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Introduction

The ruled surface by tangent lines to a space curve is caLled the developable surface of the

curve. More generaUy, the developable of a curve in $(n+1)$-dimensional projective space

is defined as the hypersurface “ruled” by osculating (n–l)-subspaces to the curve.

Consider a $C^{\infty}$ curve $\gamma$ : $Marrow BP^{n+1}$ , where $M$ is a l-dimensional manifold. We
$caU$ the germ $\gamma_{p}\cdot at$ a point $pEM$ of finite osculation-type (or simply, of finite type)

$a=(a_{1}, a_{2}, \ldots, a_{n+1})$ if there exist a $C^{\infty}$ coordinate $t$ of $(M,p)$ and an affine coordinate
$(x_{1}, \ldots, x_{n+1})$ of $BP^{n+1}$ centered at $\gamma(p)$ such that $\gamma$ is represented by

$x_{1}=t^{\alpha_{1}}+o(\ell^{a_{1}})$ , ..., $x_{n+1}=t^{a_{n+1}}+o(t^{a.+1})$ ,

where each $a$: is a natural number and $1\leq a_{1}<\cdots<a_{n+1}$ .
A point $p\in M$ is called an ordinary point if $\gamma_{p}$ is of type $(1, 2, \ldots,n, n+1)$ , and,

otherwise, it is called a special point.

For each $p\in M$ where $\gamma_{p}$ is of finite type and for each $i,$ $(0\leq i\leq n+1)$ , there exists

the most osculating linear subspace to $\gamma$ at $p$ in $T_{\gamma(p)}BP^{n+1}$ of dimension $i$ . We call it the

osculating i-subspace and denote by $O_{i}(\gamma,p)$ . The corresponding projective subspace of
$BP^{n+1}$ through $p$ of dimension $i$ is also denoted by $O_{i}(\gamma,p)$ . The type of a curve therefore

describles the order of tangency to each osculating subspace, and it is the simplest local

projective invariant of the curve.

We can define the osculating i-bundle $O_{i}(\gamma)$ in the pullback $\gamma^{-1}TBP^{n+1}$ . The natural

parametrization
$dev(\gamma)$ : $O_{n-1}(\gamma)arrow BP^{n+1}$
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defined by $(p, q)\mapsto q$ , where $q\in O_{n-1}(\gamma,p)(\subset BP^{n+1})$ , is cdled also a developable of $\gamma$ .
There are several results on the classification of developables of curves under the $C^{\infty}$

right-left equivalence.

For a space curve $\gamma$ , at each ordinary point $p$ , the developable has cuspidal singularities

along $\gamma$ and $dev(\gamma)_{p}$ is equivalent to $(x,t)rightarrow(x,t^{2},t^{s})$ .
Cleave [C], Gafney-du Plessis [GP] and Shcherbak [S1] prove that, at a point $p$ of

type (1, 2,4), $dev(\gamma)_{p}$ is equivalent to $(x,t)rightarrow(x,t^{2}, xt^{s})$ .
Mond [MI][M2] gives $C^{\infty}$ normal forms of developable of curves of type $(1, 2, 2+r)$ ,

$r\leq 5$ , and of type (1, 3, 4).

In the case of arbitrary dimension, Shcherbak, in [S1], shows the the developable of a

curve of type $(2, 3, \ldots,n+1,n+2)$ is equivalent to the (parametrization of) n-dimensional

swaUowtail, generarizing the observation of Arnol’d [A] for a curve of type (2, 3, 4) based

on the Legendre singularity theory.

In the connection with the study of projections of wave hont sets, Shcherbak, further

in [S2], gives the $C^{\infty}$ normal form of the union of the developable of a curve-germ $\gamma_{p}$ of

type $(1, 2, \ldots,n,n+2)$ and the osculating hyperplane $O_{n}(\gamma,p)$ . See also [K].

We can notice that the type of a curve determines the local $C^{\infty}$ class of the developable

of the curve in the above mentioned cases.

Inspired with these previous results, we are led to the natural problem that whether

a type of a curve-germ $\gamma_{p}$ determines the $C^{\infty}$ dass of map-germ $dev(\gamma)_{p}$ or not.

If such determinacy for a type a is established once, then to have the normal form

of developables of curves of type a is reduced to just a calculation of an example. The

purpose of this paper is to announce the complete solution of this determinacy problem.

