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A measure on the space of smooth mappings
and dynamical system theory

MASATO TSUJII

Department of Mathematics
Kyoto University

Abstract. We construct a measure of $(0, \infty)$ type on the space of C’

mappings, $C’(M, N)$ , and show that it provides a consistent basis for

the notion ‘generic’ and ’exceptional’ in the theory of smooth dynamical

systems.

1. INTRODUCTION

In order to get a good description of the properties of dynamical systems, we

often exclude some set of systems which seem to have singular properties. In such

cases, it is important whether we can ignore the excluded set of systems or not. For

example, when we consider discrete smooth dynamical systems, we often neglect the

systems which have non-hyperbolic periodic points, and the transversality theorem

says that such systems are rare. In fact, systems with non-hyperbolic periodic

points form a countable union of stratffied subsets of codimension one in the space

of mappings in some sense. But when we treat more complicated subsets in the

space of mappings, we have no idea to judge whether we can neglect them or not.

In this paper, we propose a framework to decide negligible subsets of systems, or, in

other words, construct a measure of $(0, \infty)$ type on the space of smooth mappings.

Of course, we do not claim that our framework is the unique one or the absolute

one. There may not be any deductive way to decide such subsets. But we claim that

our system is consistent (Theorem B) and that a version of Thom’s transversality

theorem holds in our framework (Theorem C).
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2. MEASURES ON THE SPACE OF MAPPINGS

Let $M$ be a compact $C^{\infty}$ manifold of dimension $m$ and let

$\pi:Varrow M$

be a $C^{\infty}vector$ bundle of dimension $p$ over $M$ . We denote the set of $C^{r}$ sections of

the vector bundle $V$ by $\Gamma$‘ (V) , which is endowed with the $C$‘ norm and $\sigma$ topology.

Then, there are natural inclusions of Banach spaces:

$\Gamma^{0}(V)\supset\Gamma^{1}(V)\supset\Gamma^{2}(V)\supset\cdots$ .

In this sequence of Banach spaces, each space is dense in the bigger spaces and the

Borel $\sigma$-algebra on it coincides with the restriction of those on the bigger spaces.

Let $\tau_{\varphi}$ : $\Gamma^{0}(V)arrow\Gamma^{0}(V)$ be the translation by $\varphi\in\Gamma^{0}(V)$ . We say a Borel

probability measure $\mu$ on $\Gamma^{0}(V)$ is quasi-invariant along the subspace $\Gamma$‘ (V) if $\tau_{\varphi}(\mu)$

is equivalent to $\mu$ for any element $\varphi\in\Gamma$
‘ (V), and we denote the set of such measures

by $\mathcal{M},$ . Put $\mathcal{M}_{\infty}=\cup^{\infty_{=0}}\mathcal{M},$ . Remark that the set $\mathcal{M}$, is not empty for sufficiently

large $r$ . (See the proof of Lemma A.)

Then let us put

$\tilde{Z}(\Gamma‘(V))=$ { $E\in B(\Gamma$
‘ (V)) $|\mu(E)=0$ for any $\mu\in M_{\infty}.$},

and

$Z(\Gamma’(V))=$ $\cap$ $\psi_{*}(\tilde{Z}(\Gamma(V)))$ ,
$\psi\in D(V)$

where $D(V)$ is the group of $C^{\infty}$ diffeomorphisms, $\psi$ : $Varrow V$ , which satisfies
$\pi 0\psi=\pi$ and $\psi_{*}$ is the action of the element $\psi\in D(V)$ on $\Gamma$‘ (V) such that

graph$(\psi_{*}(\phi))=\psi(graph(\phi))$ , $\phi\in\Gamma$
‘ (V).
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Next let us consider the space, $\sigma(M, N)$ , of $\sigma$ mappings from $M$ to a $C^{\infty}$

manifold $N$ . Choose a $C^{\infty}Riemannian$ metric on $N$ , and define, for $f\in C^{\infty}(M, N)$ ,

a homeomorphism

$\Phi_{f}:\Gamma’(f^{*}TN)arrow C^{r}(M, N)$

by

$\Phi_{f}(h)(x)=\exp_{fae}(h(x))$

on a neighborhood, $U;$ , of the zero section. Then the coordinate system

$\{(\Phi_{f}, U_{f}), f\in C^{\infty}(M, N)\}$ ,

makes $C’(M, N)$ a Banach manifold.([3])

