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Summary

Statistical properties of the process describing the genealogical
history of a random sample of genes are obtained for two population
genetics models with population subdivision and migration. The first
model is that without selection. The second model is that with selection,
recombination and neutral mutation. The calculations are greatly

simplified if migration is strong in the second model.

§1. Introduction

Restriction map data and DNA sequence data for a sample of genes from a
population provide information about genetic variability at nucleotide

level. An important summary statistic of these type of data is S, the

number of segregating sites in the samlpe. Note that § = § + S

sel neu’
where ssel and Sneu is the number of segregating sites resulting from

mutations with and without selective effect, respectively. The

distribution of S is difficult to derive. The distribution of S on

sel neu’

the other hand, is analytically more tractable. If S is negligible

sel

compared to S e.g. selection acts on a few nucleotide sites, then the

neu’

statistical properties of S can be inferred from those of sne The

u”
distribution of Sneu can be represented as

K
(1) P(S,,, = k) = j": 11,:—?)— et F(dt),

where p is the rate of neutral mutation per gene per generation,
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F(t) = P(T<t), t20 and T is the sum of the lengths (mesured in

generations) of all the branches of the ancestral tree describing the

genealogy of the sample. It follows from (1) that

(2) Els, .1 = uE[T],

neu
(3)  varlS,g,] = uEIT] + wvarlrl,
(4)  P(s,,, = 0) = E[e”¥T].

For selectively neutral models the stochastic process describing the
genealogical history of the sample has been characterized (Watterson
1975; Kingman 1982a,b; Tavare 1984), and properties of the distribution of
T have been determined.

Since many natural populations are geographically subdivided, it is
important to analyse population genetic models, focusing on the
genealogical process of samples of genes from a subdivided population. 1In
the following sections, a neutral model with population subdivision and a

selection model with population subdivision are analysed.

§2. A neutral model with population subdivision

Suppose a randomly mating diploid population of size ¥ has two
subpopulations, subpopulation 1 of size Nl = fN and subpopulation 2 of
size N, = (1-F)N, 0<f<1l. Let m; be the migration rate from subpopulation
i to the other subpopulation per generation (i=1,2). Assume that
m, = Ai/(ZN) + o(1/N) (i=1,2). Since the ancestral genes can be located

in subpopulation 1 and 2, the genealogical process is a two dimensional
process. Suppose that n neutral genes are chosen at random from the Oth
generation and let Q(0) = (i,J5) if the sample consists of i genes from
subpopulation 1 and j genes from subpopulation 2 (0<i,j<n, i + j§ = n).
For ¢<0, Q(t) denotes the number of the ancestral genes of the sample

located in subpopulation 1 and 2 in generation ¢. Neglecting the



quantities higher than 1/N, the process, Q(t), t<0, is the following

Markov chain.

(5)  PQ(t-1)=(i-1,5)1Q(t)=(4,4)) = (3)/(24N),

(6) pP(Q(t-1)=(¢,5-1)1Q(t)=(4i,4))

($)/{2(1-7)N},

(7)  P(Q(t-1)=(i-1,5+1)1Q(4, 4))

ilz/(zN)a

(8) P(Q(t-1)=(4i+1,4-1)1Q(<, 7))

dx1/(2N),

(9)  P(Q(t-1)=(i,d)1Q(4,4)) = 1 - (($)/7 + (§)/(1=7) + ixy + dx M/ (20),
where (3) = i!/{(i-2)12!}, (i22), = 0, (i<2).

Let T(i,4) be the sum of the lengths (measured in units of 2N
generations) of all the branches of the ancestral tree, assuming that the
sample consisted of i genes located in population 1 and j genes located in
population 2 (i + 4 =2 2). As a direct consequence of the Markov property

of Q(t) process, we have
(10) T(iaj) = (i + j)Tij + T(Zij),

where th is the holding time in state (i,4), zij is the random state to
which the process moves and if Zij = (k,1), then T(zij) is an independent
random variable having the same distribution as 7T(k,%). Let Mij denote

the mean of 7(i,5) and Vij its variance. Then

(11) M

ig = GHd)V/hy va g Moy st M o1t 9o e, el

Uye1,j-1Miv1,5-11

o 2
(12) v, = G/ R va, Vi y,5 Y 9,5-1Y4,5-1 % V-1, 541V i-1,5+1
2 2
Y e,V 5-1 Y o1, Mi-1,5 Y 94,-1M5 54
2 2
M PSR TS L PR TS NI PFC R AL PG R I C P R Py

2
Q-1 -1 % 9i-1,j41Mi—1, 541 F i1, 5-1Mie1,5-1)
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where

(13) kg, = (/5 + (§)/(1-7) + ixy + 42y,
(14)  ay_y ;= (3)/Ush ),
(15) @y ;g = (D/1Q-H)ng,),
(16) a1 je1 = Xp/ky s
(A7) au4q,4-1 = I/ Ry s
and Mgy = Mg = Vg = Vg = 0.

