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INVARIANTS OF 3-MANIFOLDS ASSOCIATED WITH
QUANTUM GROUPS AND VERLINDE’S FORMULA

TOSHIE TAKATA

九大理・高田敏恵

Introduction

$h[14]$ , Witten obtained new topological invariants of closed 3-manifolds and links in

3-manifolds bom the quantum field theory. Shortly afterwards, in [11], Reshetikhin and Tu-

raev defined related invariants of closed oriented 3-manifolds and links in such 3-manifolds,

by means of representations of quantum groups. More precisely, they use quantized uni-

versal enveloping algebra $U_{q}(sl(2,\mathbb{C}))$ , which is a q-deformation of the universal enveloping

algebra $sl_{2}(\mathbb{C})$ discovered independently by Drinfeld [1] and Jimbo ([2],[3]). The algebra

$U_{q}(sl(2,\mathbb{C}))$ has a structure of a Hopf algebra. Reshetikhin and Turaev introduced the

additional structure in the case $q= \exp\frac{2m\pi\sqrt{-1}}{r}$ caUed a ‘modular’ Hopf algebra to define

invariants of 3-manifolds. They obtain invariants of 3-manifolds as a combinational for-

mula using invariants of framed link associated with the algebra $U_{q}(sl(2, \mathbb{C}))$ . This is based

on the fact that any closed connected oriented 3-manifold is obtained by Dehn surgery [10]

of $S^{3}$ along a framed link [7].

As an application of the invariants, we construct a projectively linear representation of

$SL(2,\mathbb{Z})$ . Let $Z(T^{2})$ be an $(r-1)$-dimensional vector spase over $\mathbb{C}$ and $\{e:\}^{r-2}:=0$ a basis

of the vector space $Z(T^{2})$ and we associate to a basis $e_{i}$ a solid torus $U$: which has a link

in the interior. Gluing such two solid tori $U_{i}$ and $U_{j}$ by an element $X$ of the mapping

class group of the torus $T^{2}$ , we obtain a closed 3-manifold $M_{X}$ with a link. We denote the
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invariant of the resulting manifold by $X_{*j}$ , which is denoted by $M_{X}$ . We define an action

$\rho$ of $SL(2,\mathbb{Z})$ on the vector space $Z(T^{2})$ by the formula

$\rho(X)e_{j}=\sum_{*=0}^{r-2}X_{ij}e_{i}$ $(j=0, \cdots,r-2)$ .

For generators $S$ and $T$ of $SL(2,\mathbb{Z})$ , we obtain the equations

$s_{:j}= \sqrt{\frac{2}{r}}\sin\frac{m(i+1)(j+1)\pi}{r}$,

$\tau_{:j}=q\frac{:(i+2)}{4}\delta_{ij}$

This matrix $(S_{ij})$ is the unitary matrix and the representation of $SL(2,\mathbb{Z})$ by means of the

matrices above was discovered by Kac and Peterson [4] to discribe the modular property of

the character of the affine Lie algeba and was also used by Kohno [5] to defined invariants

of 3-manifolds. The above representation

$\rho:SL(2,\mathbb{Z})arrow GL(Z(T^{2}))/\langle C\rangle$

is a projectively linear representation, where $\langle C\rangle$ is the cyclic group generated by a root of

unity $C= \exp\sqrt{-1}(-\varphi+\frac{3\pi m}{2r}-\frac{\pi}{2})$ . Here $\varphi$ is determined from the following Gauss sum;

$\sqrt{2r}\exp(\sqrt{-1}\varphi)=\sum^{2r-1}\exp(\sqrt{-1}\pi k^{2}m/2r)$

$k=0$

As an application, we prove ‘Verlinde’s Formula’ for $SU(2)[13]$ . This is given by the

following formula:

$\frac{s_{:j}s_{:k}}{S_{i0}}=\sum_{l=0}^{r-2}S_{il}N_{ljk}$ ,

where

$N_{ijk}=\{\begin{array}{l}1if|i-j|\leq k\leq i+j,i+j+k\in 2\mathbb{Z},i+j+k\leq 2(r-2)0otherwise\end{array}$

We verify it by computing the invariant of $S^{2}\cross S^{1}$ with a link in two ways. The proof is

similar to that by Witten [14], but our approach is based on representations of $U_{q}(sl(2,\mathbb{C}))$

with $q= \exp\frac{2m\pi\sqrt{-1}}{r}$ .
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The paper is organized as follows. In \S 1, we review some of the results in [11]. We

explain a representation of a modular Hopf algebra and define invariants of links and 3-

manifolds derived by Reshetikhin and Turaev. In \S 2, using the invariants derived in \S 1,

we establish a representation of $SL(2,\mathbb{Z})$ . The action of generators $S$ and $T$ on the vector

space $Z(T^{2})$ is represented by matrices and it is shown that they satisfy their relations. In

\S 3, a proof of ‘Verlinde’s formula’ for $SU(2)$ is presented. To compute the invariants, we

make use of the idea in \S 2.

