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ntroduction. We prove comparison theorem for viscosity solutions of singular

degenerate parabolic equations of general form in a domain not necessarily bounded. We

concider the degenerate parabolic equations of the form

(0.1) $u_{t}+F(,\dot{\nabla}u, \nabla^{2}\tau\iota)=0$ in $Q=(O,T$] $\cross\Omega$

or more general equations

(0.2) $u_{t}+F(t,x, \tau\iota, \nabla\tau\iota, \nabla^{2}\tau\iota)=0$ 玩 $Q=(O,T$] $\cross\Omega$ ,

where $\Omega$ is a domain in $B^{n}$ and $T>0$ . The equations are aUowed to be singular in the

sense that $F$ has a singulality at $\nabla\tau\iota=0$ . The unknown $uwiU$ always be a real valued

function on $Q;\theta_{t}\tau\iota,\nabla\tau\iota$ and $\nabla^{2}u$ denote respectively the time derivative of $u_{)}the$ gradient of

$u$ and the Hessian of $u$ in space variables. We also prove that the concavity of solutions is

preserved as time develop under addional assumptions. Both results are applied to various

equations including the mean curvature flow equation where every level set of solutions is

moved by its man curvature.

\S 1. Comparison principle. Let $\Omega$ be a domain in $B^{n}$ not necessarily bounded

and let $T$ be a positive number. We consider a degenerate parabolic equation of the form

(1.1) $u_{t}+F(\nabla u, \nabla^{2}u)=0$ in $Q=(O,T$] $\cross\Omega$ .
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We first list assumptions on $F=F(p, X)$ .
(F1) $F$ : $(B^{\iota}\backslash \{0\})\cross S"arrow B$ is continuous, where $S$“ denotes the space of real $n\cross n$

symmetric matrices.

(F2) $FisdegenerateeUiptic,$ $i.e.,$ $F(p, X+Y)\leq F(p,X)foraUY\geq 0$.
(F3) $-\infty<F.(O, O)=F^{*}(O, O)<\infty$ where F. and $p*$ are the lower and upper

semicontinuous relaxation (envelope) of $F$ on $B^{n}\cross S^{n}$ , respectively, i.e.,

$\ovalbox{\tt\small REJECT}(p,X)=\lim_{\downarrow 0}\inf\{F(q,Y);q\neq 0, |p-q|\leq\epsilon, |X-Y|\leq\epsilon\}$

and $p*=-(-F)_{*}$ . Here $|X|$ denotes the operator norm of $X$ as a self adjoint operator

on $B^{n}$ .
(F4) For every $R>0$

$c_{R}=\sup\{|F(p, X)|;|p|\leq R, |X|\leq R,p\neq 0\}$ is finite.

The assumption (F1) allows the possibihty that (1.1) is singular at $\nabla u=0$ . The equation

(1.1) is called degenerate parabolic if (F2) holds.

We next recaJl one of equivalent definitions of viscosity sub-and supersolutions of (1.1)

(cf. [19]). A function $u:Qarrow R$ is caUed a viscosity sub-(super) solution of (1.1) in $Q$ if
$u^{*}<\infty$ (resp. $u_{*}>-\infty$) on $\overline{Q}$ and

$\tau+F.(p,X)\leq 0$ for 可 U $(\tau,p, X)\in \mathcal{P}_{Q}^{2,+}u^{*}(t, x),(t, x)\in Q$

(resp. $\tau+F^{\cdot}(p,X)\geq 0$ for $aU$ $(\tau,p,X)\in \mathcal{P}_{Q}^{2,-}u_{*}(t,$ $x),$ $(t,$ $x)\in Q$ ).

Here $\mathcal{P}_{Q}^{2,+}$ denotes the parabolic super 2-jet in $Q$ , i.e., $P_{Q}^{2,+}u(t, x)$ is the set of $(\tau,p, X)\in$

$B\cross B^{n}\cross S^{n}$ such that

$u(s,y) \leq u(\ell, ae)+\tau(\iota-t)+(p, y-x)+\frac{1}{2}\langle X(y-ae), y-x\rangle$

$+o(|s-t|+|y-x|^{2})$ as $(\iota,y)arrow(t, x)$ in $Q$

where $\langle, \rangle$ denotes the Euclidean inner product; similarly, $\mathcal{P}_{Q}^{2,-}u=-P_{Q}^{2,+}(-u)$ . In this

paper we $c$可 11 a continuous function $m$ : $[0, \infty$ ) $arrow[0,\infty$) a modulus if $m(O)=0$ and it is

2



12 .

nondecreasing. For $U=(O,T$] $\cross D$ , the set

$\theta_{p}U=\{0\}\cross D\cup[0,T]\cross\theta D$

is often called the parabolic boundary of $U$ . We are now in position to state our main

comparison theorem.