In the following in this section, we consider the case of n = 2. In

this case, we have

(18) Mzo 27(1 + AZMll)/(l + ZXzf)r

(19) Mgy = 2(1=F)(1 + M) /{1 + 22, (1-9)},

(20) Hip = 2{1 + X 7/(1 + 2x,f) + 25(1-7)/[1 + 22, (1-£)IH/{x /(1 + 2x,f)

+

x,/01 + 22, (1-7)1}.

As the strong migration limit (11,12 -+ +o), we have

2
Magr Mogr Mg ~ 2(x) + 2)27(1-7)/{2;2(1-7) + 2,%7}. As the weak
migration limit (*1’*2 -+ 0), we have Hoo ~ 27{1 + ZAZ/(AI + 12)},
Moo ~ 2(1-7){1 + 211/(A1 + 12)}, My, ~ +o. Note that in the case of
complete isolation (Al =2y = 0), we have MZO = 27, ”02 = 2(1-f) and

Mi1
For x > 0, we have Hoo = Moy = 2, My = 2 + 1/x, Voo = Vg = 2(2 + 1/x)

+o, Here, we consider the symmetric case (f = 1/2 and A = Ay = 12).

and Vii = 2(2 + 1/x) + 1/12. For 2 = 0, we have MZO = M02 =1, Mll = 4o,
Vzo = V02 = 1 and Vll = +4co0,
Slatkin (1987) and Strobeck (1987) found for the infinite site model

(Kimura 1969) that the average number of sites that differ in two genes
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chosen from the same subpopulation depends on the size of the total
population and not on either the migration rate or the size of each

subpopulation. The number of subpopulations is m (2 2) in the both

studies and some conditions on the migration are assumed. Here, we
consider the case of m = 2 and derive the results of Slatkin (1987) and
Strobeck (1987) by means of the genealogical process approach, that is, by
means of the results that we have obtained above in this section. First
consider the cease of Slatkin (1987), where the assumption on the migration

is A = Ay = 2, (ml = mz). Let Na be the harmonic mean of N1 = Nf and

(21)  1/W

a (l/Nl + 1/N2)/2,

that is, Na 2f(1-f)N. Averaging Hoo and LAY by l/N1 and l/NZ’ we have
Mg = Na(MZO/Nl + Myo/Ny)/2 = 4Na/N. Let Kg = 2NuM;, where u is the
mutation rate for each site per generation. We have KO = 8Nau, which is
the same result as Equation (17) in Slatkin (1987) in the case of m = 2.
Next consider the results of Strobeck (1987), where a conservative
migration is assumed. In the case of m = 2, this assumption is

miN| = mol, which is equivalent to x,f = Az(l-f). Averaging Ma0 and Moo
by ¥, and N,, we have ¥ = {Nl/(N1 + Ny) Mgy + {(Ny/(Ny + No) Mgy = 2. Let
Eii
(1987) in the case of m = 2.

= 2NuM. We have Eii = 4Nu, which is the same result as Strobeck

For further results on genealogical processes with population
subdivision and no selection, see Takahata and Nei (1985), Takahata (1988)

and Tajima (1989).

83. A selection model with population subdivision
Suppose a randomly mating diploid population of size N has two
subpopulations, subpopulation 1 of size N1 = Nf and subpopulation 2 of

size NZ = N(1-F7), 0<f<l. Let m; be the migration rate from subpopulation
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i to the other subpopulation per generation (i=1,2). Consider a selected
locus with two alleles, A1 and AZ' Let u, be the mutation rate from Ai to
the other allele per generation (i=1,2). The relative fitness of AiAj is

denoted by v, (i,5=1,2). We denote the gene frequency of Ay in

P
subpopulation i at generation ¢ by xi(t) (i=1,2) and put

z(t) = (zl(t),zz(t)). We are interested in a neutral gene linked to the
selected locus. Let r be the recombination rate between this neutral gene
and the selected locus. We assume that m, = Ai/(ZN) + o(1/N),

u, = v,/(2N) + o(1/N), w, g = 1 + 0(1/N) and r» = R/(2N) + o(1/N), where

X 0,02 0 and R 2 0 (i,4=1,2). Since the ancestral genes can be linked
to A1 and A2 and located in subpopulation 1 and 2, the genealogical
process is a four dimensional process. Suppose that n neutral genes are
chosen at random from the 0Oth generation and let Q(0) = (il,jl,iz,jz) if
the sample consists of i, genes from subpopulation k and linked to A1 and
Jy genes from subpopulation k and linked to Agy (OSik,jksn, kK =1,2,
il+j1+£2+jz=n). For ¢<0, Q(t) denotes the number of the ancestral genes
of the sample located in subpopulation 1 and 2 and linked to Ay and A, in
generation ¢. Neglecting the quantities higher than 1/N and given z(t),
t<0, the process, Q(t), t<0, is the following Markov chain (Kaplan et al.

