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Abstract

We consider two kinds of problems: the maximal vertex-induced subgraph problem for
a given graph propery $\pi$ and the minimal set cover problem. We give a unified scheme for
parallelizing these problems using the maximal independent set parallel algorithm.

1 Introuduction

The authors have shown that bounded degree maximal subgraph problems are in NC [8]

by employing the NC algorithms for the maximal independent set problem (MIS) [3, 4, 5].

This paper extends the technique developed in [8] and shows a way of employing the parallel

algorithms for MIS to solve two kinds of problems in which maximal or minimal solutions are

searched.

The first problem is to find a maximal set of vertices which induces a subgraph satisfying a

given graph property $\pi$ . The other is the minimal set cover problem that is, given a collection

$C=\{c_{1}, \ldots,c_{m}\}$ with $c;\subset S=\{1, \ldots,n\}$ , to find a collection $C’\subseteq C$ such that every element

in $S$ is contained in some $c\in C’$ but no proper subcollection $C”\subset C’$ does not have this

property.

These problems are easily solved in polynomial time by straightforward greedy sequential

algorithms. However, these algorithms are hardly parallelizable since they are P-complete

[7]: It is shown in [6] that the lexicographically first maximal subgraph problem for a given
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property $\pi$ is P-complete if $\pi$ is hereditary, nontrivial and polynomial-time testable. The same

fact also holds for the greedy minimal set cover algorithm.

For the maximal subgraph problem, we need some restrictions on the property to solve

the problem in NC. A graph property $\pi$ is called local if the diameter of any minimal graph

violating $\pi$ is bounded by some constant. For such local propery $\pi$ , we consider the problem

of finding a maximal vertex-induced subgraph which satisfies $\pi$ and, simultaneously, whose

maximum vertex degree is at most $\Delta$ , where $\triangle$ is a given constant. We prove that this

problem can be solved in NC by using MIS if $\pi$ is testable in NC.

For the minimal set cover probIem, we also show an algorithm which employs an MIS

algorithm. This algorithm can be implemented on an EREW PRAM in time $O(\alpha\beta(\log(n+$

$m))^{2})$ using a polynomial number of processors, where $\alpha=\max\{|c_{i}||i=1, \ldots, m\}$ and

$\beta=\max\{|d_{j}||j=1, \ldots,n\}$ with $d_{j}=\{c;|j\in c_{i}\}$ . This implies that if $\alpha\beta=O((\log(n+m))^{k})$

then the problem is solvable in NC.

The algorithms for these problems are described by a scheme which applies MIS repeatedly.

Thus we do not directly deal with parallelization of the problems. Our concern is how to employ

an MIS algorithm to solve problems in parallel.

2 Maximal subgraph problem for a local property

Let $\pi$ be a property on graphs. We say that a graph $G=(V, E)$ is a minimal graph violating $\pi$

with respect to vertices if $G$ violates $\pi$ and the vertex-induced subgraph $G[U]$ of $U$ satisfies $\pi$

for every subset $U$ of $V$ with $U\neq V$ . The property $\pi$ is called local with respect to vertices if

$\lambda(\pi)=\sup${$diameter(G)|G$ is a minimal graph violating $\pi$ with respect to vertices} is finite.

Remark 1 A minimal graph violating a property $\pi$ with respect to vertices must be connected

if $\pi$ is local.

A property $\pi$ on graphs is called hereditary with respect to vertices if for every graph

$G=(V, E)$ satisfying $\pi$ , the vertex-induced subgraph $G[U]$ also satisfies $\pi$ for every subset

$U\subseteq V$ .

Theorem 1 Let $\pi$ be a graph property which is local and hereditary with respect to vertices.

Then a maximal subgraph of a graph $G=(V, E)$ which satisfies $\pi$ and whose maximum degree
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is at most $\Delta$ can be computed on an EREW PRAM in time $O(\triangle^{\lambda(\pi)}T_{\pi}(n)(\log n)^{2})$ using a

polynomial number of processors, where $T_{\pi}(n)$ is the time needed to decice whether a graph

with $n$ vertices satisfies $\pi$ .