1. Review

1.1 Modular Hopf algebra $U_{t}$

In [11], Reshetikhin and Turaev give $U_{t}$ as an example of ‘modular’ Hopf algebra. In this

paper, we consider the definition of topological invariants of 3-manifolds for this modular

Hopf algebra $U_{t}$ . We explain this modular Hopf algebra $U_{t}$ . For a non zero $q\in \mathbb{C},$ $U_{q}(sl_{2})$

is the Hopf algebra which is a q-deformation of the universal enveloping algebra of Lie

algebra $sl_{2}(\mathbb{C})$ . Let us recall the definition of $U_{t}$ due to Reshetikhin and Turaev. Let $q$ be

a root of unity and $t=\exp(\pi\sqrt{-1}m/2r)$ where $m$ and $r$ are mutually prime integers with

odd $m,$ $2r-1\geq m\geq 1,$ $r\geq 2$ and $q=t^{4}$ . We fix an integer $r$ satisfying $r\geq 2$ . We define
$U_{t}$ to be the associative algebra with unit over the cyclotomic field $\mathbb{Q}(t)$ with 4 generators

$K,K^{-1},X,Y$ satisfying the following relations:

XY–YX $= \frac{K^{2}-K^{-2}}{t^{2}-t^{-2}}$ (1.1.1)

$XK=t^{-2}KX,$ $YK=t^{2}KY$ (1.1.2)

$K^{4r}=1,X^{r}=Y^{r}=0$ (1.1.3)

The relations (1.1.1), (1.1.2) define the algebra $U_{q}(sl_{2})$ . The structure of Hopf algebra

in $U_{q}(sl_{2})$ induces a structure of a Hopf algebra in $U_{t}$ . The action of comultiplication $\triangle$ ,
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counit $\epsilon$ , antipode $\gamma$ are given on the generators by the following formulas.

$\triangle(X)=X\otimes K+K^{-1}\otimes X$ (1.1.4)

$\triangle(X)=Y\otimes K+K^{-1}\otimes Y$ (1.1.5)

$\triangle(K)=K\otimes K$ (1.1.6)

$\epsilon(X)=\epsilon(Y)=0,$ $\epsilon(K)=1$ (1.1.7)

$\gamma(X)=-t^{2}X,$ $\gamma(Y)=-t^{-2}Y,$ $\gamma(K)=K^{-}$ (1.1.8)

The structure of the ribbon Hopf algebra in $U_{q}(sl_{2})$ induces a structure of the ribbon

Hopf algebra in $U_{t}$ . Thus $U_{t}$ has the universal R-matrix $R\in U_{t}\otimes U_{t}$ due to Drinfel’d

[1] which satisfies Yang Baxter equation, $\tau\iota\in U_{t}$ defined from $R$ , and $v\in U_{t}$ which

is a central element of $U_{t}$ . If $R= \sum_{i}\alpha_{i}\otimes\beta_{i}$ , then $u= \sum_{i}\gamma(\beta_{i})\alpha_{i}$ and $v=uK^{-2}$ .
Moreover, $U_{t}$ satisfies six axioms (see [11, \S 3]) and has a structure of modular Hopf algebra.

We describe the representation of modular Hopf algebra $U_{t}$ . Let $I$ be a finite set of

integers $\{0,1, \ldots , r-2\}$ . For an integer $i\in I,$ $V_{i}$ denotes $(i+1)$-dimensional irreducible

representation of $U_{t}$ . It is an $(i+1)$-dimensional $U_{t}$-module. The action $\rho$ of the generator
$K$ of $U_{t}$ on $V_{i}$ has the following matrix representation:

$\rho(K)\mapsto(\begin{array}{llll}t^{i} t^{i-2} 0 \ddots 0 t^{-i}\end{array})$ (1.1.9)

For any $U_{t}$-module $V_{i}$ we provide the dual linear space $V_{:}^{\vee}=Hom_{\mathbb{C}}(V,\mathbb{C})$ with the

action of $U_{t}$ :

$\rho_{\gamma_{:}\vee}(a)=(\rho_{V:}(\gamma(a)))^{*}\in EndV_{i}^{\vee}$

The matrix representation of this action is given by the following matrix:

$\rho_{V_{*}^{\vee}}.(K)\mapsto(\begin{array}{llll}t^{-i} t^{-i+2} 0 \ddots 0 t^{i}\end{array})$ (1.1.10)

Let $V_{l},$ $V_{j}$ be $U_{t}$ -modules and $\rho v_{:}$ (resp. $\rho_{V_{j}}$ ) the action of $U_{\ell}$ on $V$: (resp. $V_{j}$ ). Their

tensor product is the $U_{t}$ -module $V_{i}\otimes V_{j}$ equipped with the action of $U_{t}$ defined by the

formula for $a\in U_{t}$ :
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$\rho_{V:\otimes}v_{j}(a)=(\rho_{V:}\otimes\rho_{V_{j}})(\triangle(a))$

Here $\triangle$ is the comultiplication of $U_{t}$ . One may consider the category Rep $U_{t}$ of finite

dimensional linear representations of $U_{\ell}$ . The objects of Rep $U_{\ell}$ are left $U_{t}$-modules

$V_{\dot{\iota}_{1}}^{e_{1}}\otimes\cdots\otimes V^{\epsilon_{k}}$:

where $i_{1}\in I,\epsilon\iota\in\{\pm 1\},$ $V^{+1}:_{l}=V_{i_{1}},V^{\vee}:_{l}=V_{*\iota}^{-1},1\leq l\leq k$. The morphisms of Rep $U$, are
$U_{\ell}$-linear homomorphisms.

