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Deterministic Parse for
Recursive Descent Syntax-Directed Translators

AL (Hiroyuki Anzai)
M I A% (Kyushu Institute of Technology)

Abstract For a given simple syntax-directed recursive-descent
translator, a linear algebralike method of computing extended LL (1)
director sets, which is necessary for the translator make its parse
deterministic, is presented. The fact that the language space generated
Jrom the empty alphadbet is isomorphic to Boolean algebra is pointed outl
and used in this method. A given translation scheme is transformed into
a right linear equation system, from which simultaneous equations
defining the First sets as the unknowns are given and solved. Similarly,
the Follow sets are equationally defined and solved. Finally, the
desired Director sels are obtained from the above sets. The form of Lhe

solutions is a formula of which almost parts are computation of Boolean
matrices and vectors.

1. INTRODUCTION

As the number spaces are treated as the algebra “field”, the language
spaces can be treated as an algebra “semiring with idempotency in
addition”. We call this algbra a “language semiring”. All axioms which
both algebras commonly have make as a whole an algebra “semiring”. For
the algebra, the field has only three extra axioms: commutativity in
multiplication, existance of the inverse element in addition and in
multiplication, respectively, and the language semiring has one extra
axiom: idempotency in addition.

The language space generated from the empty alphabet is a set whose
elements are only the empty set ¢ and the empty string set A, and is
necessarily contained in the language space generated from arbitary
alphabet. This language space is, as a language semiring, isomrphic to

Boolean algebra.
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The above nontrivially minimum language space is useful for applying
the so-called “divide and conquer” strategy to the problems concerned
with language processing. Namely, the problems are solved by means of
partially reducing to those of (the language space equivalent to)
Boolean algebra. We have already shown the applications to the problem
of obtaining LR(0) automaton and LALR(1) look-ahead sets[1] and that of
obtaining LL(1) director sets[2] from a given grammar, respectively.

These problems are generally so formalized that for sevearl finite
sets which we want to obtain, simultaneous equations where they are the
unknowns are given as follows and are obtained by solving them.

si=%vs%u~-vﬁmvdpfmi=12¢~m.

Traditionally, the above equations are solved as shown below: All
the unknown sets s;, (lgign), are initiallized as empty. Then the values
of the right parts of the equations are computed and then they are
assigned to the letf unknown variables. Using these obtained values, the
right parts are again computed and assigned to the left. This recusive
computaion is continued until the values obtained become unchanged.

Our method derives the similar kind of equations, which is, however,
diffrent from them as shown bellow on having coffeficients 7y;, (lgi,
Jgn), of which each value is either ¢ or A.

Sg = T3Sy v TiaSp v+ oo v Vs, v dy, for i =1,2,.:-,n.

They are as a whole written as a equation of matrix form s =T's v d
and have a solution (the minimum solution, i.e., the minimum fixed
point) s = I'*d. For computing '™, the closure of I', we can use directly
the efficent methods, such as the Warshall’'s theorm, of computing the
positive closure of a Boolean matrix. There occurs only one computation
of sets of symbols, i.e., a multiplication of ™ and d.

In the above our equations, the coefficients and the constant terms
were each given a formula to compute the value by Boolean computation.
For any nonterminal X, the structure of connections of symbols in the
right part of BNF which defines X is represented by both a transition
matrix Ay and a final vector fy (Boolean vector). Furthermore, for each

symmbol ¢ in Ay, a Boolean matrix called the partial adgacent matrix
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denoted by O;Ax, which shows the contribution of o to the structue of the
connections, is abstracted. The above coefficients and the constant
terms are defined using these Boolean matrices and vectors. Therefore,
they are computed from a given grammar as Boolean computation.

As one more application of the above methods to the problems of
language processing, this paper presents a method of computing the LL(1)
look-ahead sets for a simple recursive-descent syntax-directed
translator in order to make its parse deterministic. We have already
given a theory to generate such kind of translators and have proven the
correctness of the generation[4]. Furthermore, a practical generator
called MYLANG has been developed as a generator of attributed recursive-
descent syntax-directed translatorsi[S].

From a given translation scheme, a machine model of recursive-
descent syntax-directed translator is constructed. For the machine, this
paper gave a method to compute the LL(1) director sets necessary to make

its parse deterministic.