THEOREM 1. $A$ type a of a curve-germ in $BP^{n+1}$ determines $C^{\infty}dass$ of developable if

and only if a is one of foIlowing types:

$(I)_{n},,$ $a=(1,2, \ldots,n, n+r)$ , $’=1,2,$ $\ldots$ ,
$(II)_{n,i}a=(1,2, \ldots , i, i+2, \ldots, n+1,n+2)$ , $0\leq i\leq n-1$ ,

$(III)_{n}a=(3,4, \ldots, n+2, n+3)$ ,

(IV) $a=(3,5)$ , (V) $a=(1,3,5)$ .
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$\mathbb{R}rtAer$ , in this case, for any $\gamma_{p}$ of type a, th$e$ map-germ $dev(\gamma)_{p}$ is $C^{\infty}$ right left

$eq$uivalent to $(x’, U(x‘,t), U,(\epsilon’,t)):B^{n},0arrow B^{n+1},0$, where $(x’,t)=(x_{1}, \ldots, x_{n-1},t)$ is

a coordinate of $(B^{n}, 0)$ ,

$U(x’,t)= \frac{t^{a}}{a_{n}!}+x_{1}\frac{t^{a.-a_{1}}}{(a_{n}-a_{1})!}+\cdots+x_{n-1}\frac{t^{a.-a.-1}}{(a_{n}-a_{\iota-1})!}$,

$r=a_{n+1}-a_{n}$ and

$U,(ae’,t)= \int_{0}^{\ell}\frac{t’}{r!}\frac{\partial U}{\theta t}\$ .

Notice that the developable apears as a component of the envelope of one-parameter

family of osculating hyperplanes to a curvegerm $\gamma_{p}$ . In the case $a_{n+1}-a_{n}>1$ , the

envelope also has a component $O_{n}(\gamma,p)$ itself. In this case therefore it is natural to classify

developables by diffeomorphisms preserving $O_{n}(\gamma,p)$ . Then we have

THEOREM 2. A type a $ofa$ cnrve-germ in $BP^{n+1}$ determines $C^{\infty}$ class of envelope of

osculating hyperplanes if an$d$ onJy if a is one of types $(I)_{n},,,$ $r=1,2,$ $\ldots,$
$(II)_{n.i}$ and

$(III)_{n},n\geq 2$ , in Theorem 1.

THEOREM 3. $A$ type a $ofa$ curve-germ $\gamma_{p}$ in $BP^{n+1}$ determines $C^{\infty}$ class of the union of

developable and $O_{n}(\gamma,p)$ if and only ifa is one of types $(I)_{n},$, and $(II)_{n},$: in Theorem 1.

These results unifies and generdizes the results of [C], [G-P] on $(I)_{2,2}$ , the results of

[A], [S1], [S2], on $(I)_{n,2}$ and $(II)_{n,0}$ , and the results of [M1] [M2] on $(I)_{2},,,$ $(r\leq 5)$ , and

(II).

The proofs of Theorems 1,2 and 3 will be given in a forthcoming paper.
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Mond’s theorem

Based on Theorem 1, we reprove the foilowing result due to Mond [M1], [M2, Corollary

0.2]:

COROLLARY. Let 7 : $B,$ $0arrow BP^{S}$ be a curve-germ of type $(1, 2, 2+r)$ . Then de$v(\gamma)$ :

$B^{2},0arrow BP^{S}$ is a topologic$aI$ embedding $ifr$ is odd, and der$(\gamma)$ Aas a single curve of

seIRntersection $ifr$ is even.

PROOF: By Theorem 1, dev(7) is $C^{\infty}$ equivalent to the germ at $0$ of

$f(x,t)=(x, \frac{t^{2}}{2}+xt, \int_{0}\frac{\prime}{r!}(s+x)ds)$ : $B^{2}arrow B^{S}$ .

Now, assume $f(x_{1},t_{1})=f(x_{2},t_{2}),$ $(x_{i},t_{*}\cdot)EB^{2},$ $i=1,2$ . Then we see $x_{1}=x_{2},$ $x_{1}=$

$-(1/2)(t_{1}+t_{2})$ and $\int_{\ell}^{\iota_{1^{2}}}\ell(\ell+x_{1})d\iota=0$ . Thus, setting $\sigma=s+x_{1}$ , we have

$\int_{-a}^{a}(\sigma-x_{1})\sigma d\sigma=0$ ... $(*)$ ,

where $a=(1/2)(t_{2}-t_{1})$ .
If $r$ is odd, then the left hand side of $(^{*})$ is equal to an integral $hom-a$ to $a$ with almost

everywhere positive integrand. Hence we have $a=0$. This means that $(x_{1},t_{1})=(x_{2)}t_{2})$

and that $f$ is injective.

By a similar argument, if $r$ is even, then we have $z_{1}=0$ or $(x_{1},t_{1})=(x_{2},t_{2})$ .
Since $f$ is a finite mapping and $f|\{ae=0\}=$ $(0,t^{2}/2,(r+1)\{t‘+2/(r+2)!\})$ , we see $f$

is an embedding in the complement of a double point curve $\{a=0\}$ .
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