Definition 1.1. Let $V$ be an object of Rep $U_{t}$ . For any linear operator $f$ : $Varrow V$, we

deffie its $q$uantum trace $tr_{q}f$ to be the ordinary trace over $\mathbb{C}$ of linear operator

$f’$ : $Varrow V,$ $f’(x)=\rho(u^{-1}v)f(x)$ .

$\ln$ particular, if $f$ is the identity map $id_{V}$ , then we denote $tr_{q}id_{V}$ by $\dim_{q}V$ and $caU$ it

the quantum dimension of $V$ . Note that if $V=V_{j}$ , for $j\in I$, then using $v=u^{-1}K^{2}$ and

(1.1.9), we get

$\dim_{q}V_{j}=tr_{q}(id_{V_{j}})=Tr(\rho_{V_{j}}(K^{2})id_{V_{j}})$

$= \sum_{n=0}^{j}t^{j-2n}=\frac{t^{2j+2}-t^{-2j-2}}{t^{2}-t^{-2}}=[j+1]$ (1.1.11)

where $[n]= \frac{t^{2n}-t^{-2n}}{t^{2}-t^{-2}}=\frac{\sin(\pi mn/r)}{\sin(\pi m/r)}$

In [11], Reshetikhin and Turaev proved the following theorem.

Theorem 1.2 (Reshetikhin-Turaev). Let $V_{:}(i\in I)$ be an irreducible representation of
$U_{t}$ . There exists a decomposition

$V:\otimes V_{j}=(\oplus_{k}V_{k})\oplus z_{:j}$ (1.1.12)

as a $U_{t}$ -module, where $k$ satisfies the following conditions

$|i-j|\leq k\leq i+j,i+j+k\in 2\mathbb{Z}$, (1.1.13)

$i+j+k\leq 2(r-2)$ . (1.1.14)
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Moreover $z_{:j}$ is cert$ainU_{t}$ -module and has the next property. For any integers $i,j\in I$

an$d$ any $U_{t}$ -linear homomorphism $f$ : $z_{:j}arrow Z_{\dot{\iota}j}$ , the quan$tum$ trace of $f$ is $equaI$ to zero.

$tr_{q}f=0$ (1.1.15)

1.2 Ribbon graph

An oriented, directed, homogeneous ribbon tangle is a collection of ribbons and annuli

as illustrated in Fig.1 ([11],[12]).

Fig.1

A ribbon (annulus) is oriented if it has an orientation as a surface in $\mathbb{R}^{3}$ . By the shaded

regions, we express that the tangle is oriented (Fig.1). A tangle is homogeneous if each

twist of all ribbons and annuli in the tangle is a full twist. A ribbon tangle is directed if

the cores of its ribbons and annuli are provided with directions. For each ribbon tangle we

assign a finite dimensional irreducible representation $V_{:}$ of $U_{t}$ to each component, where
$i$ is called its colour. The procedure is caJled colouring and we denote it by $\lambda$ . In Fig.2,

elementary coloured ribbon tangles is sketched. We consider ribbons which are cffied

coupons. A small neighborhood of each coupon $Q$ is depicted in Fig.3, where the rectangle

illustrates the coupon. A colour of each coupon is a C-linear homomorphism defined from

the colours and directions of the ribbons gluing to it. We add coupons to the tangle.

Fig.2 Fig.3

Let us introduce the category $\mathcal{H}$ of ribbon graphs. The objects of $?t$ are sequences

$\eta=((i_{1},\epsilon_{1}),$ $\cdots,$ $(i_{k},\epsilon_{k}))$ $(i_{1}, \cdots i_{k}\in I,\epsilon_{1}, \cdots\epsilon_{k}\in\{1, -1\})$ ,

where $i_{1},$ $\ldots$ , $i_{k}\in I$ and $\epsilon_{1},$
$\cdots\epsilon_{k}\in\{1, -1\}$ . We denote the set of such sequences by $N$ .

If $\eta,\eta’\in N$ , then a morphism $\etaarrow\eta’$ is a coloured ribbon graph (considered up to isotopy)

such that the sequence of colours and directions of the bottom (resp. top) ribbons is equal

to $\eta$ (resp. $\eta’$ ). The composition I” $0\Gamma$ of such two morphisms $\Gamma$ : $\etaarrow\eta’,$ $\Gamma’$ : $\eta’arrow\eta’’$

is the ribbon graph obtained by gluing the bottom ends of $\Gamma’$ with the corresponding
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top ends of $\Gamma$ . The tensor product of objects $\eta,\eta’$ is their juxtaposition $\eta,\eta’$ (see Fig.4).

Fig.4

1.3 Invariants of closed 3-manifolds

For two categories Rep $U_{t}$ and $?t$ , Reshetikhin and Turaev show that there exists a

unique covariant functor with five properties (see \S 2.5 in [11]). They define $U_{t}$ -linear

homomorphisms corresponding to elementary coloured ribbon graphs pictured in Fig.2

and graphspictured in Fig.5.