Proof. For subsets $W$ and $U$ of vertices with $W\cap U=\emptyset$ , let $E_{U}^{W}=\{\{v,w\}\subseteq W|$

$dist_{G[U\cup\{v,w\}]}(v,w)\leq\lambda(\pi)$ with $v\neq w$} and $N_{U}(w)=\{u\in U|dist_{G[U]}(u,w)\leq\lambda(\pi)-1\}$,

where $dist_{G}(\{v, w\})$ is the length of the shortest path between $v$ and $w$ in $G$ . Then let

$H_{U}^{W}=(W,E[W]\cup E_{U}^{W})$ . The required set $U$ of vertices is computed together with a set $W$

of vertices such that $W\cap U=\emptyset$ . Initially let $W=V$ and $U=\emptyset$ . At each iteration of the

algorithm, a maximal independent set $I$ of $H_{U}^{W}$ is computed and added to $U$ while vertices

which induce a graph violating $\pi$ or make the degree of some vertex greater than $\Delta$ are deleted

from $W$ together with $I$ . This is iterated $\Delta^{\lambda(\pi)}$ times. Formally the algorithm is described as

follows:

1 $begin/*G=(V, E)$ is an $input*/$

$2$ $Warrow V;Uarrow\emptyset$;

3 while $W\neq\emptyset$ do

4 begin

5 Find a maximal independent set $I$ of $H_{U}^{W}$ ;

6 $Uarrow U\cup I$ ;

7 $Warrow W-I$;

8 $Warrow W-$ { $w\in W$ I $G[U\cup\{w\}]$ violates $\pi$ or $deg(G[U\cup\{w\}])>\Delta$ }
$\dot{9}$ end

10 end

We show that this algorithm computes a maximal subset $U$ whose induced subgraph sat-

isfies $\pi$ and maximum degree is at most $\triangle$ .
Let $W_{0}=V$ and $U_{0}=\emptyset$ . Then the graph $H_{U_{0}}^{W_{0}}$ is the same as $G=(V, E)$ . Therefore in the

first iteration, a maximal independent set of $G$ is computed at line 5. For $i=1,$ $\ldots,$

$\triangle^{\lambda(\pi)}$ , let

$U_{i},$ $I_{1}$ and $W_{i}$ be the contents of variables $U,$ $I$ and $W$ at the end of ith iteration, respectively.
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Obviously, $W_{i}\cap U_{i}=\emptyset$ for $i=0,$ $\ldots,\triangle^{\lambda\langle\pi)}$ . We assume that the induced subgraph $G[U_{i-1}]$

satisfies $\pi$ and the maximum degree of $G[U_{i-1}]$ is at most $\Delta$ .
Let $\{w,u\}$ be an edge in $E$ with $w\in W_{i}$ and $u\in U_{1}$ . Line 8 deletes every vertex which is

adjacent to more than $\Delta$ vertices in $U_{i}$ or adjacent to a vertex $v$ in $U_{1}$ with $deg_{G[U_{i}]}(v)=\Delta$ .
Therefore $u$ is adjacent to at most $\Delta$ vertices in $U_{i}$ and $deg_{G[U_{i}\cup\{w\}]}(u)\leq\Delta$ . Moreover,

$|N_{U_{1}}(w)|\leq\Delta^{\lambda(\pi)-1}$ . Hence, for each $w$ in $W_{i}$ , we see that

$A_{i}(w)= \sum_{u\in N_{U_{j}}(w)}deg_{G[U_{i}\cup\{w\}]}(u)\leq\triangle^{\lambda(\pi)}$
.

To show that $W$ becomes empty within $\Delta^{\lambda(\pi)}$ iterations of the while-loop, it suffices to

prove that

$A_{i}(w)>A_{i-1}(w)$

for each $w$ in $W_{1}$ . Since $w$ is not in the maximal independent set $L$ of $H_{U_{1-1}}^{W:-1}$ computed by

line 5, $w$ is adjacent to a vertex $v$ in $I_{i}\subseteq W_{i-1}$ via an edge $\{w, v\}$ in $E[W_{i-1}]$ or $E_{U_{1-1}}^{W.\cdot-1}$ .
Case 1. $\{w, v\}\in E[W_{i-1}]$ : Then $\{w, v\}$ is an edge in $G[U;\cup\{w\}]$ . Hence $deg_{G[U_{i}\cup\{w\}]}(v)\geq$

$1$ . Since $v\in N_{U}.(w)$ and $v\not\in N_{U_{i-1}}(w)$ , we see that $A_{i}(w)\geq\prime A_{i-1}(w)+deg_{G[U_{1}\cup\{w\}]}(v)>$

