——

39

goooboooogn
0 7540 19910 35-44

INDUCTIVE INFERENCE
FROM ALL POSITIVE AND SOME NEGATIVE DATA

J& A # # (Tatsuya MOTOKI)

College of General Education,
Niigata University,
Ikarashi 2-8050, Niigata 950-21, Japan

Keywords : Formal languages, computa-
tional learning, identification in the limit,
usefulness of negative data

1. Introduction

Inductive inference 1is a fundamental component of
intelligent behavior; so many researchers have discussed the
computational aspect of induction process (see [2] for a survey).
Gold [3] established a basic paradigm of inductive inference. He
considers an induction process to be an infinite one that.
occasionally receives examples of some unknown rule, and
simultaneously generates a sequence of guesses of the underlying
rule; he then defines the process to make correct inference if
the sequence of'guesses eventually converges to a description of
the underlying rule.

We are now concerned with inductive inference of (formal)
languages, that is, those induction processes that (i) restrict
the range of unknown rules to somé fixed class of languages, (ii)
receive positive or negative facts (, i.e., examples of elements
in the unknown language, or examples of elements that are not in
the language), and (iii) choose a guesé language from the fixed
class. Angluin [1] characterizes those classes of nonempty

recursive languages that can be correctly infered when all and

36

only positive facts are allowed to be eventually given to
induction process. Shinohara [4, section 5.3] shows that when
all positive facts are eventually given to induction process,
finitely many more negative facts do not necessarily extend the
possibility of correct inference.

In this paper, we consider negative facts to be the timely
advice that observers give to induction process, and show that
when all positive facts are eventually given to induction
process, some supplementary negative facts might extend the
possibility of correct inference. Hence, as we intuitionally
accept it, we ‘might construct an induction process of practical
use by supposing the existence of teachers who help the process

to make correct inference.

2. Preliminaries

In this section, we give basic definitions and a result
about inductive inference of formal languages. Section 2.1 deals
with the case where all and only positive facts are eventually
given to induction process; section 2.2 deals with the case where

all positive and some negative facts are eventually given.
2.1. Inductive inference from positive data

Let Z be a fixed nonempty finite set of symbols. We use
> * to denote the set of all finite strings of symbols from X,
including the empty string €&, and % to denote the set I* -
{ €}. A language is any subset of X*. An lindexed family of
nonempty recursive languages is an infinite sequence Ly, Ly,
of nonempty languages such that the following membership function

f is computable:

£f(i, w)

i
[y

if WELi;
= 0 otherwise.

37

An linference machine M is an effective procedure that
occasionally requests an element in X* X {0, 1} as an input and
occasionally outputs a positive integer as a guess. We regard an
input (s, 1) as a positive fact that s is in the unknown
language, and an input (s, 0) as a negative fact that s is not in
the unknown language. To run the machine M we provide with an
infinite or finite sequence (T=<(sl, dqy)., (32,‘d2), ... > of
inputs; when M requests an input for the ith time, we supply with
the ith element (sj, di)' For each input sequence 0, we use
M T] to denote the infinite or finite sequence of guesses
produced by Mon 0 ; for each finite sequence O, we use M((¢) to
denote the last guess in M[0"], that is, the most recent guess
produced by Mon 0. Given an infinite sequence ¢, we say M ¢]
converges to a positive integer i if either M[0] is finite and
the last guess is equal to i, or M 0] is infinite and all but
finitely many terms in M[0] are equal to 4.

A positive presentation of a nonempty language L is an
infinite sequence <(31'1)' (52,1), ... > such that {sl, Sor e }
=L. An inference machine M is said to infer an indexed family of
nonempty recursive languages Ly, Lp, ... from positive data if
for every i>1 and every positive presentation 0 of L;, the
sequence M[0] converges to some positive integer j such that L=

J
L;. An indexed family of nonempty recursive languages Ly, Ly,

i; said to be inferable from positive data if there exists an
inference machine that infers the family L, L, ... from
positive data.

The following theorem characterizes when an indexed family

of nonempty recursive languages is inferable from positive data.

Theorem 2.1 [1]. An lindexed family‘bf nonempty recursive
languages L, ., Ly, ... is inferable from positive data if and only
if there exists an effective procedure that, given an input i>1,
enumerates a finite subset T; of L; such that for every j>1 the

condition Ti(_Z,Lj_C_Ll- implies LJ-—-L_i.

38

2.2. Inductive inference from all positive and some negative data

Let Ly, Ly, ... be an indexed family of nonempty recursive
languages. A (negative) advisor is a function 4 : (1, 2, 3, ...}
S 223* such that A(i)g,f} for every i. For each i>1l, we

regard A(i) x {0} as a set of supplementary negative facts that
observers will eventually give to the inference machine when the
unknown language is Lj.

