k-NETWORKS, AND COVERING PROPERTIES OF CW-COMPLEXES

東京学芸大学 田中祥雄 (Yoshio Tanaka)

We assume that all spaces are T_2 . First of all, we shall recall some definitions.

Let X be a space, and let \mathcal{C} be a cover of X. Then X is determined by \mathcal{C} [3] (or X has the weak topology with respect to \mathcal{C} in the usual sense), if $F \subset X$ is closed in X if and only if $F \cap C$ is closed in C for every $C \in \mathcal{C}$. Here, we can replace "closed" by "open". Every space is determined by an open cover. X is dominated by \mathcal{C} , if the union of any subcollection \mathcal{C}' of \mathcal{C} is closed in X, and the union is determined by \mathcal{C}' .

Let X be a space, and \mathcal{P} be a cover of X. Then \mathcal{P} is a <u>k-network</u>, if whenever $K \subset U$ with K compact and U open in X, then $K \subset U$ $\mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}$. If we replace "compact "by "single point" then such a cover is called "net (or network)". k-networks have played a role in \mathcal{K}_0 -spaces (i.e., regular spaces with a countable k-network) and \mathcal{K} -spaces (i.e., regular spaces with a σ -locally finite k-network).

Let $A = \{A_{\alpha}; \alpha \in A\}$ be a collection of subsets of a space X. Then A is closure-preserving if $\overline{\cup \{A_{\alpha}; \alpha \in B\}} = \cup \{\overline{A}_{\alpha}; \alpha \in B\}$ for any $B \subset A$. A is hereditarily closure-preserving if $\overline{\cup \{B_{\alpha}; \alpha \in B\}} = \cup \{\overline{B}_{\alpha}; \alpha \in B\}$ whenever $B \subset A$ and $B_{\alpha} \subset A_{\alpha}$ for each $\alpha \in B$. Every space is dominated by a hereditarily closure-preserving closed cover. A σ -hereditarily losure-preserving collection is the union of countably many hereditarily closure-preserving collections. We shall use " σ -CP (resp. σ -HCP)" instead of " σ -closure-preserving (resp. σ -hereditarily closure-preserving".

A is <u>point-finite</u> (resp. <u>point-countable</u>) if every $x \in X$ is in at most finitely (resp. countably) many element of A.

The concept of CW-complexes due to J. H. Whitehead [5] is well-known. A space X is a <u>CW-complex</u> if it is a complex with cells $\{e_{\lambda}; \lambda\}$ satisfying (a) and (b) below.

- (a) Each cell ex is contained in a finite subcomplex of X.
- (b) X is determined by the closed cover $\{\overline{e}_{\lambda}; \lambda\}$ of X. We note that every \overline{e}_{λ} is not a subcomplex.

As is well-known, every CW-complex X is dominated by the cover of all finite subcomplexes of X, hence X is dominated by a cover of compact metric subsets of X.

Let $\{e_{\lambda};\lambda\}$ be the cells of a CW-complex X. We shall say that $\{e_{\lambda};\lambda\}$ is $(\sigma$ -) locally finite; $(\sigma$ -) HCP, etc., if so is respectively the collection $\{e_{\lambda};\lambda\}$ of subsets of X. We note that the collection $\{e_{\lambda};\lambda\}$ is $(\sigma$ -) locally finite; $(\sigma$ -) CP; $(\sigma$ -) HCP if and only if so is respectively $\{\overline{e}_{\lambda};\lambda\}$.

Results. Let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$. Then the following hold. (a) is well-known, and (b) is due to [2].

- (a) X is a paracompact, and σ -space (i.e., X has a σ -locally finite net).
- (b) X is an M_1 -space (in the sense of [2]), hence X has a σ -CP k-network.
 - (c) X has a point-countable k-network.

However, every CW-complex is not a metric space (not even a Fréchet space, nor an \mathcal{H} -space). We have the following characterizations of X. Recall that a space is <u>Fréchet</u>, if whenever $x \in \overline{A}$, there exists a sequence in A converging to the point x. (A) is well-known, and (B) is due to [4].

- (A) X is a metric space if and only if $\{e_{\lambda}; \lambda\}$ is locally finite.
- (B) X is a Fréchet space if and only if $\{e_{\lambda}; \lambda\}$ is HCP.
- (C) X is an \mathcal{H} -space if and only if $\{e_{\lambda}; \lambda\}$ is σ -locally finite.
- (D) X has a σ -HCP k-network if and only if $\{e_{\lambda}; \lambda\}$ is σ -HCP.
- (E) X is a symmetric space (in the sense of [1]) if and only if $\{\overline{e}_{\lambda}; \lambda\}$ is point-finite.
- (F) X has a point-countable closed k-network if and only if $\{\overline{e}_{\lambda}; \lambda\}$ is point-countable.

Remark. Let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$.

- (1) The property " $\{\overline{e}_{\lambda};\lambda\}$ is HCP "need not imply that X has a point-countable closed k-network, and not imply that $\{\overline{e}_{\lambda};\lambda\}$ is point-countable.
- (2) The property " $\{e_{\lambda};\lambda\}$ is CP "need not imply that X has a CP or σ -HCP k-network, and not imply that $\{e_{\lambda};\lambda\}$ is σ -HCP.
- (3) The property "X is a symmetric space with a σ -CP k-network" need not imply that X has a σ -HCP k-network, and not imply that $\{e_{\lambda}; \lambda\}$ is σ -CP.

Question. Let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$. Characterize " $\{e_{\lambda}; \lambda\}$ is CP (or σ -CP) " by means of a nice topological property of X.

Finally, concerning spaces dominated by compact metric subsets, similarly to CW-complexes the following analogue holds.

Let X be a space dominated by a cover $\{X_{\lambda}; \lambda\}$ with each E_{λ} compact metric. Here, $E_{0} = X_{0}$, $E_{\lambda} = X_{\lambda} - \bigcup \{X_{\mu}; \mu < \lambda\}$. Then it is possible to replace $\{e_{\lambda}; \lambda\}$ (or $\{\overline{e}_{\lambda}; \lambda\}$) by $\{E_{\lambda}; \lambda\}$ (or $\{\overline{E}_{\lambda}; \lambda\}$) in $(A) \sim (F)$.

References

- 1. A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys, 21(1966), 115-162.
- 2. J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 4(1961), 105-125.
- 3. G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113(1984), 303-332.
- 4. Y. Tanaka and Zhou Hao-xuan, Spaces dominated by metric subsets,
 Topology Proceedings, 9(1984), 149-163.
- 5. J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc., 55(1949), 213-245.