2. RECURSIVE DESCENT SEQUENTIAL TRANSDUCER SYSTEM
An inpu't symbol set, an output symbol set and a nontrminal symbol set
are denoted by T, A, and N, respectively. TvAvN is shown by V. For the
nonterminal set N, a set of all nonterminals which may generate the
empty string € is denoted by ¥ . For a given set S, the cardinal number
of S is written as #(S) and the power set of S as £S. The empty set is
written as ¢ and the empty string set (¢} as A. For sets x and y, x + ¥
and x-y (usually written as xy) are intepreted as the set union and the
set concatination, respectively.

For a given set S, a matrix A = (az) = ([Aly), a4€PS, is called an
S-matrix. The A-matrix of which each diagonal element is A and the
others are all ¢ is denoted by E. The sum and the product of matrices
are defined as the same as the case in usual algebra. Vectors are all
writen as Gothic letters.

For a given alphabet ¥, a function 4 : ¥xP2 — PA is defined as §,S
= A if 0€S; 8,5 = ¢ if otherwise. The definition is extended for a V-
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matrix A = (a;;) as 8,A = (9,a,;), and it is called the partial adjacent
matrix.

The Extended Bacus Naur Form (EBNF) is inherently used for
description of a grammar. However in this paper, EBNF is used for
describing a kind of translation scheme by regarding the terminal symbol
occurred in the EBNF either as an input symbol or as an output symbol.
That is, EBNF used here is such an extension of Backus Naur Form that
its right part is allowed to be written as the form of a regular
expression generated from the given alphabet V. This kind of EBNF is
interpreted as one of the translation scheme. And the translation
defined by this scheme is called simple syntax-directed translation.

In the EBNF, a terminal symbol set is a union of T and 4. Each
string w defined by this EBNF is a string generated from TvA. For the
string w, when every output symbol in w is replaced by &, an input
string w; is obtained, and similarly an output string w, associated with
w; is obtained. Thus, it can be said that w shows the translation from w;
to w,. We call this translation scheme regular tanslation form or RIF for
short.

The following .Simple example defines the translation from a simple
arithmetic expression to the postfix notation.

E= T (’+ T[MH)*
T= "t'[t] + "C E "y
Fig.1 An example of RIF.
Where N={ E, T ), T={"+, "%, 'C, "’y Yand 4={ [+], [i]}. The
meta symbol ”;” is used to seperate equations each other, and
furthermore is treated as if it is an output symbol [;] which outputs €.
Thus the above equations are treated as follows:
E= (T ('+ T[H)* )]
T=(Ci[+'CE"Y )]
Fig.2 An example of RIF

For each nonterminal X, there exists in RTF one and only one

equation X = Ry, which is cal]éd the X-defining RIF equation. The right

part Ry is a regular expression generated from V = NvTvA. Therefore,
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for each nonterminal X, we can have an automaton X accepting Ry over V*.

From Fig.2, we have the following two automata E and T.

automaton E automaton T

Fig.3 A system of automata
Generally, Ry is able to be unfolded by means of introducing appro-
priate parameters xy;, Xxz, '--, Xxn,, resulting in obtaining an

ny-dimensional right linear equations, as follows:
x

X=xx1, xx£=2ax,:jxx7+c;(i, 7:=1, 2, cey, nx (2.1)
J=1

or as a matrix representation Xy = Ayxyx + Cy.
From Fig.1 or Fig.2, the E-definig and the T-definig RTF equations

are obtained respectively, as follows:

[ Xy e T o o ¢ \(xn ®
Xz o @ '+ @ L] || % ®
E=x5, |2g|=|¢ ¢ ¢ T ¢ Xgs | + | @ (2.2)
X4 o [+ o ¢ ¢ Xry Qo
g5 ) ¢ ¢ ¢ ¢ ¢ )lxm A
(2] (@ 'L @ TC @ @ \(%n @
Xr2 o ¢ [t] o ¢ [40] Xrz @
_ Xs| _|® @ @ ¢ ¢ [ Xr3 @
T”“’xn ® ¢ ¢ o E ¢ xu+<p(2’3)
Xrs e 0 )Y o o @ ||xy ®
Xre  © ¢ © @ @ |JlxXy (A )

For a given RTF equation, ny-dimensional A-vectors (A ¢ --- @), (@ @
-+- @) and (A A --- A) are denoted by iy, ¢ and Ay, respectively.

As shown in eqgs.(2.2) and (2.3); because of introducing [;] into
RTF, for any XeN, cx becomes always a special colum A-vector such that
its last constituent is A and the others are all ¢@. We write the vector
as fy. Namely, fy="(@ ¢ -+ @ A).