Fig.5

Since the graphs $J_{:^{+}},$ $J_{*}^{-}$ , $X_{ij}^{+},X_{ij}^{-},a_{i},$ $b_{i},$ $c_{i},d_{i}$ generate the category $\mathcal{H}$, the compositions

and tensor products of the corresponding homomorphisms determine $F(\Gamma)$ for a coloured

ribbon tangle $\Gamma$ . In particular, a coloured $(0,0)$-ribbon tangle $\Gamma$ defines C-linear homomor-

phism $\mathbb{C}arrow \mathbb{C}$, i.e. a multiplication by a certain element of C. The element is a regular

isotopy invariant of F. It is also denoted by $F(\Gamma)$ .
Example 1.3 Let $\Gamma$ be a coloured $(0,0)$-ribbon tangle in Fig.6.

Then $F(\Gamma)=F(b_{i})oF(c_{i})$ and an easy computation shows $F(\Gamma)=\dim_{q}V_{:}$ .
Fig.6

Let us recaJl that $\dim_{q}V_{i}$ is equal to the quantum trace of identity homomorphism. The

following lemma generalizes this computation.

Lemma 1.4. Let $\Gamma$ be a coloured $(k, k)- 1i$bbon graph which corresponds to an endomor-

phism of a certain sequence $\eta\in N$ . Let $L$ be the coloured $(0,0)$-ribbon tangle obtained by

closing $\Gamma$ (see Fig.7). Then $F(L)=tr_{q}F(\Gamma)$ .

Fig.7

We introduce the presentation of closed 3-manifolds via framed links. A framed link in

the 3-sphere is a finite collection $L$ of disjoint smoothly embedded circles $L_{1},$ $\cdots L_{l}$ in $S^{3}$ ,

each component $L_{k}$ of $L$ is provided with a framing which is an integer $n_{k}$ . Let $\omega$ be an

orientation of $L$ . We may regard each component $L_{k}$ of the annulus with $n_{k}fuU$ twists.

This identification gives us a $(0,0)$-ribbon tangle $\Gamma(L,\omega)$ . The notation $\omega$ may be thought
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of as the directions of the annuli. Let $\lambda$ be a colouring of $\Gamma(L,\omega)$ . Then $F(\Gamma(L,\omega, \lambda))$

is a regular isotopy invariant of coloured $(0,0)$-ribbon tangle $\Gamma(L,\omega, \lambda)$ . By means of the

above results, we define invariants of closed 3-manifolds. The idea of their construction is

reduced to the following theorem which relates framed links to closed 3-manifolds.

Theorem 1.5 (Lickorish [7]). Each dosed connected oriented 3-manifold can be ob-
$t$ained by Delm surgery on $S^{3}$ along a certain $4amed$ lin$k$.

Let $M$ be a closed connected oriented 3-manifold and $L$ a framed link in $S^{3}$ with

components $L_{1},$ $\cdots L_{1}$ and bmling $n_{1},$ $\cdots$ , $n_{l}$ which can be related to $M$ by the above

theorem. Dehn surgery is the following process. We remove an open tubular neighborhood

of each $L_{k}$ on the resulting toral boundary and glue $l$ solid tori such that their meridians

are identified with the curves on the boundaries. We consider such a pair $(M,L)$ . Let $\omega$

be an orientation of the framed link $L$ . By co1$(L)$ we denote the set of colourings of the

$(0,0)$-ribbon tangle $\Gamma(L,\omega)$ . Put

$F(M,L)=C^{\sigma(L)}$ $\sum$
$\prod^{l}d_{\lambda(L_{k})}F(\Gamma(L,\omega, \lambda))\in \mathbb{C}$. (1.3.1)

$\lambda\in col(L)k=1$

Here $C,d_{k}$ $(k=0, \cdots , r-2)$ are constants contained in the data of the modular Hopf

algebra $U_{t}$ and given by the following formulas:

$C=\exp(-\sqrt{-1}d)$ , (1.3.2)

$d_{k}= \sqrt{\frac{2}{r}}\sin\frac{m(k+1)\pi}{r}$ , (1.3.3)

where
$d= \varphi-\frac{3\pi m}{2r}+\frac{\pi}{2}$ , (1.3.4)

the number $\varphi$ being determined from the following Gauss sum

$\sqrt{2r}\exp(\sqrt{-1}\varphi)=\sum_{k=0}^{2r-1}\exp(\sqrt{-1}\pi k^{2}m/2r)$ . (1.3.5)

The notation $\sigma(L)$ stands for the signature of the linking matrix of the framed link $L$ . We

remark that the normalization coincides with that in [6].
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Theorem 1.6 (Reshetikhin-Turaev). For a closed connected oriented 3-manifold $M$ ,

$F(M,L)$ is a topological invarian$t$ of $M$ .

We may denote $F(M,L)$ by $F(M)$ . The invariant is multiplicative with respect to a

connected sum:

$F(M_{1}\# M_{2})=F(M_{1})F(M_{2})$ . (1.3.6)

We have the following relations between invariants with opposite orientations

$F(M)=\overline{F(-M)}$ ,

where the bar is the complex conjugation.