$A_{i-1}(w)$ .
Case 2. $\{w, v\}\in E_{U_{1-1}}^{W_{i-1}}$ : Then there is a path $w,$ $u_{1},$ $\ldots,u_{k-1},$ $v$ with $k\leq\lambda(\pi)$ and

$u_{j}\in U:-1(j=1, \ldots, k-1)$ in $G[U_{i-1}\cup\{w, v\}]$ . Since $v\in W_{i-1},$ $W_{i-1}\cap U_{i-1}=\emptyset$ and $w\neq v$ ,

we see $v\not\in U_{1-1}\cup\{w\}$ . Hence $\{v, u_{k-1}\}$ is not an edge in $G[U_{i-1}\cup\{w\}]$ . On the other hand,

$v$ is in $U_{:}$ and $u_{k-1}$ is in $U_{i-1}\subseteq U_{i}$ . Hence $\{v, u_{k-1}\}$ is an edge in $G[U_{i}\cup\{w\}]$ . Therefore

$deg_{G[U.\cup\{w\}]}(u_{k-1})>deg_{GU_{1-1}}[\cdot\cup\{w\}](u_{k-1})$ . Since $u_{k-1}\in N_{U_{i-1}}(w)\subset N_{U_{i}}(w)$ , we see that

$A_{i}(w)>A_{i-1}(w)$ .
We now show that $deg(G[U_{i}])\leq\triangle$ and $G[U_{i}]$ satisfies $\pi$ .

Claim 1. $deg(G[U_{i}])\leq\triangle$ .

Proof. For a vertex $u$ in $U_{i-1}.$ , if $u$ is adjacent to a vertex $w$ in $I_{i}$ via an edge in $E$ , then

no other vertex in $L$ is adjacent to $u$ since $I_{i}$ is also an independent set with respect to $E_{U_{j-1}}^{W.\cdot-1}$ .
Therefore the degree of $u$ in $G[U_{i-1}\cup I_{i}]$ remains to be at most $\Delta$ since $deg(G[U_{i-1}\cup\{w\}])\leq\Delta$

by the algorithm. For a vertex $u$ in $I_{i},$ $deg_{G[U_{i-1}\cup I_{i}]}(u)$ is at most $\triangle$ since $u$ is adjacent to at

most $k$ vertices in $U_{i-1}$ and since $I_{i}$ is an independent set with respect to $E[W_{i-1}]$ . Hence
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$deg_{G[U_{-1}\cup I_{1}]}(u)\leq\Delta$ .
Claim 2. $G[U_{i}]$ satisfies $\pi$ .

Proof We assume that $G[U_{1}]$ does not satisfy $\pi$ . Then, there is a minimal subset $S\subseteq U_{i}$

such that $G[S]$ violates $\pi$ . Since $S\subseteq U$: and $U_{i}=U_{i-1}\cup L$ , we see that $S=(S\cap U_{1-1})\cup(S\cap I_{i})$ .
The set $S\cap I_{i}$ contains at least two vertices since if $S\cap I_{i}$ consists of only one vertex then line

8 deletes the vertex at the last iteration. Therefore there are two distinct vertices $v,$ $w$ such

that $\{v,w\}\in E$ or there are at most $\lambda(\pi)-1$ vertices in $S\cap U_{i-1}$ which construct a path

between $v$ and $w$ since diameter(G[S]) $\leq\lambda(\pi)$ . For each case, $\{v, w\}$ are in $E[W_{1-1}]$ or $E_{U:-1}^{W.-1}$

since $v,$ $w\in L\subset W_{i-1}$ . It contradicts the fact that $v,$ $w\in S\cap I_{i}\subset I_{i}$ and $I_{1}$ is a maximal

independent set with respect to $E[W_{i}]\cup E_{U.-1}^{W:-1}$ . Hence $G[U_{i}]$ satisfies $\pi$ .
Since only vertices which violate the property $\pi$ or the condition of maximum degree $\Delta$

are deleted from $W$ and since $\pi$ is hereditary, the resulting set $U$ is a maximal subset which

induces a subgraph satisfying $\pi$ when $W$ becomes empty.