For each advisor A and each i>1, an A-positive presentation
of L; is an infinite sequence <(51' dl)' (85, d2), ... > of
ordered pairs from X* x {0, 1} such that (s | (s, 1)=(s, dj) for
some k} = L; and A(1) S {s | (s, 0)=(sy, dg) for some k}& f}. An
inference machine M is said to infer an indexed family of
nonempty recursive languages Li, Ly, ... from positive data and
an advisor A if for every i>1 and every A-positive presentation
0 of L;, the sequence M[0"] converges to some positive integer j
such that Ly=Lj. An indexed family of nonempty recursive
languages Ly, Ly, ... is said to be inferable from positive data
and an advisor A if there exists an inference machine that infers

the family Ly, Ly, ... from positive data and an advisor A.

3. Usefulness of negative data
We now establish a result that is similar to Theorem 2.1.

Theorem 3.1. An indexed family of nonempty recursive languages
Ly, Ly, .. is dnferable from positive data and an advisor A if
and only if there exists an effective procedure that, given an
input i>1, enumerates a finite subset T; of L; such that for
every j>1 the conjunction of T; S Ly € L; and A(J) & L; implies
LJ=Li'

Proof. The proof proceeds in the similar manner as that of
Theorem 2.1.

(&) Suppose that there exists an enumeration procedure of

39

T;

machine M described as follows:

as specified in the theorem, and consider the inference

for n:=1 to +» do
begin
request another input data (s, d,):
compute and output the value of the expression
min[(g | g<n, T A P(n)C L, N(n)CIHU(a+r1)]

g’
end,

where we define P(n) = (s | (s,1)=(S),d}) for some k<n}, define

N(n) = {s | (s,O)=(sk,dk) for some k<n}, and use Tg(n) to

denote the set of strings produced in the first n steps of the

enumeration of Tg. [Note that the effectiveness of M follows

from the recursiveness of L; and the existence of enumeration
procedure of T;.]

To see that M infers Ll' Ly, vnn from positive data and an
advisor A, let j>1 be arbitrary and assume that O =<(sy, dp),

(Sg., d2), ... > is any A-positive presentation of Lj. It remains
to show that M[0] converges to some I such that LJ-—-LJ-. For each
n>1, we use 0(n) to denote the initial subsequence <(sl,
dy), ... , (8 dy)>.

Since Tj is a finite subset of Lj' we have Tj.C_-P(n) for
sufficiently large n; so define n0=min{n | TjQP(n)}. Then we
can easily prove two claims: (i) M(0 (n))<j for every n>n,, and
(ii) M(O (n))< M(O(m)) for every m>n>ng . From these claims

we see that M[0] converges to some positive integer, say i.

Thus there must exists an integer n* such that for every n>n¥,

Ti(n) € P(n) € L; and
N(n) C fj;

so by letting n—>0 two relations

T; € U _TP(n) € L; and (1)

UpqN(n) € I; (2)

40

follow. Since we obtain L%;?P(n)=Lj and A(Jj) ¢ L%;?N(n) from
the choice of O and the definitions of P(n) and N(n), we now
derive from (1), (2) two relations T; ¢ LjQLJ- and A(Jj)E L;; so
from the choice of T; we deduce the required equation Lj=Li'

(=) Suppose M is an inference machine that infers Lq,
Ly, ... from positive data and an advisor A. For each i>1,let
(si,l' di,l)' (Si,2' di,2)' ... be an enumeration of
L;x{1) UV I;x{0}, and let ei,l' fi,z' ... be an enumeration of
all finite sequences of elements from L;x{1}V I;x{0}. [Note that
's

effective enumeration procedures for (Si m’ ?i m
I rd

are seen to exist from the existence of effective enumeration

di,m)‘s and

procedure of 2 * and the recursiveness of L;.]
To enumerate for any given i>1 the required finite subset
Ti of Li' consider the infinite procedure P(i) described as

follows:

T := <>;
T := {};
for k:=1 to +o0 do
begin
find an integer m such that
M(append(T, €; ,))#M(T);
T := append(T, append(€i,m' AUS; pr di,k)>)):
T := TU{s | (s,1) is in append(€ ; ;. <(S; g/ dj p)>)}
end,

where we use <> to denote the null sequence, and append(T, f) to
denote the sequence obtained by appending sequence f to the end
of finite sequence T. Now let T; be the limiting value of T in
P(i); similarly let T (i) be the limiting value of T in P(i).

We easily see T; cLr and can regard P(i) as an effective

il
procedure to enumerate Ti'
To show the finiteness of T;, let us assume the opposite and

see what happen. Since each is finite, the execution of

ei,m
P(i) goes infinitely many times around the for loop; so T (i) is

41

an A-positive presentation of Lj;. However, we can also derive
the consequence that the execution of M on T (i) changes its
guess infinitely many times and so M[T(i)] does not converge to
any integer. Therefore M fails to make correct inference when we
provide with an input sequence T(di), a contradlctlon

The argument in the preceding paragraph also shows that the
execution of P(i) cannot go infinitely many times around the for
loop. Hence after the execution of P(i) goes some finite times
around the for loop, the procedure P(i) cannot find an integer m
such that M(append(T, fj’m))#M(Qr); after that time, program
variables T and T have already converged to T (i) and T;
respectively. Therefore T (i) satisfies the condition