For the space $C’(M, N)$ , let $Z(C‘(M, N))$ be the family of Borel subsets, $E\subset$

$C’(M, N)$ , such that the set $\Psi_{f}^{-1}(E\cap\Psi_{f}(U_{f}))$ belongs to $Z(r(M, N))$ for every

$f\in C^{\infty}(M, N)$ . Since $Z(r(V))$ is invariant under the action of $D(V)$ , the definition

of $Z(\sigma(M, N))$ does not depend on the choice of $C^{\infty}$ Riemannian metric on $N$ or the

choice of $U_{f}’ s$ . In this paper, we propose to regard a set of systems $E\subset\sigma(M, M)$

as negligible when $E$ belongs to $Z(\sigma(M,M))$ . At least, we have the following basic

facts.

Lemma A. 1) Countable union of elements of the family $Z(C’(M, N))$ is also

$c$ontained in $Z(\sigma(M, N))$ . And if a Borel set $E$ is contained in a set $E’\in$

$Z(\sigma(M, N))$ , then $E\in Z(\sigma(M, N))$ .
2) Any subset $E\in Z(C’(M, N))$ has $no$ interior with respect to the $C^{r}$ topology.

From 1) above, we can define a measure $m$ on $C$‘ $(M, N)$ in the following way

$m(E)=\{\begin{array}{l}0,ifE\in Z(\sigma(M,N))\cdot\infty,otherwise\end{array}$
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Remark: We can introduce a measure $m$ on the space of vector fields, $r(TM)$ ,

in the same manner $i.e$ .

$m(E)=\{\begin{array}{l}0,ifE\in Z(\Gamma^{r}(TM))\cdot\infty otherwise\end{array}$

3. PROPERTIES OF THE MEASURE $m$

As for n-parameter families, we have the following:

Theorem B. $Ifm(E)=0$ for a Borel $su$ bset $E\subset C^{r}(M, N)$ , then, for any $pr$oba-

bility measure $\lambda$ on $[0,1]^{n}$ , we Aave

$m(S_{B,\lambda})=0$

where

$S_{E,\lambda}=\{F(x)t)\in C’(M\cross[0,1]^{n}, N)|\lambda\{t\in[0,1]^{n}|F(\cdot,t)\in E\}>0\}$

and $m$ is the measu$re$ on $C^{r}(M\cross[0,1]^{\iota}, N)wAich$ is constructed as above.

Also the following version of Thom’s transversality theorem [1] holds.

Theorem C. Let $X$ be a $C^{1}su$ bmanifold of th $e$ jet bun$dleJ$‘ $(M, N)$ , then we have

$m${ $f\in\sigma^{+1}(M,$ $N)|j’ f$ is not tran$s$versal to $X$ } $=0$ .

Remark: See [1] for the definition ofjet bundles.

The following fact shows that the measure $m$ is copmpatibl$e$ with the Lebesgue

measure (the class of measures which is equivalent to the smooth Riemannian

volume). We consider a map, for $q\leq r$ ,

$\alpha$ : $M\cross C’(M, N)arrow J^{q}(M, N)$
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defined by

$\alpha(ae, f)=j^{q}f(x)$ .

Theorem D. Let $X$ be a Borel subse$t$ of $J^{q}(M, N)$ with Lebesgue measure zero.

Then

$m${$f\in C’(M,$ $N)|(j^{q}f)^{-1}(X)$ has $p$ositive Lebesgu$e$ measure. } $=0$ .