For each nonterminal X, the X-defining RTF equation X = Ry is

transformed into an automaton as shown in Fig.3. It is called the X-



181

defining automaton and is denoted by 4, which is described formally as
follows:

A (Sx, V. X1, Xy Tx ), Xe€N, (2.4)

where Sy i a set of states ( Xy, X, -, X, ), |

V : a set of transition(input) symbols : TuNv A4,

Xx: the initial state,

Xy, @ the final state,

Tx . the transition function : SyxV —Sy.

D Tx(%xg, 0) = Xy, ITT o€ [Ay]y;, 1FF [O,Axd4y = A.

Here, the language over V* accepted by 4y is written as Jy(4) .

All automata 4y, XeN are linked together by means of a recursive-call
mechanism as shown below and works as a syntax-directed translator.
Namely, for the nonteminal set N={ X5, X;, ---, X, > of a given RIF, a
system of multiple sequential transducers 4 = (4, S, ---, Ay) is
defined and is called recursive descent sequential transducer system or
RDSTS for short.

This system 4 starts from Ay, and moves as follows: Now, let the
currently active machine be 4y, the current state be xy;, and the current
input look-ahead symbol be t. Then, for state-transition zy(xy;, 0) = %y,
Ay performs one of the following operations:

(1) When 0 = t' €T and t' = t, A transits to x; and inputs a new look-
ahead symbol as t.

(2) When 0 = & (# [;]) €4, 4 outputs & and xy; transits to xy;

(3) When 0 = YeN, 4y calls 4, i.e., the cuurent state becomes Xy,
the initial state of 4, and 4 pauses.

(4) When o = [;], 44 returns control to the machine (say 4,) which has
called 4. Let the state transition where 4, has called 45 be
Tz(%z, X) = Xz, then the next state becomes x5 .

The behavior of the above system is generally nondeterministic. In
order to make it deterministic if possible, sets of symbols called
director sets are used, which are shown in the following sections.

For 4, state xy; is said to be e—accessibl‘e to state xy; if %y is

accessible to xy; via a sequence of transitions caused by only the empty
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string €. A nonterminal X which derives the empty string e (X X g) is
called the e-generating nonterminal. A set of all e-generating
nonterminals in N is denoted by ¥ . Each output symbol &€ A has the same
~effect as & for state-tansition as shown in the above (2) and (4). For
Ax, a A-matrix C'y = 3 OpAy + 2 0sAx is defined and called the (N’
v 4)-adjacent matrix of Ay. For the C%, it holds that xy, is e-accessible

to xy if and only if [C'ylsy = A.

3. FIRST SETS
For a nonterminal XeN, a set of input symbols appearing at the first
position of sentential forms derived from X is defined as
First(X) = { teT | X > tw, weV* ) (3.1)
and is called the First (symbol) set.
In order to compute the First set for the X-defining RTF equation X
= Ry, we prepare a function ¥ : NxV—-PA, as follows:
Ty = A if there exists a string &owe Ry
such. that &€ (WvA)*, ceV and weV*;, (38.2)
= ¢ otherwise. |
For our xx = Ayxy + ¢y, using the (N vd)-adjacent matrix C’y, the
above 7y, is given as follows:
Yo = iyCY OphyAx = Oy, Wy = ixCiAx My (3.3)
Thus we have
First(X) = EYGNY,Q,First(Y) + dy , (3.4)
where dy =2 Vx{t) =ax~T.
Now, in order to solve eq.(3.4), we define two #(N)-dimensional

column vectors u and d, and a #(N)x#¥(N) A-matrix I, as follows:

First (Xo) d, A P
Fzr.?t(Xl) d- dy, o r- Vg Tx, - Txx,
Rirst (X,) dy, Ton Yon -~ Tax

Then, eq.(3.4) becomes u = 'z + d and has the solution u = rxd.
For te€T and €4, the definition of the First set is naturally
extended as First(t) = {t) and First(8) = ¢, respectively.
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4. FOLLOW SETS
For a symbol o in a given RTF, a set of input symbols which follow o
directly or through a sequence composed of e-generating nonterminals and
output symbols in sentential forms derived from the RTF is called Follow
set of o and denoted by Follow(c). Among the Follow sets for a given
RTF, we can find the following relations:

Case 1. If there exists a nonterminal Y such that the right part of
the Y-defining RTF equation contains a string acépf, where a, BeV*,
e (NvA* and 6, peV, then Follow(c) contains First(p),

Case 2. If there exists a nonterminal Y such that the right part of
thé Y—defining RIF equation contains a string acé, where aeV*, ceV and
&e (NvA)*, then Follow(o) contains Follow(Y) .