M(append(T (i), §; ,))=M(T (1)) for every m1. (3)

Finally, let j>1 be arbitrary and assume that two

conditions
T.z LJQLi and (4)
A(J)EI; (5)
hold. Now it remains to deduce the equation Li=Lj' To do this,
consider two input sequences
0"y=append(T(i), <(s; 1, dj 1), (83,9, dj 2), ... >) and
O,=append(T(1i), <(ty, e1), (ty, &), ... >),
where (tq, el), (t2, e2), ... denote an enumeration of ij{l}
Y E}x{O}. Obviously Ul is an A-positive presentation of L;i
from (4), (5) and the equation (s | (s, 1) is in 7T (4)}=T;, the
sequence 02 is seen to be an A-positive presentation of Lj. So

M[(Tl] converges to some integer i* such that L;«=L;; similarly

M[0°,] converges to some integer j* such that LJ* bE
Now, observe that for each p>1 two equations

42

M(append(T(i)' <(51~’1, dl"l)l LR ’ (si,pl dj’p)>))
= M(T(i)) and
M(append(T (1), <(t;, e1), ... , (t, ep)>)) = M T(1))
follows from (83). From these egquations, we deduce that both

M[0,] and M[0,] must converge to the integer M(T(i)), that is,
i*=j*=M(T(i)); and hence we obtain the required equation L;=L;«

=Lj*=Lj- D

We next give an example of the application of Theorem 3.1.

Example 3.2. Let 2.={a, b}, and let h be -a computable bijection

from {1, 2, 3, ... }2 to (1, 2, 3, ... }. Now consider the
family Ly, Ly, ... and an advisor A defined as follows:
Lpci,5) = (a7 v (p? if i=j=1;
= (a}t v (b, B2, ... , b1 if i=1, j>1;
= {(a, a2, ... , al™ly v (p* if i>1, j=1;
= (a,a%, ... ,al "y VUyp, b2, ... ,pJ"1y if i>1,>1;
A(h(di,7)) = {} if i=j=1;
= {bJ} if either 1<i<j, or 1=i<j;
= {al}) if either 1<j<i, or 1=j<i;

Then by setting the "telltale set"

= {a") if w1, n>1;
(1) if m>1, n=1;

and applying Theorem 3.1, we derive the consequence that L,

Ly, «vn is inferable from positive data and an advisor A.
[Therefore the class L;, Ly, ... is considered to be inferable
from positive data and one supplementary negative data.] In
fact, let |

43

c(ha(m,n)) = {Lpcj, 5y | Thim,n) & Lh(i,7) & Lh(m,n)"

A(B(1,)) € Tpip o)

Then for each m,n>1 we have

C(h(1,1))
= {Lp(z,5 | (L. D#(1,1), A(h(1,5) € (@7 V(D7)
= ()

C(h(m, 1))
(Lp(i,) | D" 1€ Lyis, 5)S Lpgm,1yr AL D) € Ty 1))
{(Lp(i, 5 | (m<jor j=1), 1<i<m, (4i,j)#(m1),

| A1,)€ Typ 1))

= (Lp(i,) | either (1<i<m<j, bJe Tpip 1y)

or (j=1, 1<i<m, aiefh(m,l))}
= {}
C(h(1,n))

(Lpei,5) | ale Lp(i,)% Ln(1,n) A(h(i,j))gfh(lln))
'{Lh(.i,j) | (n<i or i=1), 1<j<n, (i,j)#(1,n),
) A(h(i,j))gfh(l’n)}
{Lh(.i,j) | either (1<j<n<di, ale -'[—:h(l,.ﬂ))
or (i=1, 1<j<n, bJe€ Lpi1,n))?

{}

G(h(m,n))

= (In(i,5) | En(m,n) < En(1,5) % Lnim,n)- _
. ' A(h(i,j))SLh(m’n)}.

]

{}

From Theorem 3.1 and Example 3.2, we have the conclusion
that when all positive data are eventually given to inference
machine,‘ some negative data might extend the possibility of
correct inference; by receiving some negative advice from
teachers, machine can develop its ability to make correct

inference. Thus we might construct an inference machine of

44

practical use by supposing the existence of teachers who help the
machine to make correct inference. '

Acknowledgment

The author would like to thank Dr. T. Shinohara for his

valuavle comments, and Prof. T. Nishizawa for drawing author's
attention to this research area.

References

[1] D. Angluin, Inductive inference of formal languages from
positive data, Inform. and Control 45 (1980) 117-135.

[2] D. Angluin and C. H. Smith, Inductive inference: theory and
methods, Comput. Survey 15 (1983) 237-269.

[3] E. M. Gold, Language identification in the limit, Inform. and
Control 10 (1967) 447-474.

[4] T. Shinohara, Studies on inductive inference from positive

data, doctoral thesis, Kyushu University, Japan (1986).

