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The Arithmetic Structure of
the Galois Group of
the Maximal Nilpotent Extension of
an Algebraic Number Field
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Nagoya University

The purpose of this article is to give an exposition of the
recent results on the structure of the Galois group of the
maximal nilpotent extension of an algebraic number field.
Various interesting results have been obtained on the basis
of the fact found by Tate (Serre [S]) that the Schur multi-

plier of the Galois group is trivial.

1. The Abelian Case. Let k be an algebraic number field
of finite degree, and k2P and kDil be its maximal abelian
extension and its maximal nilpotent one, respectively, in a
fi‘xed algebraic closure o of the rational number field @.
The structure of the Galois group A := Gal(k2ab/k) is
well known by Takagi-Artin class field theory; in particular
by Chevalley's idelic formulation of the theory, we can viv-
idly see how the local class field theories on k& are tied up
as a global whole by the relations determined by the global
numbers of k. To be more precise, let us denote the decom-
position group of a prime divisor P of k in A by Ap

and the inertia group by Ep; then Ap may be identified
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with a local Galois group Gal(kpablkp) of the maximal abelian
extension kpab of the completion kp of k by p. Let A
be the restricted product of Ap with respect to Ep - for
all prime divisors of k, and @: A - A be the continuous
homomorphism which is defined by the fixed embeddings of Ap
into A for all p. Since A is generated by Frobenius auto-
morphisms of prime divisors, @ is surjective. The local Artin

maps of local class field theory also naturally define a con-

tinuous homomorphism a:k>< — A of the idele group ki of k
A A

to the restricted product A. The combined homomorphism & :=
@ oa is none other than the Artin map of the global class

field theory for k,; hence we have an exact sequence,

(¢4
(1-1) 1 - a(k) o A 5 A o 1

where a(k™) is the topological closure of the image of k*
by 2 in A. We see by this how the Galois theoretic local-
global relations are determined by the global numbers of k.
The main aim of this article is to report the fact that
there exists an analogous exact sequence for the Galois group
G = Gal(knillk) which is a natural lifting of the one for
A = G2P .= G/[G, G] (see Section 4). The details and proofs

will be found in a forthcoming paper [M3] of the author.

2. Algebraic Structures and Arithmetic Invariants T.
First let us see abstruct or algebraic structures of the
Galois groups. For a rational prime p, let A(P) ~and G (p)

be the p-primary parts of A and &, respectively. Since it
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is a pro-finite-nilpotent group, G is a direct product of
its p-primary parts each of which is unicjuely determined as
the Galois group of the maximal p-extension k (P) of k.

The compact abelian group A(P) is naturally a Zp-module
where &Zp is the ring of p-adic rational integers, and decom-
posed into a direct product of two submodules; one of them is

the closure of the subgroup of all torsion elements of it and

the other is a finitely generated torsion-free Zp-submodule.

Hence the cardinality of a minimal set of generators of the

latter is a basic invariant of A(P) and also of k; it is

equal to the dimension of the vector spa’ce A(p) ®zp @p over

the field @p of p-adic rational numbers.

Conjecture(Leopoldt-Iwasawa): The dimension of the vector

space A(P) ®zp Qp over @p should be equal to [k: @] -
(r1 + r9 - 1) = rg + 1 where r1 and rp are the numbers of

real Archimedian prime divisors of k and of complex ones,

respectively.

3. Algebraic Structures and Arithmetic Invariants II.

On the algebraic structure of &G(P), the following two facts

are basic:
(3-1) H2(G(P), @p!Zp) = 0;

(3-2) Let ko be the basic Zp-extension of k. Then G(P)

r= Gal(k(P)/k) is a semi-direct product of the normal sub-
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group Gal(k(P)/koo) and a subgroup which is isomorphic to
Zp; Gal(k(P)/kw) is a free pro-finite p-group which is gen-
erated by a countable infinite number of free generators if p

is odd or if k is totally imaginary and p = 2.

The former fact is well known and due to Tate (cf. Serre [S]).
For the latter, see Miyake [M2]; this is also implicitly con-
tained in Iwasawa [Il] where the following fact.is shown: the
Galois group Gal(kS°l/k.@2P) of the maximal solvable exten-—
sion kS°l of k is a free pro-finite-solvable group gener-
ated by a countable infinite number of free generators. Note
that the base field k-02P is the field obtained by adjoining
all roots of 1 to k. There is a folklore conjecture for a

big Galois group:

Conjecture: The Galois group Gal( 5/aab) is a free pro-

finite group.

Let S(p) be the set of all of the prime divisors of p

in %k, and k(S(p)) be the maximal p-extension of &k which is

unramified outside of S(p). Put Go(P) := Gal(k(S(p))/k)

Then the following facts are well known:

{3-3) The Leopoldt conjecture for k and p is true if and

only if H2(Gy(P), @piZp) = 0. (Cf.e.g. Miyake [M1] and its

references.)
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(3-4) Suppose that k contains a primitive 2p-th root of 1.

Then the normal subgroup Gal(k(S(p))/ke) of GO(P) is a free
pro—finite p-group if and only if the Iwasawa [ -invariant of

the basic Zp-extension ke /k is equal to 0.(Cf.Iwasawa [I2].)