Example 1.7 The formula (1.3.6) implies that $F(S^{3})=1$ .
Since $S^{2}\cross S^{1}$ is obtained by Dehn surgery on $S^{3}$ along an unknotted circle with framing

$0$ , we have

$F(S^{2} \cross S^{1})=\sum_{i=1}^{r-2}d_{i}\dim_{q}V_{*}$.

$= \sqrt{\frac{r}{2}}(\sin\frac{m\pi}{r})^{-1}$ (1.3.7)

Here we used the equation $\dim_{q}V:=\sin\frac{m(:+1)\pi}{r}/\sin\frac{m\pi}{r}$ . In the case $m=1,$ $F(S^{2}\cross S^{1})$

is equal to Kohno’s invariant $\phi_{K}(S^{2}\cross S^{1})$ with $K=r+2$.
Let $M$ be a closed connected oriented 3-manifold and $T$ be a coloured $(0,0)$-ribbon

tangle in $M$ . As above, let us present $M$ as the result of surgery on $S^{3}$ along a framed

link $L$ with components $L_{1},$ $\cdots,L_{l}$ . The ribbon tangle $T\cup\Gamma(L,\omega, \lambda)$ may be thought of

as a coloured $(0,0)$-ribbon tangle in $S^{3}$ . We put

$F(M,T;L, \omega)=C^{\sigma(L)}\sum_{\lambda\in col(L)}\prod_{k=1}^{l}d_{\lambda(L_{k})}F(T\cup\Gamma(L,\omega, \lambda))$ . (1.3.8)

Then $F(M,T;L,\omega)$ is a topological invariant of the pair $(M,T)$ . We put $F(M,T)=$

$F(M,T;L,\omega)$ . In particular, we have $F(S^{3},T)=F(T)$ .
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2. A representation of $SL(2,\mathbb{Z})$

Using the invariants defined in \S 1, we establish a projectively linear representation

of $SL(2,\mathbb{Z})$ . Let $M_{1}$ be the mapping class group of torus $T^{2}$ . We fix a basis $a,b$ in
$H_{1}(T^{2})\cong \mathbb{Z}\oplus \mathbb{Z}$ as depicted in Fig.8.

Fig.8

The group $M_{1}$ may be canonically identified with $SL(2,\mathbb{Z})$ . A presentation of $SL(2,\mathbb{Z})$

is given by

$SL(2,\mathbb{Z})=\langle S,T:S^{4}=I,(ST)^{3}=S^{2}\rangle$ , (2.1)

where $S=$ $(\begin{array}{ll}0 -11 0\end{array}),T=$ $(\begin{array}{ll}1 10 1\end{array})$ . Let $Z(T^{2})$ be an $(r-1)$-dimensional vec-

tor space over $\mathbb{C}$ and $\{e_{0}, e_{1}, \cdots , e_{r-2}\}$ a basis of the vector space. We associate

to $each’e_{i}$ a solid torus $U_{i}$ with an annulus $T_{*}$. in the interior, depicted in Fig.9.

Fig.9

We suppose that the colour of annulus $T$: is $i\in\{0, \cdots , r-2\}$ and the direction as in Fig.9.

We construct a projectively linear representation

$p:SL(2,\mathbb{Z})arrow GL(Z(T^{2}))/\langle C\}$ ,

where $C$ is given by (1.3.2) and $\langle C\rangle$ means the cyclic group generated by $C\cdot I$ , when $I$

denotes the identity matrix.

For any element $X$ of $SL(2, \mathbb{Z})$ , put

$\rho(X)e_{j}=\sum_{i=0}^{r-2}X_{ij}e_{i}$ . (2.2)

Let $[h]$ be an isotopy class in $M_{1}$ corresponding to $X$ . The map $h$ is a degree 1 homeo-

morphism $T^{2}arrow T^{2}$ . We identify $\partial U_{i}$ and $\partial U_{j}$ using $h$ . The resulting closed connected

3-manifold with the $(0,0)$-ribbon tangle consisting of two annuli $\tau_{:},\tau_{j}$ is denoted by $M_{X}$ .
Then $X_{ij}$ in (2.2) is defined by the following formula:

$x_{:j}=F(.M_{X},\tau_{:}\cup T_{j})/F(S^{2}\cross S^{1})$ (2.3)

Clearly, it follows from the definition that $X_{ij}$ does not depend on the choice of the

representative element of the isotopy class.
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Theorem 2.1. The following homomorphism constructed above is a projectively linear

representation.

$\rho:SL(2,\mathbb{Z})arrow GL(Z(T^{2}))/\langle C\rangle$ ,

where \langle $C$) mean$s$ the cycli $c$ group generated by $C\cdot I$ in $GL(Z(T^{2}))$ with $C$ given by (1.3.2).

