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8 1. Introduction and Notations

The key notion developed in this paper is the concept 'Finite Derivative Closure’
formulated in the papers [1], [2] and [3], which is applicable to synthesis of
recursive programé from given (complete or incomplete) expressions of functions, and
is also applicable to the problem of identifying functions from a finite number of
input-output samples.

The concept 'Finite Derivative Closure’ is obtained by extending and generalizing
the process in which a finite automaton recognizing a regular set is synthesized by
taking all derivatives of a regular expression of the regular set.

In this paper, we rewrite the essense of the content of the papers [1], [2] and
[3], and give more smart and inproved formulation, introducing the concept of
“inferability’ of functions by derivatives and adding some new results.

In this section, we give some basic notations needed throughout this paper.

(1) Let ¢ be a partal functions of A—*B. Then the domain of ¢ , denoted by
D(¢#), is the set {x€A;(3y €B) ¢(x)=y} . For arbitarary X<CA,
Y €B and YCB, we set
P (X)={s(x); x €X},
o' (y)={x€A; ¢(x)=y} and
" I(Y)={x€A; $(x) €Y} .
"¢ is one-to one (or 1-1)’ means (VX,¥y €D(¢)) [d(x)=¢(y)=>x=y]
"¢ is onto’ means ¢ (A)=B .



(2) For partial functions ¢ and ¥ of A=>B, ¢ C¥ neans that D(¢#)<SD (%)
and (Vx €D(¢)) é(x)=v(x) . If # T¥ holds, we say that ¢ is a
restriction of ¥ , or ¢ is an extension of ¥ .

(3) Composition of partial functions is denoted by an operator . Thus, for example,
if 9 is a partial function A">A and h 1is a partial function of A—>B
then h - g denotes a partial function of A™>B such that
(h og) (X0, x)=h(g(x1,..,X0).

(4) TFor a nonempty set W and a nonnegative integer m , II.(W) denotes the
family of all partial functions of W—W™, W% is constituted of one trivial

element. So, we identify an element of Ilo(W) with a subset W , that is,

¢ €I(W) is identified with D(¢) .

For f €II.(W) , we define the dimension d (f) of F as the m .

We put H(W)=Q IT.(W) . Por £ €IIW), F=(f1,.... fn) means that

0
(a) d(f)=m

(b) for each i=T1,...,m, f: €I, (W) and D(f:)=D(F)
() (Yx€D(F)) F(x)=(F1(x),.., Fulx))

(5) Throughout this paper we use the upper-case W and A as nonempty sets and

lower-case &, j, R, I, m and m as nonnegative integers.
8 2. Finite Derivative Closure of Unary Partial Functions
First we give some definitions.

Definition 1 (Differentialbility and Derivatives)

Let @ be a partial function of W—=A and f be in IIa(W).

We say that @ is differentialble by 7) if and only if, for each X and ¥ in
D(F)ND(@), it holds that £ (X)=7F (¥) inplies @(x)=w (¥) .

When @ is differentiable by 7, a partial funcion d7 @ of W">A, called



the derivative of @ by 7 . is defined by D(87 w)=F (D(F)ND(w)) and

(Vx €eD(F)ND(w)) [87 o (F (x)=w(x)]

By the above definition 1, the following proposition is obvious.

Proposition 1
Let £ be in II(W) and @ be a partial funcion of W—A.

(1) 1t D(@)ND(f) is empty then @ is differentiable by / and D(87 w)=¢ .

(2) If w 1is differentialble by 7) then, for an arbitrary X in D(é? )
(71 (XN=1{87 (X))} holds.

(3) It F is 1-1 then an arbitraly @ is differentiable by £ .

(1) 1f F has a constant value over D(f)ND(®w) then @ is differentiable by
7 it and only if @ has also a constant value over the set D{(F)ND(w).

(5) If w is a function and differentiable by an onto _f—) then 87 @ is also a

function.
(6) If d(?)=0 then it is a special case of the above (4) and @ is

differentiable by f if and only if @ has a constant value, say @ . In its

case, 07 @ is the constant @ .
Definition 2 (Case-splitting Transformation)

(1) A finite subfamily F of II(W) is called a case-splitting transformation over
W (abbreviated cst,/W ) if the {D(F); F €F} constitutes a finite
division of w.