Theorem 1.1. Suppose that $Fsatisfie\ell(F1)-(F4)$ . Let $u$ and $v$ be, respectively,

sub-and supersolutions of (1.1) in Q. Assume that

(A1) $u(t, x)\leq K(|ae|+1),$ $v(t, ae)$ $\geq-K(|ae|+1)$ for some $K>0$ independent of
$(t, x)\in Q$ ;

(A2) there is a modulus $m_{T}$ such that

$u(t, x)-v.(t,y)\leq m_{T}(|x-y|)$ for all $(t, x,y)\in\theta_{p}U$, ..

where $U=(0,T$] $\cross D$ and $D=\Omega\cross\Omega$;

(A3) $u^{*}(t, ae)-v.(t, y)\leq K(|ae-y|+1)$ on $\theta_{p}U$ for some $K>0$ independent of
$(t, x, y)\in\theta_{p}U$ .

Then there is a modulus $m$ such that

(1.2) $u(t, x)-v.(\ell,y)\leq m(|ae-y|)$ on $U$.

In particular $u^{*}\leq v$. on $Q$ .
We $wi\mathbb{I}$ prove Theorem 1.1 in several steps.

We begin by deriving a rough growth estimate for $u(t,x)-v(\ell,y)$ on $U$ .

Proposition 1.2 Suppose that $F$ satisfies (F1) and (F4). Let $u$ and $v$ be, respec-

tively, viscosity sub-and supersolutions of (1. 1) in Q. Assume that $u$ and $v$ satisfy (A1)

and (A3) and that $u$ and-v are upper semicontinuous in Q. Then for $K’>K$ there is a

constant $M=M(K’, F)>0$ such that

(1.$) $u(t, x)-v(t,y)\leq K’|x-y|+M(1+t)$ on $U$.
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Proof. We set

$w(\iota,t, x,y)=u(t,ae)-v(\iota,y)$

$\psi(t, x,y)=K’(|x-y|^{2}+1)^{1/2}+JI(1+t)$ .

We will prove

(1.4) $w(t,t, ae, y)\leq\psi(\ell,x,y)$ for $(t, \sim,y)\in U$

by choosing $M$ large. Let $\{g_{R}\}_{R>0}$ be a family of $C^{2}$ functions satisfying

(1.5a) $g_{R}(x)=0$ for $|x|<R$

(1.5b) $g_{R}(x)/|ae|arrow 1$ as 国 $arrow\infty$

(1.5c) $G= \sup\{|\nabla g_{R}(ae)|+|\nabla^{2}g_{R}(x)|; x\in B^{n}, R>0\}$ is finite.

Using this barrier $g_{R}$ , we set $\phi=\psi+2K’g_{R}$ . By (A1) and (1.5b) we observe that for

sufficiently large $R_{1}$ it holds

(1.6) $w(s,t, ae, y)-\phi(t, ae, y)<0$ if $|x|^{2}+|y|^{2}\geq R_{1}^{2}$ ud $0\leq t,\iota\leq T$.

By (A3) if $M>K$ , we see

(1.7) $w(t,t, ae, y)-\phi(t, x, y)<0$ for $(\ell,x,y)\in\theta_{p}U$.

Since $w$ is upper semicontinuous, (1.6) and (1.7) yield

(1.8) $w(s,t,x, y)- \frac{(t-s)^{2}}{5}-\phi(t,x,y)<0$ for $(\iota,x,y)\in\theta_{p}U$

or $(t, x,y)\in\theta_{p}U$

with sufficiently small 6 (independent of $t,$ $s,z,$ $y$). Suppose that (1.4) were false. Then

&om (1.5a) it would follow that

(1.9) $\sup_{V}(w-\Psi)>0$
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with $\Psi=(t-\iota)^{2}/S+\phi$ and $V=(O,T$] $\cross U$ if $R$ is sufficiently large. By $(1.6)-(1.9)$ we now

observe that $w-\Psi$ attains a maximum over $\overline{V}$ at a point $(\hat{s},t^{\wedge},\hat{x},\hat{y})\in V$ . This implies that

$(\theta\Psi,\nabla_{\epsilon}\Psi,\nabla_{l}^{2}\Psi)(\hat{\iota},\hat{t},\hat{x},\hat{y})\in \mathcal{P}_{Q}^{2,+}u(t,\hat{x})\wedge$

$(-\theta.\Psi, -\nabla_{y}\Psi, -\nabla;\Psi)(\hat{s},t\wedge,\hat{x},\hat{y})\in P_{Q}^{2,-}v(\hat{\epsilon},\hat{y})$ ,

where $V_{x}$ denotes spatial derivatives in 2 variables. Since $u$ and $v$ are, respectively, vis-

cosity, sub-and supersolutions of (1.1), we see

(1.10a) $\theta\Psi+F.(\nabla_{x}\phi, \nabla_{\epsilon}^{2}\phi)\leq 0$,

(1.10b) $-\theta.\Psi+F^{*}(-\nabla_{r}\phi, -\nabla_{l}^{2}\phi)\geq 0$ at $(\hat{s},\hat{t},\hat{x},\hat{y})$ .