The vaIues of $S_{ij},I_{*j}$ and $\tau_{:j}$ are given by the following formulas:

$s_{:j}= \sqrt{\frac{2}{r}}\sin\frac{m(i+1)(j+1)\pi}{r}$ ,

$I_{*j}=\delta_{ij}$ ,

$T_{1j}=t^{i(i+2)}\delta_{ij}$ .

proof. Firstly, let us compute $s_{:j},I_{ij}$ , and $T_{\dot{*}j}$ .
(1) the case $X=S$

$M_{S}$ is the 3-sphere $S^{3}$ . Two annuli $T_{i},T_{j}$ are linked in $M_{S}$ and make up the Hopf link

(see Fig.10).

Fig.10

Therefore we get $F(M_{S}, \tau_{:}\cup T_{j})=F(\tau_{:}\cup T_{j})$ . One computes

$F(T_{i} \cup T_{j})=\sin\frac{m(i+1)(j+1)\pi}{r}/\sin\frac{m\pi}{r}$ . (2.4)

Applying (2.3) with (1.3.7) and (2.4), we get

$S_{ij}= \sqrt{\frac{2}{r}}\sin\frac{m(i+1)(j+1)\pi}{r}$ . (2.5)

(2) the case $X=I$

$M_{I}$ is $S^{2}\cross S^{1}$ . In $M_{I},$ $T$: and $T_{j}$ are unlinked unknotted annuli with no twists (see

Fig.11). Let us consider $S^{3}$ with the above annuli and the unknotted circle $L$ that links a

pair of the annuli and that has the zero framing as illustrated in Fig. $12a$.
Fig.11

The Dehn surgery on $S^{3}$ along $L$ produces $S^{2}\cross S^{1}$ with $T$: and $T_{j}$ depicted in Fig.11.

To calculate $F(T_{i}\cup T_{j}\cup\Gamma(L,\omega, \lambda))$, we can use the formula (1.1.2)

$V:\otimes V_{j}=(\oplus_{k}V_{k})\oplus Z_{ij}$ .
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Let us replace $T$: and $T_{j}$ with a unknotted annulus $T_{k}$ which runs paralel to $T_{i}$ and $T_{j}$

$(Fig.12b)$ . We assume that $T_{k}$ has a colour $k$ and the same direction as two annuli. Then

$T_{k}\cup\Gamma(L,\omega, \lambda)$ is a $(0,0)$-ribbon tangle in $S^{3}$ .
Fig.$12a$ $Fig.12b$

The property (1.1.15) of the $U_{t}$ -module $Z_{ij}$ ensures the equation

$F(T_{i} \cup T_{j}\cup\Gamma(L,\omega, \lambda))=\sum_{k}F(T_{k}\cup\Gamma(L,\omega,\lambda))$
, (2.6)

where the summation runs over $k$ satisfying (1.1.13) and (1.1.14). As $T_{k}\cup\Gamma(L,\omega, \lambda)$ is

the Hopf link, we casn apply (2.4) to the computation of $F(T_{k}\cup\Gamma(L,\omega, \lambda)$ . If $\lambda(L)=l$ ,

then we obtain

$F(T_{k} \cup\Gamma(L,\omega, \lambda))=F(S^{2}\cross S^{1})\sqrt{\frac{2}{r}}\sin\frac{m(k+1)(l+1)\pi}{r}$ . (2.7)

Thus, we get

$I_{ij}= \frac{1}{F(S^{2}\cross S^{1})}\sum_{l=0}^{r-2}d_{l}(\sum_{k}F(S^{2}\cross S^{1})\sqrt{\frac{2}{r}}\sin\frac{m(k+1)(l+1)\pi}{r})$ ,

where $k$ satisfies the conditions (1.1.13) and (1.1.14). We have the following formula:

$\sum_{l=0}^{r-2}\sin\frac{m(i+1)(l+1)\pi}{r}\sin\frac{m(l+1)(j+1)\pi}{r}=\frac{r}{2}\delta_{\dot{*}j}$ . (2.8)

Using (2.8), we show the formula:

$I_{ij}= \frac{2}{r}\sum_{k}\frac{r}{2}\delta_{0k}$ .

The condition (1.1.13) of $k$ asserts that $k$ is equal to zero if and only if $i=j$ . Therefore

we get
$I_{ij}=\delta_{*j}$ . (2.9)

(3) the case $X=T$

$M_{T}$ is also $S^{2}\cross S^{1}$ . But the unknotted annulus $T_{i}$ with no twists links the unknotted

annulus $T_{j}$ with one full twist (Fig.13). To obtain $(M_{T},T_{*}\cdot\cup T_{j})$ , we start from $S^{3}$ with
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the two above annuli $T_{i}$ and $T_{j}$ and with an unknotted circle $L$ which has the zero framing

and which links them (Fig.$14a$). Carrying out the Dehn surgery on $S^{3}$ along the circle $L$

turns $S^{3}$ into $M_{T}\cong S^{2}\cross S^{1}$ .
Fig.13

One claims that we can make use of the idea of the case $X=$ Ito calculate $F(T_{i}\cup$

$T_{j}\cup\Gamma(L,\omega, \lambda))$ . We deform the amulus $\tau_{:}$ adding the same twist as the annulus $T_{j}$ . One

denotes the resulting annulus by $T:’$ . The computaion in [11, the proof of Lemma 7.1]

implies

$F(\tau_{:}’\cup T_{j}\cup\Gamma(L,\omega, \lambda))=(v_{i})^{-1}F(T_{*}\cdot\cup T_{j}\cup\Gamma(L,\omega,\lambda))$,

where $v_{i}=t^{i(i+2)}$ . A $fuU$ twist can be expressed by a curl (Fig. $14b$). It follows from it

that we can turn $\tau_{:}’\cup T_{j}$ into two paraUel annuli with no twists (Fig. $14c$).