(2) Let“Wbea well-ordered set with a partial order < and F be a cst/W . F
is said to be descending if and only if, for each 7= (F1seess fu) in F and
for eacﬁ i=1,....m, (Vx€D(F)) fi(x)é'x holds.

(3) We say that a partial function @ of W—>A is differentiable by a cst F over
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W if @ is differentiable by each f in F .

Here we note that, if a partial function @ of W—>A is differentiable by a cst
F over W, then, for every  in F and each X in W , it holds that
x €D(F) implies w(x)=87 o (F(x)) .

For the definition of a finite derivative closure, we give some notations.

Let A and B be nonempty sets. The family of all partial functions of B™"—>A

is denoted by Qa(B, A) and we set
(a) Q(B,A)=U Qa(B, 4)

(b) Qa(A)=Qa(A, A)
() Q(A)=Q(A, A)

Definition 3 (Finite Derivative Closure of Unary Partial Functions)
Let H be a subset of Q(A), E - be a subset of Qi1(W,A) ,wo,@1,...,@. be
elements of Q1(W,A) and Fo,F1,...Fn be cst’s over W . Then a systenm
I'=(H; wo®i,ee0s®ns Fo,Fiyoooy Fo) /E s called a finite derivative
closure including wo. if and only if the following conditions hold:
(a) Every w; 1is differentiable by F; .
(b) For each f €F; , supposing d(F)=m , there exist
Sir00erPn€ {@Wo, W15, @a} VE and an h €H such that, for each
(X1,.0,%n) €D(87 @i)y, 87 @i(X1yeee, Xad=h(P1(x1),.., bul(Xa)
holds. (The equslity is denoted by 87 @w; Th o (b1,.e0,dbn) )
When the all F; s are 'descending, I" is said to be halting.
Considering H and E are families of known partial functions (that is, we know
how to compute them), the above system ' is a recursive program computing

Wg, @Wiy..0,@n , and if I’ is halting then the program is halting. In this case we

N~ N

—~~— B o
have functions @og, @1,..., @n» computed by I" such that w; T w; for

j=0,...,n . For a given @o which is a finite number of input-output samples or



is a partial function specified by some incomplete or complete expression, if we find

a halting finite derivative closure including the @o , it means that we success to

identify the function @Wo which is an extension of @o or to synthesize a program

computing @wo . So, we give the following definition.

Definition 4 (Inferability by Derivatives)

Let H be a subfamily of Q(A), E be a subfamily of Q21(W,A) and § be a
finite family of descenfing cst's over W . (We suppose that we know how to compute
partial functions in H , E and each F€§.)

A (partial) function @ of W—>A is said to be inferable by derivatives with
the environment (H,E,T) if there exists a halting finite derivative closure
I'=(H; @0y ®iye00y@n} Fo,F1,o.., Fr) /E where @o=® and all F; 's are in

§ .

The above definition states nothing about the infering process of @ from a
finite number of input-output samples. But when the above I' exists and a suitable
restriction @o' of ® with a finite domain is given, we can construct a halting
finite derivative closure I'’= (H; wo', @100, @s" ; Fo, F1ye.y Fu) /E where

each @; is a restriction of @; with a finite domain, and the functions

N

@o', @1 yer, @ computed by I'” as extensions of @o’'» @1 ,eees@a”  respectively
coincide with (or are extensions of) the @o,®Wiy..., @W» respectively.

For the reason why we can construct such a I'” , it is enough to point out that
the minimum derivative closure including @’ is a finite family, where the min’imum

closure means the family ® defined by the following (a), (b), (c).
(a) w €D

(b) If a¢ is in ® and ¢ is differentiable by an F €§ then, .for each
TGF, 07 ¢ is also in @ .
(¢) ® is the mimimum family satisfying the above conditions (a) and (b).

From the above definition and the clasical result for a method of systhesizing an
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automaton by taking derivatives of a regular expression, we have immediately the

following proposition.

Proposition 2

Let Z and A be alphabets, W=X% and A=A,

We set F=1{f,;G€X} U {f.} where fo s are in IL(W), f. is in
Mo(W), D(f)=0cZ*, fo(ox)=x and D(fJ)={e}. Let H= {id} VA ,
E=Q and $={F), where id is the identity function of A=A and the subset A
of H is considered as Qo(A). |

Then all mappings of Z*>A induced by Moore-type sequential machines are
inferable by derivatives with (H,E,§) . Especially so are characteristic

functions of all regular sets over % .