By (1.5c) and definition of $\psi$ it holds

$|\nabla\phi|$ , $|\nabla^{2}\phi|\leq N$, $\nabla=(\nabla_{\alpha}, \nabla_{y})$

with $N=N(K’, G)$ . Subtracting (1.10b) $bom(1.10a)$ and noting (F4) yield

$\theta_{t}\Psi+\theta.\Psi\leq 2c_{N}$ .

Since $\theta_{t}(t-s)^{2}=-\theta.(t-s)^{2}$ , this implies $M\leq 2_{C_{N}}$ . If $M$ is taken larger than $2c_{N}$ and
$K$ , we have a contradiction. We thus prove (1.4) for

$M> \max(2c_{N}, K)$ .

The estimate (1.3), with $M$ replaced by $JI+K’$ , follows $hom(1.4)$ . I

For $\epsilon,$
$\delta,$ $\gamma>0$ we set

$\Phi(t, x,y)=w(t, x,y)-\Psi(t, x,y)$ , $w(\ell, x,y)=u(t,x)-v(t, y)$ ,
(111)

$\Psi(t, x,y)=\frac{|x-y|^{4}}{4\epsilon}+B(\ell, x,y)$ , $B(t,x, y)= \delta(|x|^{2}+|y|^{2})+\frac{\gamma}{T-t}$ .

The function $B$ plays the role of a barrier for space infinity and $t=T$.

Proposition 1.3. Suppose that $u$ and $voatis\hslash$ (1. $) and that

(1.12) $\alpha=\lim_{\theta\downarrow 0}\sup\{w(t, \iota, y);|x-y|<\theta,(t, ae, y)\in\overline{U}\}>0$.
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(iii) $\delta\hat{x}$ and $\delta\hat{y}$ tend to zero as $\deltaarrow 0$; the convergence is uniform in $0<\epsilon<1$ and

$0<\gamma<\gamma_{0}$ . In particular, for fixed $\delta>0,\hat{x}$ and $\hat{y}$ are bounded on $0<e<1$ ,
$0<\gamma<\gamma_{0}$ .

(iv) $|a\hat{e}-\hat{y}|$ tends to zero as $\epsilonarrow 0$; the convergence is uniform in $0<\delta<S_{0}$ and

$o”$ .

Proposition 1.5. Assume the hypotheses of Prvposition 1.4. Suppose that (A2)

holds for $\tau\iota$ and $v$ . Then there is $e_{0}>0$ such that $\Phi$ attains a maximum over $\overline{U}$ at an

interior point $(\hat{t},\hat{x},\hat{y})$ of $U,$ $i.e,$ . $(\hat{t},\hat{x},\hat{y})\in(0,T)\cross\Omega\cross\Omega$ for all $0<\epsilon<\epsilon_{0},0<\delta<\delta_{0}$

and $0<\gamma<\gamma_{0}$ .

Lemma 1.6 ([3]). Let $u_{i}$ be an upper semicontinuous $h$nction with $u;<\infty$ in
$(0,T)\cross n^{N}$: for $i=1,2,$ $\cdots$ , $h$ . Let $w$ be a jfUnction in $(0,T)\cross B^{N}$ given by

$w(t, x)=u_{1}(t,ae_{1})+\cdots+u_{k}(t, x_{h})$ for $x=(x_{1}, \cdots, x_{k})\in B^{N}$ ,

where $N=N_{1}+\cdots+N_{h}$ . For $\iota\in(0,T),$ $z\in B^{N}$ suppose that

$(\tau,p, A)\in \mathcal{P}^{2,+}w(\iota, z)\subset B\cross B^{N}\cross S^{N}$ .

Assume that there is an $\omega>0$ such that for every $M>0$

$\sigma_{i}\leq C$ whenever $(\sigma_{i},q_{i},Y_{i})\in P^{2,+}u(t,ae_{i})$ ,
(1.14)

$|x_{i}-z:|+|s-t|<\omega$ and $|24(t, x_{i})|+|q:|+|Y_{i}|\leq M$ $(i=1, \cdots , k)$ ,

6



16

with some $C=C(M)$ . Then for each $\lambda>0$ there erists $(\tau:,X:)\in B\cross s^{N}$: such that

$(\tau_{i},p:,X_{i})\in\overline{P}^{2,+}u_{i}(\iota,z_{i})$ for $i=1,$ $\cdots k$

and

$-( \frac{1}{\lambda}+|A|)t\leq(\begin{array}{ll}X_{1} O| |O X_{k}\end{array}) \leq A+\lambda A$ and $\tau_{1}+\cdots+\pi=\tau$ ,

where I denotes the identity matrix and $p=$ $(p_{1}, \cdots ,p_{h})$ .

Bemark 1.7. This lemma is Theorem 6 in [3]. Here and hereafter the subscript of
$P^{2,+}$ is suppressed. The bar over $\mathcal{P}^{2,+}$ means the closure. Although the domain considered

here is $B^{N}:$ , it is easily seen that the result is local and that $n^{N}$: may be replaced by a

neighborhood of $z_{i}\in B^{N:}$ .