For a given Y-defining RTF Y = R,, let the Y-defining equation
derived from it be x, = A 2, + fy and the associated automaton Y be 4.

Here, we define a function d;: VxVxN—PA :

dogr = v Gy 0oty CY OA G 1y, BEENCY
which means that if there exists a string woéow in Ry = [Ay*]w = Jy(4&),
where &€ (N v4)* and w, & €V*, then d,y = A; otherwise ¢. That is, dyy
= A iff 4 accepts wolpw iff 4, has states Xy;, Xy;,, Xy;, and Xy,
such that zy;, is accessible from the initial state %y, %y;, = T(%y,, 0),
Xys, 1S e-accessible from xy;,, %y;, = T(%y;,. p), and Xy; is accessible to
the final state xy,,.

Next, a function O :VxN-—-PA is defined as

O = iy Cy OpAy CY fy, (4.2)
which means that if there exists a string wof in Ry = [A;"]mr = Jy(&),
where we V¥ and & e M*, then 6, = A; otherwise ¢. Namely, 6, = A iff
4y accepts wo& iff 4, has states zy;, and Xy;, such that Xy is
accessible from the initial state xy,, Xy;, = T(%y;,,0), and Xy;, is &-
accessible to the final state %, .
Using the above functions d,; and Oy, Case 1 and Case 2 are formally
written, respectively, as follows:
For VY eN, VpeV : Follow(o) 2 do First(p), (4.3)
For WWeN : Follow(o) 2 64 Follow(Y). (4.4)
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From egs. (4.3) and (4.4), the Follow set of ¢ is defined as

Follow(o) = 2 Oy Follow(Y) + d,, (4.5)
YeN
where d, = > d,,First(p), (4.6)
pevV
dap = zdapY' (4.7)
YeN
For all nonterminals, put
Follow(X,) dy, | g,% gxox, g,%
_ Fol‘low(Xl)  dy= d.x‘ g | W XX %X, (4.8)
Follow(X,) dy, O%x Ox - Oxx
Then we have the Follow sets of all nonterminals, as follows:
Uy = Oy tly + dy = Oy dy. (4.9)

For each output symbol, we have its Follow sets from eq. (4.5).

5. DIRECTOR SETS
For each transition symbol ceV, a set of terminals used to make the
state transition deterministic is defined as follows and called the
Director set of o:
Director (o) = First(oc) + A(o) Follow(o) (5.1)
where A(C) = A if ceN’ (i.e. 0>¢) oroed
= ¢ otherwise. (®:2)

For each state xy; in automaton 4y of a RDFAS 4, if there are no two
transitions Ty(%yx, 0) and Tx(%y;, 0°) such that Director (6) nDirector (o) =+
¢, the grammar from which the RDFAS 4 is constructed is called LL(1).
In this case, we can make the move of 4 deterministic in the following
manner. Namely, for a look-ahead input symbol ¢ at state xy in 4, we
make 4y perform the state transition Tyx(xy, o) if t € Director (o).

Similarly, we can easily obtain the more detailed director sets
assdciated with not only a symbol but with the automaton or the state
where the set is used. ‘

For each symbol ce NvA4, the Follow set of o in 4 is defined as

Follow(c, X) = O Follow(X) + Evdapxl?irst(p), (5.3)
pe

and the Director set of o in 4 is thus defined as
Director(c, X) = First(c) + A(o)Follow(c, X) . (5.4)
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Furthermore, we can have, if necessary, the Director set of a tran-
sition symbol o from state xy in automaton 4.

First, a function d : nxVxVxN—PX is given as
digpx = [0cAxCR OpAxCx tny. | (5.5)
where 7y = {1, 2, -+, ny),
wvhich means that if there exists a string o&épw in [A;}"]i,,," such that o,
peV, £eN* and weV*, then dy,,, = A; otherwise ¢.
Second, a function 6 : AxVxN—PXA is defined as
Ouox = OohxCxlen: (5.6)
which means that if there exists a string of¢ in [A,}k]i,,x such that ceV
and & e N*, then O;0x = A, otherwise ¢.

For each transition zy(xy;, o), the Follow set and the Director set of
the transition are defined as follows:

Follow(xy;, 0) = Oy Follow(X) + XdimFirst (o), (5.7)
pev
Director(xy;, 0) = First (o) + A(c) Follow(xy;, 0) . (5.8)
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