It should be noted that the above F is descending and an arbitrary partial
function over Z* is differentiable by F .
Qur first nontrivial result is the following theorem concerned with the

inferability of gsm mappings.

Theorem 1

Let =, A be alphabets, W=2* and A=A*. We take the same E, F and § as
in the above proposition 2. For each Z € A*, let h: denote a function in Q:(A)
such that h=(¥)=2y and set H={h.; 2 €A*} U {e} |, where € is an empty
word considered as an element of Qo(A).

Then all gsm mappings of Z*>A¥ are inferable by derivatives with (H,E,$)
[Proof] Let @ be a gsm mapping of Z*>A* computed by a gsm
S=(2,Q,90,0,A,A) , where @ is a state set, Qo is an initial state, & is
a state-transition function and A is an output function. Supposing

Q=1{40,q1,..9.} , we take functions ®Wg, @W1s..., @~ such that, for

i=0,1,....,n , w:(x)=X(q: x) , where the function A of QXZ*=>A* is



defined as X(g,e)=¢e and ’)\:(CI-JCG)=;\V(¢1.x)'/\(rg(Q.x),G) for @ €Q,
x €XZF and 0 €2

Then I'= (H ; w0, @1ye00y @03 F,F,ooo,F) /$ is a finite derivative closure and

w=wo. Here it should be noted that 6(q:,6)=q: and A(Q:,6)=2 means that

afaa)i:hz o W;

We show an algorithm giving a halting finite derivative closure including given

wo specified by a finite number of inut-output samples of a gsm mapping.
begin YF= {wo} ; AF=J;
#hile YE#O do
begin take an @ in YF
YF:=YF—{w} ; AF:=AFV {w} ;
forall f inF do
begin take 95w
search a 2 €AY apd an W€ AFVUYF  such that
dsw “h., ~u;
Af there is no such 8 2 and an U
then YF : =YFU {d;w}
end
end

end

The variable AF stands for the set of partial functions already differentiated

and the variable YF stands for the set of partial functions appearing in the
computing process but not yet differentiated.

The haltness of this algorithm is obvious because of the finiteness of the domain

of wo .

Let @ be a gsm mapping computed by a gsm with n+1 states.

If wo 1is specified by all input-output samples of @ such that the length of
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inputs is at most N+ 2 then the algorithm halts with AF= {Wo,@1yee0y@Wa} and
the finite derivative closure I'= (H; @wo, @1yeee,@n; F,F,...,F) /¢ is a gsm
computing W .

We have also the following corollary immediately.

Corollary 1
Let 2, A, W, A, E, F, § and h. for 2 €A* are the same as in Theorem 1.

Here we set H= {h.; 2z €A*} UA, where A is considered as Qo(A) .
A function g of X*>A* is inferable by derivatives with (H,E,F) if and
only if there exist an gsm mapping 9  and an element Yo € A* such that

g(x)=g’(x)-yo for every X €X*.

Next we show a theorem concerned with the inferability of linear context free
languages.

For the theorem, we need the following definition.

Definition 5 (Strictly Deterministic Linear Context-Free Languages)
A linear context free grammar is said to be strictly deterministic if it
satisfies the following conditions.
(a) Every productin rule is in a form A—=>c6 B, A—=>BJd or A—>€, where A, B are
nonterminals, ¢ is a terminal and € is the empty word.
(b) Nonterminals are classified to two kinds. For a nonterminal A of one kind
there exists no rule in a forn A=>B0o, and for a nonterminal A of another
kind there exists no rule in a form A—=>c B .
(¢) For each nonterminal A and each terminal O , there exists at most one B
such that A—>0B or A—=>BdsG is a rule.
Strictly deterministic linear context free languages are languages generated by

strictly deterministic linear context-free grammar.

Theorem 2



Let W, H, E and f: be the same as in the proposition 2, where A is
restricted to {true, false} . For each 0 €3, we define fo and 9o in IIi(W) as
D(f.)=0Z%*, D(g)=Z*c, f.(o0x)=x and g.(x0)=x . ,

Let F'={f,; 0€Z} U {f.} and F’={g,;0€Z} VU {f:} , and set
§={F'“F"}

Then the family of all characteristic functions of strictly deterministic linear
context—-free languages over =* is inferable by derivatives with (H, E, §)
[proof] Let G= (S,P,N,Z) be a strictly deterministic linear context-free
grammar, where S is a start symbol, P is a set of production rules and N is a
set of nonterminals.