Proof of Theorem 1.1. We may assume that $u$ and $v$ are, respectively, upper and

lower semicontinuous so that

$w(t,x,y)=u(\ell, x)-v(t,y)$

is upper semicontinuous in $\overline{U}$ . Suppose that (1.2) were false. Then we would have (1.12),

$i.e.$ ,

$\alpha=\lim_{\theta\downarrow 0}\sup\{w(t, x, y);|x-y|<\theta, (\ell, x,y)\in\overline{U}\}>0$ .

By Proposition 1.2 and (1.12) we see $aU$ conclusions in Prop$0$sitions 1.3-1.5 would hold for
$\Phi$ defined in (1.11). Proposition 1.5 says that $\Phi$ attains a maximum over $\overline{\sigma}$ at $(\hat{\ell},\hat{x},\hat{y})\in$

$(0,T)\cross\Omega\cross\Omega$ for $smaUe,$ $\delta,$
$\gamma$ . In particular

$w(t, x,y)\leq w(\hat{t},\hat{x},\hat{y})+\Psi(t, x,y)-\Psi(t,\hat{x},\hat{y})\wedge$ in $U$.

Expanding $\Psi$ at $(i,\hat{x},\hat{y})$ yields

(1.15) $(\hat{\Psi},\hat{\Psi}_{r},,, A)(\hat{t},\hat{x},\hat{y})\in \mathcal{P}^{2,+}w(t, ae,\hat{y})\wedge\wedge$ with $\nabla^{2}\Psi(\hat{t},\hat{x},\hat{y})\leq A$
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where $\hat{\Psi}_{t}=\theta\Psi(t^{\wedge},\hat{x},\hat{y}),\hat{\Psi}_{r,y}=\nabla\Psi(t^{\wedge}, ae\wedge,\hat{y})$ and $\nabla=(\nabla_{\epsilon}, \nabla_{y})$ .
We $wiU$ apply Lemma 1.6 with $k=2,$ $u_{1}=u,$ $u_{2}=-v,$ $\iota=tz\wedge,=(\hat{x},\hat{y})$ . Since $u$ and

$v$ are, respectively, sub-and supersolution of (1.1) with $F$ satisfying (F4), we easily see the

assumption (1.14) holds. Since $(\hat{t},\hat{x},\hat{y})$ is an interior point of $U$ , by Remark 1.7 we now

apply Lemma 1.6 and conclude that for each $\lambda>0$ there are $(\tau_{1},X)$ and $(\tau_{2}, Y)\in B\cross S^{n}$

such that

(116) $(\tau_{1},\hat{\Psi}_{x},X)\in\overline{\mathcal{P}}^{2,+}u(t^{\wedge},\hat{x})$ , $(-\tau_{2}, -\hat{\Psi}_{y}, -Y)\in\overline{\mathcal{P}}^{2,-}v(t^{\wedge},\hat{y})$ , $\hat{\Psi}=\tau_{1}+\tau_{2}$

(117) . $-( \frac{1}{\lambda}+|A|)t\leq(\begin{array}{ll}X OO Y\end{array}) \leq A+\lambda A^{2}$ ,

wbere $\hat{\Psi}_{t}=\theta_{\ell}\Psi(t, ae,\hat{y})\wedge\wedge,\hat{\Psi}_{x}=\nabla_{g}\Psi(t^{\wedge},\hat{x},\hat{y})$ , etc. Since $u$ and $v$ are, respectively, sub-and

supersolution of (1.1) it follows from (1.16) that

$\tau_{1}+F.(\hat{\Psi}_{x},X)\leq 0$, $-\tau_{2}+F^{\cdot}\{-\hat{\Psi}_{y},$ $-Y$) $\geq 0$ ,

which yields

(118) $0\geq\hat{\Psi}+F.(\hat{\Psi}_{x},X)-F^{\cdot}(-\hat{\Psi}_{r}, -Y)$ .

We next take a special $A$ . Differentiating $\Psi$ in (1.11) yields

(119) $\hat{\Psi}_{x}=|\eta|^{2}\eta/e+2\delta\hat{x}$ , $\hat{\Psi}_{y}=-|\eta|^{2}\eta/\epsilon+2\delta\hat{y}$ , $(\eta=\hat{x}-\hat{y})$

$(\begin{array}{ll}\hat{\Psi}_{ll} \hat{\Psi}_{xy}\hat{\Psi}_{yx} \hat{\Psi}_{yy}\end{array})=\frac{1}{\epsilon}(|\eta|^{2}+2\eta\otimes\eta)(\begin{array}{ll}I -t-t I\end{array})+2 \delta(\begin{array}{ll}I OO I\end{array})$

$\leq\frac{3}{e}|\eta|^{2}(\begin{array}{ll}t -t-t t\end{array})+2 \delta(\begin{array}{ll}I OO t\end{array})=A$ .