4. PROOF OF THEOREMS

In the proof below, we always assume $N=R^{p}$ , and, thus, $C’(M, N)=\Gamma$‘ $(M\cross$

$R^{p})$ . It is a routine to extend our proof to the case $N\neq R^{p}$ .

Proof of lenuna $A$ : The claim 1) is self-evident. In order to prove 2), let us

introduce Sobolev spaces:

$W(M, R^{p})=$ { $f\in\Gamma^{0}(M,$ $R^{p})|$ d’ $f\in L^{2}$ }.

If $\iota$ is sufficiently larger than $r$ , then the inclusion map

$W^{\cdot}(M, R^{p})\subset W(M, R^{p})$

is a Hilbert-Schmidt operator. Therefore, we can construct a Gaussian measure

on the space $W’(M, R^{p})$ which is quasi-invariant along the space $W$‘ $(M, R^{p})$ and

takes positive value for every open set on $W$‘ $(M, R^{p})$ . (See [2] or the proof of

Lemma $E$ in the last section.) Since we have the following continuous inclusions,

by Sobolev’s embedding theorem,

$\Gamma^{r-[m/2]-1}(M, R^{p})\supset W(M,R^{p})\supset W^{\cdot}(M, R^{p})\supset\Gamma^{\cdot}(M, R^{p})$,

we can get the claim 2).

Proof of theorem $B$ : Let us define maps

$\xi$ : $C^{0}(M\cross[0,1]^{n}, R^{p})\cross[0,1]^{n}arrow C^{0}(M, R^{p})$
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and
$\xi_{t}$ : $C^{0}(M\cross[0,1]^{n}, R^{p})arrow C^{0}(M, R^{p})$

by

$\xi(F(\cdot, \cdot),t)=F(\cdot,t)$

and

$\xi_{t}(F(\cdot, \cdot))=F(\cdot,t)$ .

For any Borel probability measure $\mu$ on $C^{0}(M\cross[0,1]^{n}, R^{p})$ which is quasi-invariant

along C’ $(M\cross[0,1]^{n}, R^{p})$ , the measure $\xi_{t}(\mu)$ on $C^{0}(M, R^{p})$ is quasi-invariant along

$C^{\prime r}(M, R^{p})$ . Because, for any $\varphi\in\sigma(M, R^{p})$ , the following diaglam commutes:

$C^{0}(M\cross[0,1]^{n}, R^{p})arrow^{\epsilon_{\iota}}C^{0}(M, R^{p})$

$\downarrow\tau$’ $\downarrow\tau_{\varphi}$

$C^{O}(M\cross[0,1]^{n}, R^{p})arrow^{\epsilon_{\iota}}C^{0}(M,R^{p})$

where $\tilde{\varphi}=\varphi 0\pi’\in C$
‘ $(M\cross[0,1]^{n}, R^{p})$ . ( $\pi’$ : $M\cross[0,1]^{n}arrow M$ is the projection.)

Thus we have,

$\mu(\xi^{-1}(E))=(\xi_{\ell}\mu)(E)=0$

Let $\psi$ be an element of $D((M\cross[0,1]^{n})\cross R^{p})$ and put $\tilde{\psi}=\pi’’0\psi 0\iota_{t}\in D(M\cross R^{p})$

where $\pi’’$ : $M\cross[0,1]^{n}\cross R^{p}arrow M\cross R^{p}$ is the projection and $\iota_{\ell}$ : $M\cross R^{p}arrow$

$M\cross[0,1]^{n}\cross R^{p}$ is the map defined by $\iota_{t}(x, v)=(x,t, v)$ . (Here we consider $M\cross$

