0<|al<m
apn<m

where A\, =ord A,, ord B, <0, | [zn, Ba] = 0.

REMARK 2.1.

Setting s = =%, then we have s\, <m — |a].

DEFINITION 2.2: We set, in C¥, £ = {w; = 0} and H = {2, = h}. Let
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(C C) be an open convex subset. Then

Qis z, — k — ¥ — flat if the conditions

(z,w) € R, (2,) €Z, 2z, = Zp, |wy —Wy| 2 k|lw; — ;| =2,--- ,p)
lwy — 1| > k|z; — %] (j =1,--- ,n—1) imply (%,w) € AN L.

Qis w— 8§ — H — flat if the conditions

(z,w) €N, (;,0) €EH, w=w

|zn — Zn| 2 6lzi — Zi| (i =1,--- ,n — 1) imply (%, %) € QN H.

DEFINITION 2.3: For M = (2,w) € Q, we set

=3 50 (5
dz’(M) = lnf{lg?g—llz" Z]l ’ (z )znaw) € CQ},
dor (M) = inf{ gga fo; — i1 ; (2,101, ") € 022,
dw, (M) = inf{|Jw; — 1] ; (z,%;,w") € (9},
Ar(w;) = exp(L|Sw, I'T—Ll)
For v € O(2), we define the norm of v by

o [v(M))
Il = 9% & Ay g (bt Tz

In this sitﬁation, we have

THEOREM 2.4. There exist an open neighborhood Qg of the origin in
C" and constants k > 0, 1 > é > 0 enjoying the following property. For
any Q(C Qo) 2z, —k — X — flat and w — 6§ — H — flat, g € O(Q) with

8

31



32

llglle < oo and hj € O(Q N H) with ||kj||p < o0 (7 =0,:--,m —1),
there exist an unique f € O(2) and L' satisfying

Pef =y,
D‘;,..fIH=hJ (j=0"°')m_1)7

Ifllz < oo.

Here the norm || * ||+ is taken on a domain shrinked in the real direction

compared with the norm || * ||L.
We prepare several lemmas to prove the above theorem.

LEMMA.

A. In the above situation, there exists constant K and
Iflle < 0o = ||Bazfllz < K|l fllL-
B. Let ) be an open convex set in C%z’w) which contains the origin.

Assume that Q is flat enough for {z = 0} and that for some §,

dw(tz,w) > dy(z,w) + %—' (0 <t < 1) is satisfied for any
(z,w) € Q. Then if f(z,w) € O(U) satisfies |f(z,w)| < Cdy(z,w)~!,
we have |D7* DX f(z,w)| < C(eb)*(k + 1)duw(z,w)".

C. Let 2 be an open convex set in C containing the origin. Then

'z|l+k

z|! -
1f(2)] £ %— = |D7*f(z)| < m

The parts A,B are proved in [2],[3]. It is easy to show C.
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PROOF OF THEOREM 2.2.4: We decompose f formally as f = Y 72, v

in such a way that

{D;',‘,vo =g { D vip1 = ) D3 D)z Bazvi

D} volu = h;j D vipalp=0 (j=0,---,m—1).

Moreover we decompose v; =Y, 'ufk) formally as

(k)_{v" (+=0)

'vo = |
0 (k#0)
’ ‘U}_f_)l = A(O)vl(k) +.-- +A(A)v§k—§) .

where

A®) =D;™ N~ DD Bas,

o=k

A =max 4.

We put Qe = QN {Sw; > €} and we have |y|dydy < M, :=
Const.exp(Le—v_il) for ¢ € 1. Then we can show the following esti-

mates on {2z, by the above lemmas;

E)k 2nl® jiokpgazrazazy.