With this $A$ the estimate (1.17) becomes

(1.20) $-\mu(\begin{array}{ll}t OO t\end{array})\leq(\begin{array}{ll}X OO Y\end{array})\leq\nu(_{-t}t$ $-tt$
.

$+\omega(\begin{array}{ll}t OO t\end{array})$

$\mu=\lambda^{-1}+6|\eta|^{2}/\epsilon+2\delta$, $\nu=(18|\eta|^{2}\lambda+3e+12\delta e\lambda).|\eta|^{2}/\epsilon^{2}$ ,

$\omega=4S^{2}\lambda+25$.
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We will study (1.18). We take $\lambda=1$ in (1.20) and fix $\epsilon,$ $\gamma$ such that $0<e<e_{0}$ ,

$0<\gamma<\gamma 0$ , where $e_{0}$ and $\gamma_{0}$ are as in Propositions 1.5 and 1.3. We let $\deltaarrow 0$ in (1.18).

We divide the situation in two cases depending on the behavior of $\eta=\hat{x}-\hat{y}$ as $\deltaarrow 0$ .

Case 1. $\eta=\hat{x}-\hat{y}arrow 0$ as $\deltaarrow 0$ . From (1.20) it follows that

$(\begin{array}{ll}X OO Y\end{array})\leq\nu(\begin{array}{ll}t -t-t I\end{array})+\omega(\begin{array}{ll}t OO t\end{array})$

$\leq\theta(\begin{array}{ll}t OO t\end{array})$ with $\theta=2\nu+\omega$ .

This implies $X\leq\theta I$ and-Y $\geq-\theta I$ . By the degenerate ellipticity (F2) we have

(1.21) $F_{*}(\hat{\Psi}_{a},X)\geq F_{*}(\hat{\Psi}_{x},\theta t)$ , $F^{\cdot}(-\hat{\Psi}_{y}, -Y)\leq F^{\cdot}(-\hat{\Psi}_{y}, -\theta t)$ ,

where $\hat{\Psi}_{x},\hat{\Psi}_{y}$ is defined by (1.19). If $\deltaarrow 0$ , we see $\hat{\Psi}_{r}$ and $\hat{\Psi}_{\nu}$ converge to zero since

$\etaarrow 0$ and $\delta\hat{x},$ $\delta\hat{y}arrow 0$ by Proposition 1.4. Letting $6arrow 0$ in (1.21) yields

$\varliminf_{sarrow 0}F.(\hat{\Psi}_{x},X)\geq F.(0, O)$ , $\varlimsup_{sarrow 0}F^{*}(-\hat{\Psi}_{y}, -Y)\leq F^{\cdot}(0,O)$

since $\thetaarrow 0$ . Applying this estimate to (1.18) and noting that

$\Psi=\gamma(T-t)^{-2}\geq\gamma T^{-2}$ ,

we obtain

$0\geq\gamma T^{-2}+F.(0,O)-F^{\cdot}(0, O)$ .

By (F3) this yields $0\geq\gamma T^{-2}$ , which contradicts $\gamma>0$ .

Case 2. $\hat{x}-\hat{y}arrow a\neq 0$ for some subsequence $\delta_{j}arrow 0$ . Since the singularity of $F$ is

not important in this case our argument is essentialy the same as in [10]. From (1.20) it

follows that

$\langle Xp,p\rangle+\langle Yq,q\rangle\leq\nu(|p|^{2}+|q|^{2})-2\nu\langle p,q\rangle+\omega(|p|^{2}+|q|^{2})$.
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Taking $p=q$ yields

$X+Y\leq 2\omega I$.

By (F2) we see

(1.22) $F^{\cdot}(-\hat{\Psi}_{y}, -Y)\leq F^{\cdot}(-\hat{\Psi}_{y},X-2\omega I)$

Since $X$ and $Y$ are bounded as $\deltaarrow 0$ by (1.20) there are a subsequence $X_{j}=X(\delta_{j})$ and
$\overline{X}\in S$“ such that $X_{j}arrow\overline{X}$ as $S_{j}arrow 0$ (see e.g. [10, Lemma 5.3]). Applying (1.22) to (1.18)

and letting $\delta_{j}arrow 0$ now yield

$0\geq\gamma T^{-2}+F_{*}(|a|^{2}a/\epsilon,\overline{X})$ $-\vee F$
”

$(|a|^{2}a/\epsilon,\overline{X})$ .

Since $F$ is continuous at $(|a|^{2}a/\epsilon,\overline{X})$ for $a\neq 0$ , this again contradicts $\gamma>0$ . We thus

prove (1.2). 1

Remark 1.8. The assumption (F4) in Theorem 1.1 is unnecessary if we assume

that $u$ and $v$ satisfy the rough growth estimate (1.3). In particular, if $u$ and $v$ are bounded

(F4) is unnecessary. Indeed, other than in Proposition 1.2 we use (F4) only to prove (1.14)

in Lemma 1.6 so that we derive (1.16)-(1.18). However to carry out the proof of Theorem

1.1 we only need (1.17) and (1.18). Without showing (1.16) one can circumvent (F4) to

derive (1.17) and (1.18) by applying the following lemma, which can be proved similarly

as Lemma 1.6.