Suppose N= {Ag, Ay,..., An} where Ao=S and take a language

LooLiseeisLn as Li={x €Z%; A;=x)

Let wo,®1,..., @ be characteristic functions of Lo, Li,..., Ln Trespectively.

Then clearly the system I'= (H; @o, @1,e00, @ns Fo,F1y0.0, Fr) /E is a
halting finite derivative closure, where F:=F' if A; has no rule in a form
A;~BG and F:=F" it A; has no rule in a forn A;=GB .

Thus L(G)=Lg is inferable by derivatives with (H, E, §)

Qur third nontrivial result is a theorem which states that the family of all tree
sets recognizable by deterministic tree automata of top-sown type is inferable by a

finite number of positive or negative sample trees.

Theorem 3

Let Z be a ranked alphabet, Ts be the set of all trees over = and W=Tsx.
For each G € X, supposing Tank(c)=Fk , we detine 0 €Il.(W) as D(G) is the
set of all trees in T= having a root 6 and
G (6<T e, T2>) = (Z1e00sTe)
Note that if Tank(c)=0 then d(0)=0 and D(5)={0c} .

We set F={0 ;0€Z} and §=1{F} . Let A= {true, false} ,E=Q and
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H=Q(A) .

Then the family of all characteristic functions of tree sets over
recognizable by deterministic tree automata of top-down type is infererable by
derivatives with (H, E, §)

[proof] Let M be a deterministic tree automaton of top-down type and & be the
set of states of M .

Supposing Q= { Qo) @1,...,@n} , we take tree sets Lo, Li,eesy Lo where L: is
recognizable by M if M starts on the root of trees with the state q: .

Let wg,®W1,...@» be characteristic functions of LorLi,..., L, Tespectively.
Then I'=(H ; Wo, ®1ye00,@ns F,F,...,F) /E is a halting finite derivative
closure, and Lo is the tree set recognizable by M . So, all tree sets recognizable
by deterministic tree automaton of top—-down type are inferable by derivatives with
(H, E, §)

It should be noted that, in I" , state-transition (q:, o) — (Qil;---QJk)

corresponds to the formula dsw: Ch o ((A);l.---.a)jk) for a suitable Boolean

function A .
8§ 3. Finite Derivative Closure of Partial Functions of Multi-Arguments

Now we treat partial functions of multi-arguments. Of cause a partial function df
multi-arguments is considered as a partial function of one vector arugument, and so
it seems that the multi-arguments case is included in the unary case. But such a
treatment of multi-arguments cannot success to construct a finite derivative closure

for even simplest function of two arguments, for example, the 'append’ in LISP

functions.

So we need a new formulation for multi-arguments case.

Definition 6 (Derivatives of Partial Functions of Multi-Arguments)

Let @ be in Qa(W, A) and F be in (W) .

- 10 -
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We say that @ is differentiablé by T w.r.t. the ¢ -th argument if and only
if, for arbitrary X,Y €D(F) , it holds that Fx)=F(») implies
@W(X 1y Xiy Xy Xittyenes Xn) =@O(X1y00ey Xio1y ¥y Xitrgeer, Xn)  for each
(X1reeerXiots Xittrene, Xn) EWPL

The derivative 7@ of @ by F w.r.t. the i -th argument is defined as a
partial function in Qm-1+2(W, A) such that
87D @ (X1yeensXinty FAX), XintrersXn) =@ (X1yerey Xio1y Xy Xit1seees Xm) , where
the value of the left-hand side is defined when and only when the value of the right-
hand side is defined.

We say that @ is differentiable by a cst F over W w.r.t. the { -th
argument if and only if @ is differentiable by all 7 'sin F w.r.t. the £ -th

argument.

Definition 7 (Finite Derivative Closure of Partial Functions of Multi-Arguments)

Let H be a subfamily of Q(A), E be a subfamily of QW,A), ®wo, @1,e..,@n
be in QW,A), Fo,F1,...,Fn be cst’s over W and i0,%1,...,in be positive
integers.