$[0,1]^{n}\cross R^{p}$ and $M\cross R^{p}$ as trivial vector bundles with $R^{p}$ their fiber.) Then the

following diagram commutes:
$\xi$

$C^{0}(M\cross[0,1]^{n}, R^{p})arrow C^{0}(M, R^{p})$

$\downarrow\psi$ . $\downarrow\tilde{\psi}$ .
$C^{0}(M\cross[0,1]^{n}, R^{p})arrow^{\xi_{l}}C^{0}(M, R^{p})$

and, from this, we have

$\psi_{*}(\mu)(\xi_{t}^{-1}(E))=\xi_{t}(\mu)(\tilde{\psi}_{*}^{-1}(E))=0$ .
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Therefore, for any Borel probability measure $\lambda$ on $[0,1]$ , we have

$\psi_{*}(\mu)\cross\lambda(\xi^{-1}(E))=0$

and then, by Fubini’s theorem,

$\psi_{*}(\mu)(S_{B,\lambda})=0$ .

The last expression implies the theorem.

Proof of theorem $C$ : Take a chart on an open set $V\subset M,$ $\varphi$ : $Varrow R^{m}$ , and

let $U$ be an open set whose closure is contained in $V$ . Let $\rho$ : $R^{m}arrow[0,1]$ be a $C^{\infty}$

function on $R^{m}$ such that

$\rho(x)=\{01$

,
$0ff\varphi(V)onaneig$

hborhood of the closure of $\varphi(U)$ ;

We denote, by $B$ , the space of polynomial mappings of $R^{m}arrow R^{p}$ of degree $r$ , and

define a map
$\Phi$ : $B\cross C^{\tau+1}(M, R^{p})arrow C^{r+1}(M, R^{p})$

by

$\Phi(b, f)(x)=\{\begin{array}{l}f(W)+\rho(\varphi(x))b(\varphi(x))f(W)\end{array}$ $ifx\in V;otherwise$

.

For any $f\in C^{r+1}(M, R^{p})$ , the map

$\Psi_{f}$ : $B\cross Uarrow J’(U, R^{p})\subset J’(M, R^{p})$

defined by

$\Psi_{f}(b, x)=j’(\Phi(b, f))(x)$

is a submersion. Therefore, the set

$X_{f}=\{(b, x)\in B\cross U|\Psi_{f}(b, x)\in X\}$
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is a $C^{1}submanifold$ in $B\cross U$ . Remark that the map $j’(\Phi(b, f))$ is transversal to $X$

on $U$ if and only if the point $b$ is a regular value for the map

$p$ : $X_{f}arrow B$ ,

which is the restriction of the projection $B\cross Uarrow B$ to $X_{f}$ . From Sard’s theorem,

we have
$\lambda${ $b\in B|j’(\Phi(b,$ $f))$ is not transversal to $X$ on $U.$} $=0$

for any $f\in C’+1(M, R^{p})$ , where $\lambda$ is a probability measure on $B$ which is equivalent

to the smooth Riemannian volume. Therefore,

$\Phi(\lambda\cross\mu)${ $f\in C^{\tau+1}(M,$ $R^{p})|j^{r}f$ is not transversal to $X$ on $U.$}

$=\lambda\cross\mu${ $(b,$ $f)\in B\cross\sigma^{+1}(M,$ $R^{p})|j’(\Phi(b,$ $f))$ is not transversal to $X$ on $U.$}

$=0$

for any Borel probability measure $\mu$ on $C’+1(M, R^{p})$ . On the other hand, in case

$\mu\in \mathcal{M}_{\infty},$ $\Phi(\lambda\cross\mu)$ is equivalent to $\mu$ , because

$\Phi(\lambda\cross\mu)(E)=\int_{B}\mu(\tau_{-(\rho\cdot b)0\varphi}(E))d\lambda(b)$

for any Borel set $E$ in $C’+1(M, R^{p})$ . Therefore, we have proved that the set

$T_{X,U}=$ { $f\in\sigma^{+1}(M,$ $R^{p})|j’f$ is not transversal to $X$ on $U$}

belongs to $\tilde{Z}(C^{\tau+1}(M, R^{p}))$ . Since our argument above do not change under the

action of $D(M\cross R^{p})$ , the set $T_{X,U}$ belongs to $Z(\sigma+1(M, R^{p}))$ . From this and

lemma A 1), we can see the theorem.

