Strongly countably complete spaces と fragment について

神戸大院生 長水寿寬 (Toshihiro Nagamizu)

Dfinition 1. Let X be a topological space and ρ be a metric on X. X is said to be <u>fragmeted by ρ </u> (or ρ -fragmented) if for each ε >0 and each nonempty subset A of X there is an open subset U of X such that U \cap A \neq ϕ and ρ -diam(U \cap A) \leq ε .

The topological space X is said to be <u>fragmentable</u> if there exists a metric on X which fragments X.

Definition 2. A well ordered family $\mathcal{U} = \{U_{\xi} \mid 0 \le \xi < \xi_0 \}$ of subsets of the topological space X is said to be a <u>relatively</u> open partitioning of X , if

- (1) $U_0 = \phi$;
- (2) U_{ξ} is contained in $X\setminus (\bigcup_{\gamma\in \xi}\ U_{\gamma})$ and is relatively open in it for every ξ , $0<\xi<\xi_0$;

(3) $X = \bigcup_{\xi \leqslant \xi_0} U_{\xi}$.

A family $\mathcal U$ of subsets of X is said to be a $\underline{\sigma}$ -relatively open partitioning of X, if $\mathcal U = \cup_{h=1}^{\infty} \mathcal U^h$, where $\mathcal U^h$, $n=1,2,\ldots$ are relatively open partitionings of X.

 $\mathcal U$ is said to separete the points of X, if whenever x and y are two different elements of X there exists n such that x and y belong to different elements of the partitioning $\mathcal U^n$.

In this case we say that X admits a <u>separating σ -relatively</u> open partitioning.

In [9], N.K.Ribarska proved the following two theorems.

Theorem (N.K.Ribarska). The topological space X admits σ relaitve open partitioning if and only if there exists a
metric which fragments X.

Theorem A (N.K.Ribarska). Let X be a compact Hausdorff space. If X is a fragmentable then there exists a complete metric ρ on X such that X is ρ -fragmented and the topology generated by ρ is stronger than the original topology on X.

A.V.Arhangel'skii proved that a functionally complete compact Hausdorff space is an Eberlein compact space ([1]). And each Eberlein compact space is Radon-Nikodým compact space which is homeomorphic to a norm-fragmented w -compact subset of a dual Banach spce ([7]). Hence we obtain the following theorem.

Theorem B (I.Namioka [7]). Let X be an Eberlein compact space. Then X is fragmented by a lower semi-continuous metric.

In this note we extend these results (Thorem A and Theorem B) to the class of the strongly countably complete spaces.

Definition 3. A topological space X is said to be strongly countably complete (s.c.c.) if there exists a strongly countably complete sequence of open coverings of X.

Theorem 1. Let X be a completely regular s.c.c. space. If X is a fragmentable then there exists a complete metric on X such that X is ρ -fragmented and the topology generated by ρ is stronger than the original topology on X.

Theorem 2. Every completely regular s.c.c. functionally complete space is fragmented by a lower semi-continuous metric.

Definition 4. Let X be a topological space. X is said to be a Namioka space if the following condition is satisfied for any compact space Y;

(*) for any separately continuous function $f: X \times Y \to R$ there exists a dence G_{δ} subset A of X such that f is jointly continuous at each point of $A \times Y$ (where R is a real line).

Remark. Completely regular s.c.c. space is a Namioka space.

Each closed subspace of a s.c.c. space is also s.c.c., hence

Namioka space.

Theorem 3. Let X be a completely regular functionally complete space. If each closed subspace of X is a Namioka space then X is fragmented by a lower semi-continuous metric.

From Theorem 3 we get Theorem 2.

References

- [1] A.V.Arhangel'skii, On some topological spees that occur in functional analysis, Russian Math. Math. Surveys, 31 (1976), 14-30.
- [2] Z.Frolik, Baire spaces and some generalizations of complete metric spaces, Czech. Math. J., 11 (1961), 359-379.
- [3] J.E.Jayne and C.A.Rogers, Borel selectors for upper semi-continuous set-valued maps, Acta Math., 155 (1985), 41-79.
- [4] J.L.Kelly and I.Nanioka, et al. Linear topological spaces (Springer, New York, 1976).
- [5] J.P.Lee and Z.Piotrowski, A note on spaces related to Namioka spaces, Bull. Austral. Math., 31 (1985) 285-292.
- [6] I.Namioka, Separately continuity and jointly continuity, Pacific J. Math., vol 51, No2 (1974), 515-531.
- [7] I.Namioka, Eberlein and Radon-Nikodým compact spaces, Lecture note of a course given at University College London, 1985/86. See also Mathematika, 34 (1987).
- [8] Z.Piotrowski, Seprate and joint convinuity, (preprint).

- [9] N.K.Ribarska, Internal characterizationof fragmentable spaces, Mathmatika, 34 (1987), 243-257.
- [10] M.Talagrand, Espaces de Baire et espaces de Namioka, Math. Ann., 270 (1985), 159-164.

Depertment of Mathematica and

System Fundamentals

The Graduate School of

Science and Technology

Kobe University

Nada, Kobe

Japan