The system I'= (H ; @0, @1yeeey@ns Fo 'O, F YD [ F,""") /E s called a
finite derivative closure (including @o ) if and only if , for each 7=0,1,...,n ,
@; is differentiable by F; w.r.t. the Z; -th argument and, supposing
w; €QuW,A) , FE€F;, i=i; and k=d(F) , there exist an h € Qu1+xUVH
and b1,..., P2 € {Wo,@1,...,@a} VE such that

(1) if k=0 then 47 w; Ch ,
(2) if k>1 ‘then, setting Z2:=d (X 1,000s Xi-1,Y, Xi41y0005 Xm) for

l=1,...,k , it holds that, when the value of

G739 @wi(X1yeeis Xi-1, Y 15000y Yoo Xit1seess Xn) is defined, it coincides

with the value of A(X1eeey Xi-1) 215000y Zry Xit1seeey Xn) . (The situation

is represented by 8F @i (X 1yeeey Xicty, ¥ ireery Yoo Xidtreees Xm)

h(xl’--uxi-hzlnu; zkvxi-flon-gxm) .)

...11_
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If all F; 's are descending then I' is said to be halting.

A halting finite derivative closure I' defined as above is a recursive program

N N

computing functions 600;(»1.....25n which are extensions of Wos@i1ysssy @n
respectively, if we know how to compute partial functions in H, E and
Fo,Fi,eii,Fpn .

In the multi-arguments case, inferability by derivatives with an environment is
defined as the same as in the unary case.

But algorithms. for constructing finite derivative closure including a given
partial function specified by a finite number of input-output samples will be too
complecated for a formal description.

Required algorithms will be able to be given as real big-size computer programs
using many heuristics.

Here we show by a few simple examples that how such an algorithm should work.

We consider pure-LISP functions.

Let Wo be a set of atoms, Wi be the set of all lists constructed over Wo ,
W *=W;— {&} where € denotes the nil and W=W,UW, .

Suppose that A=WU { integers! V..., ECQW, A) and HCQ(A) , and that
they contain required functions in the bellow examples.

We define ¢ in I2(W) as D(c)=W,* and c(x)= (carlx],cdr[x]) , A in
Mo(W) as D(A)={e} and t in Io(W) as D(t)=Wos.

We set F={c,A,t} and set §={F}

F is descending and all partial functions in (W, A) which treat all atoms
uniformly are differentiable by F w.r.t. an arbitrary argument.

In the following examples we concern with the inferability by derivatives with

the environment (H, E, §)

Examplé 1 (append)

Suppose w=append . ® has two arguments. Firstly we have

. Vwlcarlx],carlx], y)=w(x, y)=conslcar[x];w (cdr[x]1, )], that is,

_12_



8. Vwlarlx],carlx], y)=h(e.(carlx], ¥), w(cdr[x], ¥),¥) ,
where 1 and €1 are taken as h(x,¥, z)=cons[x;y] and e:(x,¥)=x .
Secondly we have 9:‘Pw(y)=w(e,y)=id(y) where id is the identity
function of W—W.
Thirdly we have, &:‘"@(y)=w(atom, y)=undefined .
Thus, supposing H 3id, h, ’undefined’ and EJ e,
I'=(H;w;FY)/E is a halting finite derivative closure and hence the

append is inferable by derivatives with (H, E, §)

Example 2
Let N be the set of all nonnegative integers and take a function @ of W?—>N
such that the value of @(xX,¥) is the product of the numbers of atoms except nil
occruing in X and ¥ .
¥e set wo=w.
Firstly we have
31 P wo(y)=wole,¥)=0, that is, 2 @wo =N where M is a function of
W—N such that n(y)=0.
Secondly we have
3: Pwo(y)=wolatom, ¥) and we set @:=37:Vwo .
Thirdly we have
3. Vawolcarlx],carlx], y)=wolcarlx], y) +woledrix], ¥) | that is,
8. Pwol(x, x2 ¥)=h"(wo(x1,¥), wa(x2¥)) where h’ is a function of
N2-N such that h' (I, m)=1+m . -
Finally we take derivatives of @: and we have
d:0.=w:(e)=wolatom, €)=0 ,
d.w:=w.(a)=wo(b,a)=1 where a, b €Wy and
dcwi(carlx],cdrlxD=w.(x)=wolatom, x)
=wo(atom, car[ x 1) +wo (atom, carl x 1)
=h’(w.(carlx]), w.(cdr[y 1)) , that is,

8:0:=0, d:w:=1 and Fcw:Ch - (w:,@:) .

._13_
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Thus, supposing HYh’, 0 and E3n, I'=(H, wo,w:; F'V,F) /E is a
halting finite derivative closure and hence the Wo is inferable by derivatives

with (Hp Eo %)
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