\S 2. Convexity preserving. We consider the Cauchy problem

(2.1) $u_{t}+F(\nabla u, \nabla^{2}u)=0$ in $Q=(O,T$] $\cross B^{n}$

$(2.2)$ $u(O,ae)=u_{0}(x)$ .

We will show that the concavity of $\prime u$ in $x$ is preserved as time develops provided that

$F(p,X)$ is convex in $X$ and that $u$ grows at most linearly near space infinity. For this

purpose we apply Lemma 1.6 to

$w(t,\xi)=u(t, x)+u(t, y)-2u(t,z)$ , $\xi=(x,y, z)$ .
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and conclude that

$w(t,\epsilon)\leq L|\sim+y-2z|$

with some constant $L$ . Similar technique is found in [11], where it is applied to the semi-

concavity of solutions of Bellman equations.

Theorem 2.1. Suppose that $F$ satisfies $(F1)-(F4)$ and

(F5) $X\mapsto F(p,X)$ is convez on $S$“ for all $p\in B^{n}\backslash \{0\}$ .

Let $u$ be a viscosity solution of (2. 1) with (2.2). Assume that $u$ is continuous in $[0,T]\cross B^{n}$

and that

(2.3) $|u(t, ae)|\leq K(|x|+1)$ with $K$ independent of $(t, x)\in Q$ .

If the initial data $u_{0}$ is concave and globally Lipschitz with constant $L$ , then it holds

(2.4) $u(\ell, x)+u(t,y)-2u(t, z)\leq L|x+y-2z|$ , $x,y,z\in B^{n}$ , $0\leq t\leq T$.

In particular $xarrow\rangle$ $u(t, \approx)$ is concave for all $t\in[0,T]$ .
We will state lemma and proposition to prove Theorem 2.1.

Lemuna 2.2. Suppose that $u_{0}$ is concave and globally Lipschitz with constant $L$ in
$B^{n}$ . Then it holds

(2.5) $u_{0}(x)+u_{0}(y)-2u_{0}(z)\leq L|x+y-2z|$ for all $x,y,$ $z\in B^{n}$ .

Proof. .Since $u_{0}$ is concave, it follows that

$u_{0}(x)+u_{0}(y)-2u_{0}(z)$

$=u_{0}(x)+u_{0}(y)-2u_{0}((x+y)/2)+2(u_{0}((x+y)/2)-u_{0}(z))$

$\leq 2(u_{0}((x+y)/2)-u_{0}(z))$ .
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The right hand side is dominated by $2L|(ae+y)/2-z|$ so (2.5) follows. 1

Proposition 2.3. Suppose that $F$ satisfies (F1) and (F4). Assume that the hy-

potheses of Theorem 2.1 concerning $u$ hold. Then for $K’>L$ there is a constant $M=$

$M(K‘, F)>0$ such that

(2.6) $u(t, ae)+u(t,y)-2u(t,z)\leq K’|x+y-2z|+M(1+t)$

for all $\xi=(x, y, z)\in B^{*}\cross B^{\pi}\cross B^{n}$ , $0\leq t\leq T$.

\S 3 General comparison theorem $This^{rightarrow}section$ extends the comparison price-

ple in \S 1 to a general equation of form

($.1) $u_{t}+F(\ell,x,u,\nabla\tau\iota, \nabla^{2}u)=0$ in $Q=(o,\eta\cross\Omega$ ,

where $T>0$ and $\Omega$ is a domain in $B^{n}$ . Our approach is basically the same as in \S 1.

However, since $F$ depends on $x$ , we are forced to let $earrow 0$ in our test function $\Psi$ of (2.11)

at the end of the proof. The crucial step is to establish that $|\hat{x}-\hat{y}|^{4}/4e$ converges to zero

as $\epsilonarrow 0$ after we let $\deltaarrow 0,$ $\gammaarrow 0$ .
We consider $F$ satisfying

(F1) $F:J_{0}=Q\cross B\cross(B^{n}\backslash \{0\})\cross S^{n}arrow B$ is continuous.

We continue to assume (F2) and (F3) i.e.,

(F2) $F$ is degenerate eMptic,i.e., $F(t, z, r,p, X+Y)\leq F(t, z,r,p, X)$ in $J_{0}$ if $Y\geq 0$ .

(F3) $-\infty<F.(t, ae, r, 0, O)=F^{\cdot}(t, x,r, 0, O)<\infty f\dot{o}r$ 可 11 $(t, x,r)\in Q\cross$ R.

