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A multivariable quantum determinant

over a commutative ring

HIROYUKI TAGAWA

Department of Mathematics

University of Tokyo

Recently, the quantum determinant (which was found for example
in [NYM]) appeared in many interesting ways in the representations of
the quantum groups, this notion was defined for the matrices whose
components satisfy the quantum commutation relations. In this article,
we consider the quantum determinant over a commutative ring, formally
using the expression in the definition. Also we define a multivariable
quantum determinant which contains several parameters ¢1,¢2, - ,qn
and coincides with the original quantum determinant if we specify ¢ =
g1 = q2 = -+ = ¢n. We find expansion formulas in terms of a refinement

of inversion numbers.

§1 Definitions and some properties

First, we introduce some notations and define a multivariable quan-

tum determinant.
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DEFINITION 1.1.

Let S, be the symmetric group of degree n and let [n] denote the
set of positive integers up to n. For w € &, and ¢ € [n], we define the

inversion set L;(w) at ¢ and the inversion number £;(w) at ¢ by
Li(w) := {(4,4);¢ < j,w(i) > w(j)} and
€i(w) := §Li(w).
Then, the (total) inversion number ¢(w) is defined by
l(w) := £r(w) + La(w) + -+ + La(w).
(Of course, £,(w)=0 for all w € &,, but we use this notation in

order to avoid the confusion in case n=1.)

Let K be a commutative ring aﬁd let ¢ and ¢; be variables (for
all ¢ €[n]) and q denotes the n-tuple of variables (¢1,92, - ,¢n). For
A = (ai;) € M(n,K), the quantum determinant of A is, by definition,
given by

dety A := Zwesn(_Q)Z(w)alw(l)GZw(Z) * Qpw(n)-

Similarly, we introduce a multivariable quantum determinant de-

fined by
detq 4 :=3 s, (—0 e (@) (—gy)2(w) ... (—g, )en(w)
‘A1w(1)2w(2) * " " Cnw(n)-

We call detq A the q-determinant of A.

EXAMPLE 1.2.
b ¢
detq | d e f | =aei—grafh—q1bdi+q1g2bfg+q1%cdh—g1%gaceg.
g h



From the definition, we have the next properties.

(i) For all A € M(n, K), we have
dety A = det(y,,... q) A and det; A=detA.

(ii) Both for the quantum determinant and the g-determinant, the mul-
tilinearities with respect to the rows and the columns are valid as in the

case of the ordinary determinant.
(iii) In general, detq A # detq A, but det,*A = det, A becausel(w) =
L(w™?) for all w € G,.

§2 Expansion formulas

First, we define a multivariable g-analogue of the complementary

matrix of A in order to show expansion formulas of the q-determinant.

DEFINITION 2.1.
Forn > 2, A = (ai;) € M(n,K) and 1 < ¢,j < n, we define the

(4,7)-q-complementary matrix 4;;(q) by

Aij(q) =
[ @, ai,j-1 —g101,j41 ~q101,n |
a2’1 tee azvj_l "‘I2a2,j+1 —q2a2,n
Gi-1,1 Ai-1,5-1 —qi—1@i-1,541 -+ —Gi-1Gi-1,n
—qiGi+1,1 —qiGit+1,5-1 ait+1,541 ait+1,n
—qidi4+2,1 —qiGi42,5-1 Ai42,541 Qit2,n
\ —(qiQn,1 —qiln,j—-1 Qn, j+1 Qn,n

€ M(n -1, K][q)),

33
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where ag ¢ := age (1 < k,2 < n).

Then, for A = (ai;) € M(n,K) and ¢ € [n], we have the following.

PROPOSITION 2.2.

detq A = E;l=1 aij det(Ql ,112,""#;:,"' )971) A'](q)’

where (QI’qZ’,"' aé\ia"' ,Qn) = (q1:q2a"'

In particular,

detq A =
Z;'l=1 (=) 'ay;

az

asi
) det(q2!q3,"' ,Qn)

Qn,1

azsj_l

as j—1

apn,j—1

az,j+1

as,j+1

Gn,j+1

yqi—1,4i41, " ,Qn)-

az,n

as.n

Qn,n

This formula is expansion formula with respect to the first row and

it is much more similar to the expansion of the ordinary determinant.