Let $T_{k}$ be an annulus of colour $k$ provided with the same twist and direction as two

annuli. We replace two annuli by $T_{k}(Fig.14d)$ .
Fig.$14a$ $Fig.14b$ $Fig.14c$ $Fig.14d$

Then, applying theorem 1.2, one may get the following equation

$F(T_{i}’\cup T_{j}\cup\Gamma(L,\omega,\lambda))=$
$\sum_{k}$

$F(T_{k}\cup\Gamma(L,\omega,\lambda))$ ,

$|:-j|<k<i+j$
$i+j\mp k\overline{\in}2\mathbb{Z}$

$i+j+k\leq 2(r-2)$

Thus

$\tau_{:j}=\frac{1}{F(S^{2}\cross S^{1})}\sum_{\iota=0}^{r-2}d_{l}v_{i}\sum_{k}F(T_{k}\cup\Gamma(L,\omega,\lambda))$

here $\lambda(L)=l$ . Substituting $v;=t^{*(i+2)}$ , we obtain

$T_{\dot{\iota}j}=t^{i(*+2)}\delta:j$ . (2.10)

We put $I_{id}=(I:j),$ $S=(s_{:j})$ and $T=(\tau_{:j})$ . They are $(r-1)\cross(r-1)$ matrices.

Let us prove that $\rho$ is a projectively linear representation. To do this, it is sufficient to

show the following:

$S^{4}=I_{:d}$ $mod$ $C\cdot I$ (2.11)

$(ST)^{3}=S^{2}$ $mod$ $C\cdot I$ (2.12)
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One easily computes
$S^{2}=I_{id}$ . (2.13)

Note that the equation $(ST)^{3}=S^{2}$ is equivalent to the equation $STS=T^{-1}ST^{-1}$ . It is

easy to compute that an $(i,j)$-entry of $T^{-1}ST^{-1}$ is

$\sqrt{\frac{2}{r}}t^{i(i+2)+j(j+2)}\sin\frac{m(i+1)(j+1)\pi}{r}$. (2.14)

Using $t=\exp(\pi\sqrt{-1}m/2r)$ and Gauss sum (1.3.5), an $(i,j)$-entry of $STS$ is

$C \sqrt{\frac{2}{r}}t^{i(\dot{*}+2)+j(j+2)}\sin\frac{m(i+1)(j+1)\pi}{r}$ . (2.15)

It follows from (2.14) and (2.15) that

$STS=T^{-1}ST^{-1}\cdot CI_{id}$ . (2.16)

(2.13) implies (2.11) and (2.16) implies (2.12). $\square$

3.$Proof$ of Verlinde’s formula

As another application of the invariants given in \S 1, we prove ’Verlinde’s formula’ (see

[13]). It is given by the following formula.

$\frac{S_{ij}S_{*k}}{S_{*0}}=\sum_{l=0}^{r-2}S_{il}N_{ljk}$ (3.1)

where $m$ and $r$ are mutuaUy prime integers with odd $m,$ $1\leq m\leq 2r-1,r\leq 2$, and

$S_{ij}= \sqrt{\frac{2}{r}}\sin\frac{m(i+1)(j+1)\pi}{r}$ , (3.2)

$N_{*jk}=\{\begin{array}{l}1if|i-j|\leq k\leq i+j,i+j+k\in 2\mathbb{Z},i+j+k\leq 2(r-2)0otherwise\end{array}$

Proof of Verlinde ’s formula. Let us consider $S^{2}\cross S^{1}$ with three parallel non-twisted annuli
$T_{l},T_{j},T_{k}$ in the interior (see Fig.15). The directions of them is as in Fig.15 and the colour

of $T_{l}$ (resp. $T_{j},T_{k}$ ) is $l$ (resp. $j,k$).

14
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Fig.15

We call this configuration of three annuli $\overline{L_{ljk}}$ . The idea of the proof is to evaluate
$F(S^{2}\cross S^{1},\overline{L_{ljk}})$ in two ways.

Let us begin with the surgery representation of $(S^{2}\cross S^{1},\overline{L_{ljk}})$ . Let $L$ be an unknotted

circle with the zero framing which links $\overline{L_{ljk}}$ in $S^{3}(Fig.16a)$ . The Dehn surgery on $S^{3}$

along the circle $L$ produces $(S^{2}\cross S^{1},\overline{L_{ljk}})$ .
$\ln$ the first evaluation, we use an analogue of the computation of $I_{ij}$ and $T_{ij}$ in \S 2. We

replace $T_{j}$ and $T_{k}$ by an unknotted non-twisted annulus $T_{p}$ with colour $p$ and the same

direction as them (Fig. $16b$ ). Then applying Theorem 1.2 with $i$ replaced by 1, we obtain

the following equation:

$F( \overline{L_{ljk}}\cup\Gamma(L,\omega, \lambda))=\sum_{p}F(T_{l}\cup T_{p}\cup\Gamma(L,\omega,\lambda))$
.