MIS can be solved on an EREW PRAM in $O((\log n)^{2})$ time using a polynomial number

of processors [5]. It is not hard to see that the steps other than MIS can also be implemented

on an EREW PRAM in $O((\log n)^{2})$ time using a polynomial number of processors. Hence the

total algorithm can be implemented using the same amount of time and processors. $\square$

Remark 2 At line 8 of the algorithm, for each $w\in W$ , it is sufficient to decide whether

$G[N_{U}(w)\cup\{w\}]$ satisfies $\pi$ and $deg(G[N_{U}(w)\cup\{w\}])\leq\Delta$ . Therefore, the time needed to

compute line 8 depends only on $\triangle$ and $\lambda(\pi)$ .

Finding a maximal subgraph of maximum degree $k$ takes $O(k^{2}(\log n)^{2})$ time using a poly-

nomial number of processors [8]. This is a special case of Theorem 1 for $\pi=$ maximum degree

$k’,$ $\lambda(\pi)=2$ and $\Delta=k$ . For a graph of maximum degree $\Delta$ and $\pi=$ $k$ cycle free”, it takes

$O(\Delta^{\lfloor k/2\rfloor}(\log n)^{2})$ time to find a maximal subgraph satisfing $\pi$ of maximum degree $\Delta$ since

$\lambda(\pi)=\lfloor k/2\rfloor$ .

3 Solving the minimal set cover problem using MIS

Let $C=\{c_{1}, \ldots,c_{m}\}$ be a family of subsets of a finite set $S=\{1, \ldots,n\}$ . A subset $S’$ of $S$ is

called a hitting set for $C$ if $c_{i}\cap S’\neq\emptyset$ for all $i=1,$ $\ldots,m$ . A subset $S”$ of $S$ is called a co-hitting
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set if $c_{i}\not\subset S’$ for all $i=1,$ $\ldots,m$ . We say that $C$ is a set cover if $\bigcup_{i=1}^{n}c_{i}=S$ .
It should be noticed that $S$‘ is a hitting set for $C$ and only if $S-S’$ is a co-hitting set for

$C$ . Therefore, $S’$ is a minimal hitting set for $C$ if and only if $S-S’$ is a maximal co-hitting

set for $C$ .
The problem of finding a hitting set is closely related to the set cover problem. For a

family $C=\{c_{1}, \ldots,c_{m}\}$ with $\bigcup_{i=1}^{n}c_{i}=\{1, \ldots, n\}$ , let

$d_{j}=\{c_{i}|j\in c_{i}\in C\}$

for $j=1,$ $\ldots,n$ . Then each $d_{j}$ is not empty. Let $D=\{d_{1}, \ldots,d_{n}\}$ and $C’\subseteq C$ be a minimal

hitting set for $D$ . Then $d_{j}\cap C’$ $\neq\emptyset$ for each $j=1,$ $\ldots,$
$n$ . Therefore there is some $c_{i}\in d_{j}\cap C’$ .

Thus $j\in c;$ . Hence $C’$ is a set cover of $\{1, \ldots,n\}$ and also can be seen that $C$‘ is minimal.

Theorem 2 Let $C=\{c_{1}, \ldots,c_{m}\}$ be a family of distinct subsets of a finite set $S=\{1, \ldots, n\}$ .
Let $\alpha=\max\{|c_{i}||i=1, \ldots, m\}$ and $\beta=\max\{|d_{j}||j=1, \ldots, n\}$ , where $d_{j}=\{c;|j\in c_{i}\}$ . Then

a minimal hitting set for $C$ can be computed on an EREW PRAM in time $O(\alpha\beta(\log(n+m))^{2}$ }

using a polynomial number of processors with respect to $n$ and $m$ .
Hence, if $\alpha\beta=O((\log(n+m))^{k})$ , then a minimal hitting set can be computed in NC.

Proof. We consider the following algorithm that finds a maximal co-hitting set for $C_{0}$ :

$/*A$ family $C_{0}=\{c_{1}, \ldots,c_{m}\}$ with $c_{i}\subseteq S_{0}=\{1, \ldots, n\}$ for $i=1,$ $\ldots,$
$m$ is given. $*/$

$/*We$ assume that $S_{0}= \bigcup_{c\in C_{0}}c$ and $|c_{1}|\geq 2$ for $i=1,$ $\ldots,$
$m$ . $*/$

1 begin

2 $Sarrow s_{0;C}arrow c_{0;}$

3 $Warrow\emptyset;/*W$ gets a maximal co-hitting $set*/$

4 while $S\neq\emptyset$ do

5 begin

6 $Earrow\emptyset$ ;