Proof of theorem $D$ : Let $U,$ $V,$ $\varphi,\rho,$ $B,$ $\Phi$ be those in the proof of theorem $C$

above and let $\lambda$ be a probability measure on $M$ which is equivalent to the smooth

Riemannian volume. For sufficiently small $y\in R^{m}$ , we can define a diffeomorphism

$t_{y}$ : $Marrow M$ by

$t_{y}(x)=\{\begin{array}{l}\varphi^{-1}(\rho(\varphi(x))\cdot y+\varphi(x)),ifx\in V.\cdot lotherwise\end{array}$

8
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For $v=(y, b)\in R^{m}\cross B$ with $y$ sufficiently small, let us define a mapping

$\gamma_{v}$ : $M\cross\sigma(M, R^{p})arrow M\cross\sigma(M, R^{p})$

by

$\gamma_{v}(x, f)=(t_{y}^{-1}(x), \Phi(b, f))$ .

Then, there exists a $C^{\infty}diffeomorphism$

$\gamma_{v}’$ : $J^{q}(M, R^{p})arrow J^{q}(M, R^{p})$

such that the following diagram commutes:

a
$M\cross C’(M, R^{p})arrow J^{q}(M, R^{p})$

$\downarrow\gamma$. $\downarrow\gamma’$.
ct

$M\cross C(M, R^{p})arrow J^{q}(M, R^{p})$

From this, we can see that

$\gamma_{v}’(\alpha(\lambda\cross\mu))\sim\alpha(\lambda\cross\mu)$ .

for any $v=(y, b)\in R^{m}\cross B$ with $y$ sufficiently small and $\mu\in \mathcal{M}_{\infty}$ . Since the

map $\gamma_{v}’$ in the local coordinate on $J^{q}(U, R^{p})$ is nothing but the translation by the

vector $v$ , the above equivalence implies that $\alpha(\lambda\cross\mu)$ is equivalent to the smooth

Riemannian volume on $J^{q}(U, R^{p})$ . For each $\psi\in D^{\infty}(M\cross R^{p})$ , there exists a
$C^{\infty}$ diffeomorphism

$J_{\psi}^{q}$ : $J^{q}(M, R^{p})arrow J^{q}(M, R^{p})$

which makes the following diagram commutes:
ct

$M\cross\sigma(M, R^{p})arrow J^{q}(M, R^{p})$

$\downarrow:d\cross\psi$ . $\downarrow J_{*}^{q}$

a
$M\cross C’(M, R^{p})arrow J^{q}(M, R^{p})$

Thus we have

$\lambda\cross(\psi_{*}\mu)(\alpha^{-1}(X))=\alpha(\lambda\cross\mu)((J_{\psi}^{q})^{-1}(X))=0$ .

9
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and, by Fubini’s theorem,

$\psi_{*}\mu${$f\in C’(M,$ $R^{p})|(j^{q}f)^{-1}(X)$ has positive Lebesgue measure.} $=0$

for any $\psi\in D^{\infty}(M\cross R^{p})$ and any $\mu\in \mathcal{M}_{\infty}$ . This implies the theorem.

5. A REMARK

For $\varphi\in C^{\infty}(M, R^{p})$ , let us consider one parameter families of the form

$f+t\cdot\varphi$ $t\in R,$ $f\in C’(M, R^{p})$ .