] < K" ( (s — k) w 4

€

Then this implies

(s—1)k
8 < sy (L) T 110
'|§l:v, |_§I:(AK6) (ea) TG —Dyp Med 4 42t

10
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We put § < 5557, and remark |zn| <1. Then we have

11113 vPl < Cexp ([L; (%)-—11 + L]G_T}f) dgidz'dy,
E 1

Finally the theorem is proved because dgi(M) < exp(e_-——LT) for M €
936' |

§3 Proof of the theorems

We work in the situation of Theorem 1.2.1. The proof will be com-
pleted in the same way as [2]. First we prepare some notation.
(z,w) is a coordinate system in C*t? with z =z + zy, w =t+1ts, and
(&,7) is the associated fiber coordinate system in T*R" Let G be an
open convex cone in R"'.H’ with G C {(y,s) € R"'? ; s, > 0}, and T’ be
an open convex cone in R™. We set TG := R"*? 4+ iG, TT := R" + T,
B(k) = {(&7); € +1'1? 2 k*ri}.
DEFINITION 3.1: We define a subset &(TG’) of the stalk of ultradis-
tributions at the origin as follows. For an open neighborhood W of the
origin in C™*?, we define the space O*(TG N W) by the equivalence

f € O(TGNW), and satisfies the growth condition

feOTGNW) 2L ] of class * for sy; i.e. for * = (s) (respx = {s})
3L, C (resp.¥VL,3C) |f(z,w)| < Cexp(Ls;'_lT).

' Then we put O*(TG) := lim (TGNW).
oewcCcCrt?
We quote the following lemma from [2].
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LEMMA 3.2. Assume G D {s1 > ko(3 7 lvil* + X8 |§jlz)%} and ' D
{yn > 60(0 ! |yil2)} } where ko < k/\/nFp 6o < 6/+/n. Then there

exists a fundamental system {Qgn}o>0,r>0 Of the open neighb_orhbods

of the origin for which the following statements hold.

a) Qopiszp—k—X — flat and w — § — H — flat,

b) QaNECTGH+TT,

¢c) QerNHN(TG+C")CTG+1TT,

d) QN (TG+1TIT), Qe N(TG+C")is zn —k — X — flat
and w — § — H — flat.

Recall that P is non-microcharacteristic in any direction of z (§1.2.(B')).
Thus the preceding argument is valid for any direction of z as well as

the direction z,. Then we can prove the following theorem by Theorem

2.2.4.

THEOREM 3.3. There exist constants kg, 6 for which we have the fol-
lowing statements a) and b) for VG C R**? N {s; > 0} with G° C B(k)
and for VI' C R™ with the diameter of T'° < &.

a) Kge O*TG+1TT) G €G, then there exist
f € O%(TG' + TT) and Pb(f) = b(g).

b) If f € O*(TG +TT) g € 0*(TG + C") and P¥(f) = b(g),
then f € O*(TG' +C") for VG' e

- By the aid of the suppleness of C* (cf.[5],[4]), we can decompose a given

ultradistribution into a sum of ultradistributions whose singular spectra
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are small enough and we have the edge of the wedge theorem for D*'.
Moreover, for an ultradistribution whose singular spectrum intersects
the characteristic variety of P, we can describe it by the trace of the
elements of D}'O, [9]. Here D;'0, is the sheaf on C? x R? consisting
of ultradistributions with holomorphic parameters in z. Thus from this
theorem we can prove Theorem 1.2.1 a) and b).

For the proof of Theorem 1.2.1 c), it suffices to prove the following
theorem which shows the propagation of WF, for an ultradistribution

with holomorphic parameters.

THEOREM 3.4. Let U C C7 xR} be an open set whose restriction to {t =
const} is connected and intersects R™ x RP. Let @(z,t) € D*'(U) satisfy
g%u =0 (¢=1,---,n), (0,%0;0,70) ¢ WF,(u(z,t)) where u(z,1t) is
the restriction of @(z,t) to real axis. Then (z,19;0,70) ¢ WF,(u(z,t)).

This theorem is proved by a sixﬁple result of complex analysis and the
partial Foaurier transformation (cf.[2]). Then we can easily conclude

theorem 1.2.1 c) from this theorem.
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