7 par $c\in C$ do

8 begin

9 Choose two distinct vertices $v,$ $w$ from $c\cap S$ ;

10 Add the edge $\{v,w\}$ to $E$
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11 end;

12 Find a maximal independent set $I$ of the graph $G=(S, E)$ ;

13 $Warrow W\cup I$ ;

14 $Sarrow S-I$;

15 $Uarrow$ { $u\in S|c\cap S\subseteq W\cup\{u\}$ for some $c\in C$};

16 par $c\in C$ do if $c\cap U\neq\emptyset$ then delete $c$ from $C$ ;

17 $Sarrow S-U$ ;

18 $V arrow S-\bigcup_{c\epsilon c}c$

19 $Warrow W\cup V$

20 $Sarrow S-V$ ;

21 end

22 end

The variable $W$ gets a maximal co-hitting set. Let $I_{i},$ $C_{i},$ $U_{i},$ $W_{i}$ and $S_{i}$ be the contents

of the variables $I,$ $C,$ $U,$ $W$ and $S$ just after the ith iteration of the while-loop, respectively.

For convenience, let $W_{0}=\emptyset$ and $U_{0}=\emptyset$ . Let $U_{i^{*}}=U_{0}\cup\cdots\cup U_{i}$ . We also let $E_{i}$ be the set of

edges constructed during lines 7-11. Then from the algorithm we can easily see that $S_{0},$ $S_{i-1}$

and $W_{*}$. are represented as the following disjoint unions (Figure 1):

(1) $s_{i^{\cup W}:\cup U_{t^{*}}=S_{0}}$ .
(2) $S_{i-1}=I:\cup U_{1}\cup V_{i}\cup S_{i}$ .
(3) $\cup V$ .
Claim 1. For $c\in C_{i},$ $c\cap s_{:}$ contains at least two elements.

Proof. By the assumption on the input, Claim 1 obviously holds for $i=0$ . Assume that

the claim holds for $i$ and $S_{i+1}\neq\emptyset$ . Let $c$ be in $C_{i}$ . Then $c\cap U_{i}=\emptyset$ from line 16 and $c\cap V_{i}=\emptyset$

from line 18. Therefore from (2) we see that $c\cap S_{i}=c\cap(S_{i-1}-I_{i})$ . If $c\cap S_{i}=\emptyset$ , then

$U_{i}=S_{i-1}-I$; from line 15. This yields $S_{i}=\emptyset$ from line 17. This is a contradiction since $S_{i}$ is

assumed not empty. On the other hand, if $c\cap S;=\{u\}$ , then $c\cap S_{i}\subseteq W_{i-1}\cup L\cup\{u\}$ . This

means that $u$ is in $U_{i}$ and, therefore, $c\cap U_{i}\neq\emptyset$ , a contradiction. Thus $|c\cap S_{i}|\geq 2$ .
Claim 2. $W_{i}$ is a co-hitting set for $C_{0}$ .
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Proof. We assume that $S_{i-1}\neq\emptyset$ . Obviously, $W_{0}=\emptyset$ is a co-hitting set for $C_{0}$ . Assume

that $W_{1-1}$ is a co-hitting set for $C_{0}$ . Let $c$ be in $C_{0}$ .
Case 1. $c\not\in C_{i}:c$ was deleted during the $jth$ iteration for some $1\leq j\leq i$ . Then $c\cap U_{j}\neq\emptyset$ .

Hence there is $u$ in $c\cap U_{j}\subseteq U^{*}:$ . By (1) $u$ is not in $W_{1}$ . Therefore we have $c\not\subset W_{i}$ .
Case 2. $c\in C;:c$ is also in $C_{i-1}$ . Then by Claim 1 there are $v,$ $w$ in $c\cap S_{i-1}$ with $v\neq w$

and $\{v, w\}\in E;$ . Since $L$ is an independent set, $v\not\in L$ or $w\not\in L$ . Since $W_{i-1}$ is a co-hitting

set for $C_{0}$ , we have $c\not\subset W_{1-1}$ . Since no element in $S_{i-1}$ , hence no element in $I_{i}$ , is in $W_{1-1},$ $v$

or $w$ is not in $W_{1-1}\cup L$ . Therefore $c\not\in W_{i-1}\cup L$ . On the other hand, $c\cap V_{i}=\emptyset$ by line 18.

Therefore $c\not\subset W_{1-1}\cup I_{1}\cup V_{1}=W_{i}$ .
Claim 3. For any $u\in U:$ , there is $c\in C_{1-1}$ suth that $c\subseteq W_{i}$ .