Then such set of one parameter families can be considered as a (measurable) par-

tition of the space $\sigma(M, R^{p})$ into one dimensional subspaces. The important is

the fact that, for $\mu\in \mathcal{M}_{\infty}$ , the conditional measures on each one dimensional

subspaces are equivalent to the Lebesgue measure because they are quasi-invariant

under the translation. This fact implies that we can get estimates of the value $\mu(E)$

for some $E\subset C’(M, R^{p})$ from the Lebesgue measure of the set of parameter values,

$\{t\in R|f+t\varphi\in E\}$ . This is one of the good points of our framework. The fol-

lowing lemma will be useful in proving $m(E)=0$ for some subset $E\subset C’(M, N)$ .
We denote, by $\mathcal{M}’,$ , the set of Borel probabihty measure $\mu\in \mathcal{M}$, satisfying the

following condition $(*)$ :

$(*)$ For any $\epsilon>0$ , there exists $\delta>0$ such that

$| \frac{d\tau_{\varphi}\mu}{d\mu}-1|<\epsilon$ , $\mu-a.e$ .

for any $\varphi\in\Gamma$
‘ (V) with $||\varphi||c<\delta$ .

Lemma E. For any meas$tIre\mu\in M$ , , we can find a measure $\mu’\in \mathcal{M}$:
which is $eq$uivalent to $\mu$ .

Proof: For $s=r+[m/2]+1$ , let us consider the Sobolev space $W(V)\subset C’(V)$ .

10
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If there exists a probability measure $\nu$ such that

(1) $\nu\in \mathcal{M}_{+[\frac{s}{2}m]+\}’$

and

(2) $\nu(W(V))=1$ ,

then the convolution $\mu’=\mu*\nu$ is also an element of $\mathcal{M}_{+[\frac{g}{2}m]+3}’$ and equivalent to

the measure $\mu$ . Therefore let us show the existence of such a measure. First let us

consider the case

$M=T^{m}=(R/Z)^{m}$ (m-torus), $V=T^{m}\cross R$ .

In this case, we can identify $W$ “ (V) with the Sobolev space of functions, $W$“ $(T^{m})=$

$\{f\in C^{0}(T^{m}, R)|d" f\in L^{2}(T^{m})\}$ , with the inner product

$\langle f, g\rangle_{W(T^{m})}=\sum_{|\tau\iota|\leq\iota}\int_{T^{m}}d^{w}f\cdot d^{u}gdx_{1}dx_{2}\cdots dx_{m}$ .

Then we can take the following orthonormal basis of the space $W(T^{m})$ :

$e(n_{1}, n_{2}, \cdots n_{m})=\frac{e’(n_{1},n_{2},.\cdots,n_{m})}{||e’(n_{1},n_{2},\cdot\cdot n_{m})||_{W(T^{m})}}$ , $n_{j}\in Z$

where

$e’(n_{1}, n_{2}, \cdots , n_{m})(x_{1}, ae_{2}, \cdots x_{m})=e’(n_{1}, x_{1})e’(n_{2}, x_{2})\cdots e’(n_{m}, x_{m})$

and

$e’(n, x)=\{\begin{array}{l}1,ifn=0\cdotsin(2\pi nW),ifn>0\backslash cos(2\pi nx),ifn<0\end{array}$

Consider the product space

$R^{\infty}=\prod_{(n_{1},\cdots,n_{m})}\langle e’(n_{1}, \cdots n_{m})\rangle_{R}$
.

11
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Then we can identify $W$‘ $(T^{m})$ with the following subspace of $R^{\infty}$ :

$\{ \sum_{(n_{1\prime}\cdots,n_{m})}x(n_{1}, \cdots n_{m})e(n_{1}, \cdots n_{m})\in R^{\infty}|\sum_{(n_{1\prime}\cdots,n_{m})}x(n_{1}, \cdots n_{m})^{2}<+\infty\}$

Let $\mu(n_{1}, \cdots n_{m})$ be a probability measure on the one dimentional subspace,

\langle $e(n_{1}, n_{2}, \cdots , n_{m}))_{R}$, of the form

$( \frac{a}{2})\exp(-a\cdot|x|)dx$ ,

where $\cup$

$a=( \max_{j}n_{j})^{m+1}$ ,

and consider the product of them,

$\nu_{1}=\prod_{n_{m}(n_{1},\cdots,)\in Z^{m}}\mu(n_{1}, \cdots n_{m})$
,

on $R^{\infty}$ . Put, for $c>0$ ,

$B_{c}=$
$\{ \sum_{(n_{1,\prime}n_{m})}x(n_{1}, \cdot\cdot, n_{m})e(n_{1}, \cdot\cdot, n_{m})|x(n_{1}, \cdot\cdot,n_{m})<c\cdot(\max_{j}n_{j})^{-m}\}$

.