4. The Arithmetic Structure of &G. Now we see the arith-
metic structure of &G := Gal(knilik) which is presented as a

natural lifting of the abelian case given in Section 1 by

class field theory. For a prime divisor P of k, let kpnil
be the maximal nilpotent extension of the completion kp in a
fixed algebraic closure of ap where p is the rational prime
under P, and Gp i= Gal(kﬁlillkp) be the Galois group; the
inertia subgroup is denoted by Up. Note that the basic
structures of the 1;>ca1 Galois groups are well know.n and

rather simple. For each P, we fix a prime divisor P of it

in knil and an embedding of knil into kpnil. Then we have

(4-1) The local extensions kpab and kpnil are globally

generated, i.e. kpab: kab-kp and kpnil = knilokp

Therefore we have a natural embeddings ip : Ap — A = Gab

and i : Gp —- .G . Note that Up contains the commutator
group [Gp, Gp] and that the inértia subgroup Ep in Ap is
equal to Up/[Gp, Gp]; however Ep is different from Upab
= Up![Up, Up]. It seems very interesting to refine (4-1);

for example, we may pose



139

- Problem: For a given finite nilpotent local extemnsion F/kp,

how small can we find the global nilpotent extension L /k

such that F =L-kp ? Does there exist L /k whose Galois

group is of the same nilpotency class as that of F/kp is ?

By making use of the local Galois groups Gp for all p,

we form a "restricted product” with respect to the closed

normal subgroups Up in the category of pro-finite-nilpotent

groups. For a finite set § of prime divisors of %k, put
‘ﬂs = * Gp X X Up ,
PES pes

here * means the free product in the category of pro-finite-

nilpotent groups. If another finite set T of prime divisors
of k contains S, then there is a natural inclusion map
jT,S . GS — GT .

Put

G := limGg (= U Gg ).
s; )

( As for the topology of G, a subset X of it is open if
X NGg 1is open for every &.) Then the embeddings iij give
a well defined continuous homomorphism ¢@:G — G . We are able

to prove

(4-2) The homomorphism ¢:G —» G 1is surjective and maps the

topological commutator group of G surjectively onto that of
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G, i.e. p([G,G]) =[G G].

Therefore we have a commutative diagram of exact sequenses

1 1 1
! ! !
1 5 Ker(®)Nn[G 6] 5 [6, G] » [G, G] 5 1

! l l
(4-3) 1 5 Ker( 9 ) = G G . 1
l ! \:
1 S a(k™) - A - Gab _, 1
l l l
1 1 1

because the abelian group A of Section 1 coincides with the
quotient group G ab .- Gy [G, G]. Here the last exact sequense
is the one for the abelian case, (1-1), which was given in

Section 1. We are now ready to state our main theorem.

Theorem: There exists a transversal 1]: a(kx) — Ker(@) of

the natural projection of G onto 4 over a(kx) such that the

image p(kx) of the map p:= Noa : kX 5 6 generates Ker( @).
Hence we have an exact sequence

. 9
1—>(p(kx))<—aG——> G - 1

which is a natural lifting of that of the abelian case given
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— <
by class field theory where (p(kx)) is the closed normal sub-

group of G generated by the subset pk™) .

5. On the Proof. Our proof of the theorem given in [M3] is
dependent upon two facts: (1) & is a pro-finite-nilpotent
group, and (2) its Schur multiplier vanishes; we need the

following two lemmas:

Yemma 1: et X and Y be pro-finite-nilpotent groups, and

¥: X - Y be a continuous homomorphism. Then ¥ is surjec-

tive if and only if the induced homomorphism yab:. xab _, yab

is surjective where Xab = ¥/[X, ¥] and VYab = y/[¥, ¥].

Lemma 2: Jet ¥ and Y be pro-finite-nilpotent groups, and

¥: X 5 Y be a continuous homomorphism. If the following two

conditions are satisfied, then ¥ is an isomorphism:

(1) HZ('Y, Q/'Z) =0 ;

(2) The homomorphism Wab : Xab - Yab induced by ¥ is an

isomorphism.

This lemma is just.a simple modification of that in Movahhedi

et Nguyen Quang Do [MoN]. The "restricted product” G is not,

" however, a pro-finite—-group. Hence we have to utilize Gg for

a sufficiently large finite set of prime divisors S of k.

Its abelianization is of form,

Gsab - H Gpab X H Upab
pES pes
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therefore, there exists a natural surjective homomorphism of

it onto Ag; if we take a large § so that the prime divisors

of it generate whole of the ideal class group of %k, then a:

A > A maps As onto A = G2P; hence Gsab is also mapped
onto G2P in this case. Then by Lemma i, we see our homomor-
phism @:6 - G map the compact subgroup Gg  surjectively
onto & . Thus we obtain (4-2). If we apply Lemma 2 to the

restriction of @ to such a Gg, then we can determine a

necessary set of generating relations in the p-primary part

of Ker( ¢ )NGs for each fixed rational prime p as far as $
contains all of the Archimedian prime divisors and all of the
prime divisors of p in k.

Here we do not go into the details any farther.

6. The pro-finite-nilpotent Galois group & can also be in-
vestigated through its iower ceﬁtral series on the basis of
the fact, H2(G, @/Z) = O; Schur multipliers in the category
of pro-finite-nilpotent groups play an important role; the

details will be seen in the paper, Miyake and Opolka ([MO].
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