For boundedness of $F$ we also impose uniformity in $t,$ $z$ and $r$ .
(F4) For every $R>0,$ $c_{R}= \sup\{|F(t, ae, r,p,X)|;|p|, |X|\leq R, (t, ae, r,p, X)\in J_{0}\}<\infty$;

this, of course, is the same as (F4) in \S 1 when $F$ is independent of $t,$ $x$ and ,. We assume

a kind of monotonicity in ’.

(F5) For every $H>0$ , there is a constant $c_{0}$ $=c_{0}(n,T, H)$ such that , $\mapsto$

$F(t, ae, r,p,X)+c_{0}r$ is nondecreasing for all $(\ell,x,r,p,X)\in J_{0}$ with $|r|\leq H$ .
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Outside singularities we assume uniform continuity in $(p,X)$ .
(F6) For every $R>p>0$ there is a modulus $\sigma=\sigma_{R}$, such that

$|F(t,x,r,p,X)-F(t, ae," q,Y)|\leq\sigma_{R\rho}(|p-q|+|X-Y|)$

for all $(t, x,r)\in Q\cross B,$ $\rho\leq|p|,$ $|q|\leq R,$ $|X|,$ $|Y|\leq R_{:}$

The behavior near $(p, X)=(O, O)$ is assumed to be uniform in $\ell,$ $x$ and $r$ .
(F7) There are $p_{0}>0$ and a modulus $\sigma_{1}$ such that

$F^{*}(t,x,r,p,X)-F^{\cdot}(t, ae, r, 0,O)\leq\sigma_{1}(|p|+|X|)$

$F_{*}(t, x,r,p, X)-F.(t, ae, r, 0,O)\geq-\sigma_{1}(|p|+|X|)$

provided that $(t, x, r)\in Q\cross B$ and $|p|,$ $|X|\leq\rho_{0}$ .
We further assume some equicontinuity in 2.

(F8) There is a modulus $\sigma_{2}$ .such that

$|F(t,x,r,p,X)-F(t,y,r,p,X)|\leq\sigma_{2}(|x-y|(|p|+1))$

for $y\in\Omega,$ $(t, \sim, r,p, X)\in J_{0}$ .

Theorem 3.1. Suppose that $F\iota atisfie\iota(F1)-(F8)$ . Let $u$ and $v$ be, respectively,

sub-and supersolutions of (3. 1) in Q. Assume that $(A1)-(A3)$ holds for $u$ and $v$ . Then

there is a modulus $m$ such that

($.2) $u^{*}(t, x)-v_{*}(t,y)\leq m(|x-y|)$ on $U$.

The assumption (F8) has a disadvantage because it excludes variable coefficients in

second order terms, even if the equation is linear. We $wiU$ prove (3.2) under weaker

assumptions.

13
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For every $R>\rho>0$ there is amodulus $\sigma=\sigma_{R\rho}$ such that

23

$|$ $|F(t, ae, r,p,X)-F(t, x,r,q,X)|\leq\sigma_{R\rho}(|p-q|)$

$\ovalbox{\tt\small REJECT}^{1}(F10)(F9)(3^{r}3)^{Thereis}-$

amodulus $\sigma_{2}$ such that

for $a\mathbb{I}(t, x, r,p,X)\in J_{0},$ $\rho\leq|p|,$ $|q|\leq R,$ $|X|\leq R$ .

$F$. $(t, x,r, 0, O)-F^{\cdot}(t,y, r, 0, O)\geq-\sigma_{2}(|\approx-y|)$

for all $(t, x,r)\in Q\cross B,$ $y\in\Omega$ .
$S$uppose that

$-\mu(\begin{array}{ll}I OO I\end{array})\leq(\begin{array}{ll}X OO Y\end{array})\leq\nu(\begin{array}{ll}t -I-I I\end{array})+\omega(\begin{array}{ll}I OO t\end{array})$

with $\mu,$ $\nu,$ $\omega\geq 0$ . Let $R$ be taken so that $R \geq\max(\mu, \theta)+2\omega$ with $\theta=2\nu+\omega$ . Let $\rho$

be a positive number. Then it holds

$F.(t, x, r,p, X)-F^{\cdot}(t,y,r,p, -Y)$

$\geq-\overline{\sigma}(|x-y|(|p|+1)+\nu|ae-y|^{2})-\overline{\sigma}(2\omega)$ for $\rho\leq|p|\leq R$ .

with some modulus $\overline{\sigma}=\overline{\sigma}_{R\rho}$ independent of $t,$ $x,$ $y,$ $r,$ $X,$ $Y,$ $\mu,$ $\nu,$ $\omega$ .

Theorem 3.2. Suppose that $F$ satisfies (F1), $(F3)-(F5)$ , (F6’), (F7), (F9), (FIO).

Let $u$ and $v$ be respectively, sub-and supersolutions of (3. 1) in Q. Assume that $(A1)-(A3)$

holds for $u$ and $v$ . Then there is a modulus $m$ such that (3.2) holds. The following

proposition shows that Theorem 3.1 is the special case of Theorem 3.2.