Then it is easy to see that
$W^{\cdot}(T^{m})\supset B_{c}$

for any $c>0$ and that

$\nu_{1}(B_{c})=II\{1-\exp(-c\cdot\max_{j}n_{j})\}(n_{1},\cdots,n_{m})$

$arrow 1$ as $carrow+\infty$ .

Therefore we have

$\nu_{1}(W^{\cdot}(T^{m}))=1$ .

If $f= \sum ae(n_{1}, \cdots n_{m})e(n_{1}, \cdots n_{m})$ is contained in $W^{\iota+2m+2}(T^{m})$ , then

$\sum$ $\{(\max_{j}n_{j})^{2m+2}x(n_{1}, \cdots , n_{m})\}^{2}<c$

$(\pi_{1\prime}n_{m})$

12
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for some constant $c$ , because $d^{2m+2}f\in W^{\iota}(T^{m})$ . And we have, for such $f$ ,

$e \epsilon ssup(\frac{d\tau_{f}\nu_{1}}{d\nu_{1}})\leq\prod_{(n_{1\prime}\cdots,n_{m}}e\ell ssup(\frac{d\tau_{x(n_{1},\cdots,n_{m})e(\pi_{1},\cdot\cdot.\cdot,.n_{m})}\mu(n_{1},\cdots,n_{m})}{d\mu(n_{1},\cdot,n_{m})})$

$= \exp\{\sqrt{c}\cdot\sum_{(n_{1},\cdots,n_{m})}(\max_{i}n_{\dot{*}})^{-m-1}\}$

$arrow 1$ as $||f||_{w\cdot+2m+2}(T^{m})arrow 0$ $(carrow 0)$

(For the calculation of Radon-Nikodim derivative, see [2], Chapter 3.)

Since $c^{\tau+[\S m]+\}(T^{m})\subset W^{\iota+2m+2}$ , we have $\nu_{1}\in \mathcal{M}1_{+[\xi m]+\}\cdot\prime Therefore\nu=\nu_{1}$

satisfies the conditions (1) and (2).

In the case

$M=T^{b},$ $V=T^{m}\cross R^{p}$ ,

we have

$W$“ $(M\cross R^{p})=W$ ‘ $(M)\cross p\iota ime\epsilon\cross W^{\iota}(M)$ .

Therefore, $\nu_{p}=\nu_{1}\cross ptimes\cross\nu_{1}$ satisfies the conditions (1) and (2).

Finally, let us consider the general case. Take a open covering $\{U_{j},$ $j=$

$1,2,$ $\cdots$ , $d$} so that there exist $C^{\infty}vector$ bundle isomorphisms

$\psi_{j}$ : $\pi^{-1}(U_{j})arrow V_{j}\cross R^{p}$

where $V_{j}$ is an open set on $T^{m}$ . And, using a partition of unity $\{\phi_{j}\in C^{\infty}(M)\}_{j=1}^{d}$

subordinate to the covering $\{U_{j}\}$ , define the following embedding

$\Psi$ : $W^{\cdot}(V) arrow\bigoplus_{j=1}^{d}W^{\cdot}(T^{m}\cross R^{p})$

$f$ $arrow\bigoplus_{j=1}^{d}\psi_{j}(\phi_{j}\cdot f)$

Then the measure $\nu=\Psi^{-1}(p(\prod_{j=1}^{d}\nu_{p}))$ satisfies the condition (1) and (2), where

$p: \bigoplus_{j=1}^{d}W^{\cdot}(T^{m}\cross R^{p})arrow\Psi(W^{\cdot}(V))$

is the orthogonal projection.
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