1988; Hudson and Kaplan 1988).

t

(22)  p(ig-1,dq,45,d5) = (31)/{20fz (¢-1)},
(23) p(i11j1_11i21j2) = (gl)/{ZNf[l-wl(t_l)]}’

($2)/120(1-1)zy(2-1)},

(24) p(il’jl'iz_l'jz)

(25) p(il'jl’iZ’jZ_l) (gz)/{ZN(l_f)[l_wz(t-l)]}y

(26) p(il+1:j1‘1,i2;j2) jlwll(t'l)zl(t_l)/{ZN[I_zl(t_l)]}y

(27) p(il—lrjl+1’i2’j2) = i1$21(t'1)[1-$l(t—1)]/{Zle(t—l)},

(28) p(ilyjlyi2+lsjz_l) jzwlz(t_1)$2(t"l)/{2N[l’zz(t—l)]}’
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(30) p(il+l,j1’i2‘1-j2) izllxl(t’l)/{ZNmz(t-l)}’

(31) p(il—l’jl’i2+1’j2) illzzz(t_l)/{ZNZZ(t"l)}!

(32) p(il’j1+l'£2’j2—1) jzll[l'zl(t_l)]/{ZN[I”zz(t-l)]};

(33) p(ille-laizyjz+l) jllz[l'zz(t-l)]/{ZN[l_xl(t‘l)]}s
(34) p(il’jl’iZ’jZ) =1 - {p(il_lajlrizsjz) + p(ilijl”lyizvjz)
+ p(il’jl’iZ_l’jZ) + p(il’jl'iZ’jZ—l) + p(i1+ltj1‘1’i2:jz)
+ p(il—l,jl+1.i2,j2) + p(il’jl’i2+l’j2—1) + p(il'jl'i2_1’12+1)

+ p(t11J1_1’12s32+1)}’

where we put wlk(t) = vy + RI1 - zk(t)], WZk(t) = vy + Rzk(t), k=1,2, and

(35) p(hl'kl’hZ’k2) = P(Q(t‘1)=(h1.k1,h2,k2)lQ(t)=(i1,jl,i2,jz),$(t—1))-

Transitions resulting from coalescence are given by (22)~(25). Those
resulting from mutation and recombination are given by (26)~(29). Those
resulting from migration are given by (30)~(33).

In the following, we consider the case where the frequencies of alleles
in the selected locus are tightly regulated (Kaplan ei at. 1988). In
other words, selection is so strong that the frequencies of alleles in the
selected locus can be regarded as constats; z(%) = z = (zl,zz) where Ty
and z, are constants (0<z,,z,<1) for all ¢.

Let T(il.jl,iz,jz) be the sum of lengths (measured in units of 2W
generations) of all the branches of the ancestral tree, assuming that the
sample consisted of i, genes that are linked to A, and located in

subpopulation k and jk genes that are linked to Az and located in



14

subpopulation k (k=1,2, tl+jl+t2+j222). As a direct consequence of the

Markov property of Q(t) process, we have
(36) T(i yJ1siosd ) = (i ti,.tiotg )T : + T(z : )’

where Tiljlizjz is the holding time in state (il,jl,tz,jz), VA

.. . . is
t171%292
the random state to which the process moves and if

Z, . . . = (hyykyyho,ko) then T(Z, . . ) is an independent random

variable hav1pg the same distribution as T(hl,kl,hz,kz). Let Miljlizjz
denote the mean of T(il,jl,iz,jz). Then

37 = (dgtftiotg (4 ) (). o
(37) Hildiiga, (t1+31+12+32)h1131‘232(£) ¥ q‘l‘l’Jltzdz(J)M‘1‘1’31‘272

M TR T A B P TTIPE P PP LI PP PP

qil"&"'z'-"2‘1(:"‘“’"1-7'1"2’J'z‘1 ¥ qi1+1'11‘1'izjz(m)M£1+1'J1‘1'i2jz

im0, 1415, M 100141, 100,

Uidys 1;2+1,j2—1("’)”1;1j1 vigtl,dp-1

RTEITEP I PEPRS R PEPPRPES PEPRS

q1”1+1"71’1’2_1"72(“:)”1:1-..1"11’1'2_1"72

Vig=1,d10i9+1,5, M e 21,5, 4,414,

qil,jl+l,i2,j2—l($)ﬂil,j1+1,i2,j2—1

qil’jl'l;i2’j2+1(w)Mi1:jl_1’iz’j2+l'
where

(38) (z) = (31)/(fz)) + GD/{FU-z DY + (52)/{(1-1)zy)

117117,
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+ (gz)/{(l-f)(l_xz)} + j1¢11($)21/(1“$1) + i1¢21($)(1—$1)/$1
t dg¥ip(@)ay/(Imap) + dg¥pp (@) (1=zp)/zy + g 3)/2p + 132535/%)

+ jzll(l_zl)/(l'zz) + jllz(l’zz)/(l-xl):

(39) @y g5 44,0 = (31)/{lehilj1£2j2(z)}.