Proposition 3.3. (i) The assumptions (F3) and (F8) imply (F9).

(ii) Assumptions (F2), (F6), (F8) imply (FIO).

Pmof. (i) We suppress $t$ and $r$ to simplify notations. By (F8) we observe

$\varliminf(F(ae,p,X)-F(y,p,X))\geq-\sigma_{2}(|x-y|)$ .
$x^{p}arrow 0arrow 0$

14
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The left hand side is dominated fron above by

$\lim_{arrow 0}(\inf_{|p|+|X|\leq}F(ae,p,X)-\inf_{|p|+|X|\leq e}F(y,p,X))=F.(ae,0, O)-F.(y, 0, O)$ .

The condition (F3) now yields (F9).

(ii) As is observed in Case 2 of the proof of Theorem 1.1, (3.3) yields $X+Y\leq 2\omega I$ .
From (F2) it follows that

$F(x,p,X)-F(y,p, -Y)$

$\geq F(x,p,X)-F(y,p,X-2\omega t)$

$\geq-\overline{\sigma}_{R\rho}(2\omega t)+F(x,p, X)-F(y,p,X)$ for $\rho\leq|p|\leq R$ by(F6)

since (3.3) yields $|X|,$ $| Y|\leq\max(\mu,\theta)$ so that $|X|,$ $|X-2\omega I|\leq R$ . From (F8) it now

follows (F10). 1

Proposition 1.2‘. Suppose that $F$ satisfies (F1) and (F4). Let $u$ and $v$ be, e-

spectively, viscosity sub-and supersolutiona of (3.1) in $Q$ and that $u$ and-v are upper

semicontinuous in Q. Then for $K’>K$ there is a constant $M=M(K‘, F)>0$ such that

(1.3) holds.

We now recaU $\Phi$ and $\Psi$ of (1.11) and let $(\hat{t},\hat{x},\hat{y})$ be a point attaining a maximum of
$\Phi$ over $\overline{U}$ defined in Propositions 1.4 and 1.5. To carry out the proof of Theorem 3.2 we

need to study $|\hat{x}-\hat{y}|^{4}/e$ as $\epsilonarrow 0$ .

Proposition 3.4. Suppose that $u$ and $v$ satisfies (1.2) and that (1.12) holds. Let
$(\hat{t},\hat{x},\hat{y})$ be as in Proposition 1.4. It holds

(3.4) $\lim_{\downarrow 05}\varlimsup_{\gamma\downarrow 0}\frac{|ae\wedge-\hat{y}|^{4}}{e}=0$ .

Remark 3.5. When $\Omega$ is bounded, (F6), (F6’), (F7) and (A1), (A3) are unneces-

sary, because we may assume that $u$ and $v$ are bounded; (A2) may be replaced by $u\leq v$.
on $\theta_{p}Q$ . Moreover, we may take $\delta=0$ in the definition of 1 in (1.11). If 6 is taken as zero,
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we may take $\omega=0$ in (FIO). Since Theorems 3.1 and 3.2 are new for $F$ depending on ae

$e$ven if $\Omega$ is bounded, we restate them for bounded $\Omega$ .

Theorem 3.6. Let $\Omega$ be a bounded domain in $B^{n}$ . Suppose that $F$ satisfies
$(F1)-(F3)$ , (F5), (F8) or (F1), (F3), (F5), (F9), (FIO) with $\omega=0$ . Let $u$ and $v$ be, respec-

tively, sub-and supersolutions of (3.1) in Q. Assume that $u\leq v$. on $\theta_{p}Q$ . Then $u\leq v$.
on $Q$ .

Remark 3.7. By Theorem 3.6 $aU$ results in $[1, S6, S7]$ extend to $F$ depending on

$x$ . We state one of typical results on global existence of solutions.
$rightarrow$

Theorem 3.8. Let $\Omega=B^{n}$ and $\beta\in B$ . Assume the hypotheses of Theorem 3. 6

concerning F. Suppose that $F$ is geometric, $i.e.,$ $F$ is independent of ’ and

$F(\ell, ae, \lambda p,\lambda X+\sigma p\otimes p)=\lambda F(t, ae,p,X)$

for all $\lambda.>0,$ $\sigma\in B,$ $(t, ae)\in Q,$ $(p,X)\in(B^{n}\backslash \{0\})\cross S$“ a$nd$ that

$F_{l}(t, x,p, -t)\leq c(|p|)$ , $F^{*}(t, x,p,I)\geq-c(|p|)$

for some $c(q)\in C^{1}[0, \infty)$ and $c(q)\geq c_{O}>0$ with some constant $c_{0}$ . Then for $a\in C_{\beta}(B^{n})$

there is a unique viscosity solution $u_{a}\in C_{\beta}([0,T]\cross B^{n})$ of (3.1) with $u_{a}(0, ae)=a(x).Here$

$C_{\beta}(K)$ denotes the space of continuous function $u$ such that $u-\beta$ is compactly supported

in $K$ .
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