Here $p$ satisfies the conditions (1.1.13) and (1.1.14) replaced $i$ by $p$ .
Fig. $16a$ $Fig.16b$

Then we can apply the formula (2.9) to the computation. Thus we get

$F(S^{2} \cross S^{1},\overline{L_{ljk}})=\sum_{l=0}^{r-2}d_{t}(\sum_{p}F(T_{l}\cup T_{p}\cup\Gamma(L,\omega, \lambda)))$

$=F(S^{2}\cross S^{1})$
$\sum_{p}$

$\delta_{l,p}$

$|i_{p+j\mp k\in 2\mathbb{Z}}-j|<p\leq j+k$

$p+j+k\leq 2(r-2)$

It follows from the condition of $p$ that

$F(S^{2}\cross S^{1},\overline{L_{ljk}})=F(S^{2}\cross S^{1})N_{ljk}$ (3.3)

To evaluate $F(S^{2}\cross S^{1},\overline{L_{ljk}})$ in the second way, we rotate the $(0,0)$-ribbon tangle $\overline{L_{ljk}}\cup\Gamma(L)$

in $S^{3}(Fig.17a)$ . The result may be thought of as the closure of the $(1,1)$-ribbon tangle

$B_{ljk}^{t}$ illustrated in Fig. $17b$ . $F(B_{ljk}^{t})$ is the homomorphism $V_{t}arrow V_{t}$ . Moreover, it may be

thought of as the composition of three homomorphisms determined by $(1,1)$-ribbon tangles

$\tau_{l}^{t},\tau_{j^{l}},\tau_{k}^{t}$ illustrated in Fig.$17c$ .
Fig. $17a$ $Fig.17b$ $Fig.17c$
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The map $F(\tau_{l^{t}})$ is a C-linear homomorphism $\mathbb{C}arrow \mathbb{C}$ , i.e. a multiplication by an element

of C. We denote this element by $b_{l}^{t}$ . Similarly, $F(\tau_{j^{l}})$ (resp. $F(\tau_{k}^{\ell})$) is a multiplication by

an element $b_{j}^{t}$ (resp. $b_{k}^{t}$ ) of C. The closure of the $(1,1)$-ribbon tangle $\tau_{l}^{t}$ makes up the Hopf

link. We denote this invariant by $s_{tl}$ . Analogously, the invariant which corresponds to $\tau_{j^{\ell}}$

(resp. $\tau_{k}^{t}$ ) is denoted by $s_{tj}$ (resp. $s_{tk}$ ). Using $(2,4)$ , we derive

$s_{t\mu}= \sin\frac{m(t+1)(\mu+1)\pi}{r}/\sin\frac{m\pi}{r}$ ,

where $\mu\in\{l,j, k\}$ . Note that $s_{t0}=\dim_{q}V_{t}$ . Then Lemma 1.5 shows that

$s_{t\mu}=b_{\mu}^{t}\dim_{q}V_{t}=b_{\mu}^{t}s_{t0}$ . (3.4)

The above discussion and (3.6) imply that

$F(B_{ljk}^{t})=tr_{q}(F(\tau_{l}^{t})oF(\tau_{j^{t}})oF(\tau_{k}^{t})\}$

$=b_{l}^{t}b_{j}^{t}b_{k}^{t}\dim_{q}V_{S}$ (3.5)

Using (3.4) and (3.5),

$F(S^{2} \cross S^{1},\overline{L_{ljk}})=\sum_{t=0}^{r-2}d_{t}F(B_{ljk}^{t})\dim_{q}V_{t}$

$= \sum_{t=0}^{r-2}d_{t}\frac{s_{tl}s_{tj^{S}tk}}{(s_{t0})^{2}}$ (3.6)

Multiplying (3.3) and (3.6) by $s_{\dot{*}l}$ and summing up over $l=0,$ $\cdots r-2$ , we get

$\sum_{l=0}^{r-2}F(S^{2}\cross S^{1})N_{ljk}=d_{i}(\sin\frac{m\pi}{r})^{-2}\frac{r}{2}\frac{s_{ij^{S}ik}}{(s_{i0})^{2}}$ (3.7)

We remark that

$d_{i}= \sqrt{\frac{2}{r}}\sin\frac{m(i+1)\pi}{r}$

$= \sqrt{\frac{2}{r}}s_{i0}\sin\frac{m\pi}{r}$ . (3.8)

Substituting (3.8) in (3.7), we obtain

$\sum_{l=0}^{r-2}s:\iota F(S^{2}\cross S^{1})N_{ljk}=F(S^{2}\cross S^{1})\frac{s_{ij^{S}:k}}{s:0}$ . (3.9)
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The value $s_{:j}$ is related to $s:j$ by the formula

$s:j= \sqrt{\frac{r}{2}}(\sin\frac{m\pi}{r})^{-1}S:j$ .

Thus (3.9) implies (3.1). $\square$
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