(40) @y 4 o1,0,9,0®) = GD/ATU2 DR, 5 4 4 (@],

(41) @y yog1,5,@) = GD/AADTR, oy (@),

(42) @y 4 4,,5,-102) = GDAA-N A=)k, 5 o g @]

(43) qilﬂ’-"l'l'iz"'z(m) = .1'1'&11(z):cl/{(l—ml)hiljlizjz(z)}.
(44) qil‘l’jl"l’izﬂ'z(m) = i1¢21(:c)(l-wl)/{zlhiljlizjz(z)},
(48) @y 4 001,4,-108) = Ip¥1p(@2p/L=ap)hy 5 4 g (D)),
(46) @y 5 0om1,5,41(8) = ighpp(@)(1-ag)/Aaghy 4y g (@)},
(47) qi1+1'~7'1’i2"1"’j2(z) = ilexl/{zzhiljlizjz(m)},

(48) qil-l,jl,iz+1,,1'2(“) = il"z“z/{“lhiljlizjz(‘”)}’

(49) @y g a1,4,,4,-108) = dpp e )/ UU2)Ry 5oy g (),
(50) @y g o1,4,,4,41(8) = d12g(mep) /L2 DRy 5y g (),

wlk(w) = v, + R(l—zk), ¢2k(m) = vy + Rz (k=1,2) and
M1000 = o100 = Y0010 = Moo01 = O-

In the following, we consider the case of n = 2 (il+j1+iz+j2=2) for
simplicity. In this case, we have ten linear equations for MZOOO’ ”0200’
Moo20° M0002’ M1100° Y1010’ Y1001’ Mo110* Mo101 @nd Hggyy» Which can be
solved analytically or numerically. The expression of the solution is

very complicated. In the case of strong migration, however, the structure
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of the Markov chain is simplified considerably after some approximation.
We will mention briefly this asymptotic analysis.

In the case of strong migration, we are interested in the linkage of
the ancestral genes to the selected locus but are not interested in their
location. For this reason we introduce the following stochastic process,

w(t), t<0.

(51) w(t) = [i1+iz’j1+j2] if Q(¢) = (il'jl’iZ’jz)'

Note that wW(t) is not a Markov chain. For example, this can be easily

seen by the following relation.

(52) P(W(t-1)=[1,11Iw(¢)=[2,0])

P(W(t"l)=[1,1]lQ(t)=(0,0,2,0))P(Q(t)=(0.0,2,0)|W(t)=[2,0])-

-+

+

Let Ql(t), t<0 be a Markov chain induced by Q(t) by putting the
right-hand-sides of (22)~(29) equal to O. Ql(t) is a pure migration
Markov chain. Let U(il,jl,iz,jz) be the stationary probability for Ql(t).
On the other hand, let Qz(t), t<0 be a Markov chain induced by Q(t¢) by
putting my = my = 0. Qz(t) is a Markov chain without migration. 1In the
strong nigration limit, we can replace
P(Q(t)=(i1,d,19:d9) IW(E)=li +iy,d +d5]) by U(i},5y,i9,7,) and
P(W(t-1)=[i,+iy,d *+3p11Q(2)=(i|,d1,i9,35)) by
P(W(t-1)=[i,,d1,i9,d511Q5(¢)=(i;,4;,49,7,)) as an approximation. We
denote this stochastic process by R(t), ¢<0. It is easily seen that R(%),
t<0 is a Markov chain on {[i,7)]%i,420, 1l<i+j<n}. Let T[i,5] be the sum
of the lengths (measured in units of 2N generations) of all the branches
of ancestral tree, assuming that sample consisted of i genes linked {o A1

and j genes linked to AZ' As a direct consequence of the Markov property

- 10 -~
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of R(t) process, we have
(53) T1li,g] = (i+.1')T“ + r(z“.),

where Tij is the holding time in state [1,4], zij is the random state to
which the process moves and if zij = [h,k] then T(zij) is an independent
random variable having the same distribution as T[Ah,k]. Let M[i,j] denote
the mean of 7{i,j]. We can obtain the equations for 7[2,0], 7[0,2] and
7[1,1]. For the detailed analysis and an application to the DNA sequence
data from the alcohol dehydrogenase (Adh) region of Drosophila

melanogaster, see Kaplan et at. (1991).
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