Proof. By line 15, for $u\in U_{i}$ there is $c\in C_{i-1}$ such that $c\cap(S_{i-1}-L)\subseteq W_{i-1}\cup L\cup\{u\}$ .
Then $c\cap S_{i-1}\subseteq W_{1-1}\cup L\cup\{u\}$ . Note that for $c\in C_{i-1}$ we have $c\cap U_{i^{*}-1}=\emptyset$ by line 16. Then

$c$ $=$ $c\cap(S_{i-1}\cup W_{i-1}\cup U_{i^{*}-1}$ (by (1))
$=$ $(c\cap S_{i-1})\cup(c\cap W_{i-1})\cup(c\cap U_{i-1}^{*})$

$\subseteq$ $W_{1-1}\cup L\cup\{u\}$ . (by $c\cap U_{i^{*}-1}=\emptyset$ )
Let $t$ be the integer such that $S_{t}=\emptyset$ . Then by (1) $S_{0}=W_{t}\cup U_{t^{*}}$ . From Claim 2 $W_{t}$

is a co-hitting set. Claim 3 asserts that for any $u\in U_{t^{*}}$ there is some $c$ with $c\subseteq W_{t}\cup\{u\}$ .
Therefore $W_{\ell}$ is a maximal co-hitting set for $C_{0}$ .

Claim 4. $t\leq\alpha\beta$ .
Proof. For $u\in S_{i}$ , we define

$B_{i}(u)=$ {$v|u\neq v$ and $\{u,$ $v\}\subseteq c\cap S_{i}$ for some $c\in C_{i}$ }.

It is easy to see that 1 $B_{i}(u)|\leq\alpha\beta$ . Then it suffices to show that

$|B_{i}(u)|<|B_{i-1}(u)|$

for each $u\in S_{i}$ . If $u\in S_{i}$ , then $u$ is not in $I_{i}$ from line 14. Since $L$ is a maximal independent

set, there is $v$ with $\{u, v\}\in E_{i}$ . Therefore $\{u, v\}\subseteq c\cap S_{i-1}$ for some $c\in C_{i-1}$ . Hence $v$ is in

$B_{i-1}(u)$ . However, $v$ is not in $S_{i}$ since $v$ is in $L$ . Therefore $v$ is not in $B_{i}(u)$ .

As in the proof of Theorem 1, the part of finding a maximal independent set can be imple-

mented on an EREW PRAM in $O((\log(n+m))^{2}))$ time using polynomially many processors

with respect to $n$ and $m$ . The other steps can also be implemented with at most the same

amount of time and processors. $\square$
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Figure 1: Relation between $S_{i},$ $L,$ $V_{i},$ $W_{1-1}$ and $U_{1}^{*}$

The following corollary is obtained in a straightforward way from Theorem 2:

Corollary 1 Let $C=\{c_{1}, \ldots,c_{m}\}$ be a family of subsets of a finite set $S=\{1, \ldots, n\}$ such

that $S= \bigcup_{1}^{m_{=1}}c;$ . Let $\alpha=\max\{|c;||i=1, \ldots,m\}$ and $\beta=\max\{|d_{j}||j=1, \ldots,n\}$ , where

$d_{j}=\{c_{i}|j\in c_{i}\}$ . Then a minimal set cover for $S$ can be computed on an EREW PRAM in

time $O(\alpha\beta(\log(n+m))^{2})$ using a polynomial number of processors with respect to $n$ and $m$ .
Hence, if $\alpha\beta=O((\log(n+m))^{k})$ , then a minimal set cover can be computed in NC.

Remark 3 An NC approximation algorithm for the set cover problem is shown in [1]. But it

should be noted here that their algorithm does not produce a minimal set cover.

4 Conclusion

We have shown that parallel MIS algorithms are useful to solve the minimal set cover problem

and the maximal subgraph problem for a property “local and of degree at most $\Delta’$ . However,

the idea of using MIS does not seem to work for other properties, for example, “acyclic”,

“planar”, which are not local. MIS locates at an interesting position in the NC hierarchy. It is

in $NC^{2}$ but unlikely to belong to classes such as $AC^{1}$ and DET shown in [2]. It is not difficult

to see that the algorithms shown in this paper can be transformed to $NC^{1}$ -reductions to MIS.

Hence the results in this paper give some new problems $NC^{1}$ -reducible to MIS.
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