Proor:

This can be easily obtained from the multilinearity with respect to

the rows and the following Lemma 2.3. |}

LEMMA 2.3.

For A = (ai;) € M(n,K) and ¢ € [n], we obtain



/ ai. (11,]'_1 ’ a]’\j ay,j+1 ain \
Ai-1,1 .- ai-1,5—-1 ai—1,j ai—1,541  --- Gi-1n
detq 0o .- 0 - a;,j 0 L 0
ai+1,1 e Qig1,5-1 ait1,j Ait+1,5+1 cee Qit1n
\ an,1 Cees Un,j—1 Qn,j Qn,j+1 N Qn,n /

= at] det(qhQZ e 73:"" ,Qn) At](q)-

PRrOOF:

From the shape of thé niatrix of the left hand side;, we may think
only the case of w(i) = j in the explicit expansion of the q-determinant.
If ¥k <iand wk) >j (¢ < kand j > w(k) ), then the pair (k,7) €
Li(w) ( (¢,k) € Li(w) ). So, we have this lemma. 1

Note that similar expansion formulas with respect to the columns

also hold.

Next we show an analogue of the Laplace expansion formula of the

q-determinant. We introduce some more notations.

DEFINITION 2.4.

For A= (a;;) e M(n,K),1<m<n,1<r <rp<---<rpy<n

and 1 <s; <8< <8 <1,

we put
bij = arys; (1<4,7 <m),
Cij 1= (—qr'_)si‘ja,,.»'fsj (1<4,7<m),

5
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$1,82,""* ,8m

rl,rz,-co,rm , .
D( ) := (b;;) € M(m,K) and

: ( ""”‘) = (cij) € M(m, K[q]).

81382, 1, 8m

Then, for k € [n], we have the next formulas.

PROPOSITION 2.5.

- 1,2,--- ,k
(1) detq A = E det(ql,q2r"' ,Qk) Dq .

11,12, , 2k
{il)i2y;" )ik}<u{ik+1 yik+21"' 1in}<={n]

k+1,k+2,--- ,n)

~detgy sy ,qnq2,a) D | . ;
Lk+15%k+2,° " 5ln

(11) detq A= E(—qik+1 )k+1—ik+1(_qik+2)k+2—ik+2 A (—Qin )n—in
{ir,iz, ik} cU{ikg1,ik42, 5in } =[n]

d D il,i2,"',ik
cdetig. g ... i
(9iyGips98iy) 1,2’... ,k

d Tk4+1,0k425"" " 5l
M et(qik+1 196k+2,“‘ ,ql';)) ) k + 1 k + 2 ()
] b 9

PROOF:

We can easily obtain this proposition from next Lemma 2.6, Lemma

2.7 and Lemma 2.8. §

LEMMA 2.6.
We put
Q = {w € Sp;w(i) <w(i+1) foralli € [n— 1]\ {k}},

6



Q= {w € 63 w(i) =i for all i € [n] \ [k]} (& &) and
Qs i= {w € Sn;w(i) =i for all i € [K]} (& Sn_s).
Then, we have
@) 6,=2%00% and
(ii) €i(w) = Loy(iy(01) + Li(o2) + Li(os)
={ €o,()(01) + li(o2) ifi € [k]
ti(o3) ifi € [n] \ [K]

for all i € [n] and all w = 610503 (0; € Q;,5 = 1,2,3).

PROOF:
(i) is a well known formula, so we will prove (ii).
First, for w € 6,, and i € [n], we put
L (w) = {(5,5)1 <i <k k+1< 5 <nw(i) > w()},
LP(w) == {(5,4);1 S i < j < k,w(i) > w(j)} and
L (w) = {(5,3) k +1 <0 < § <nyw(i) > w(j)).
Then, we have the next formula.
Li(w) = LY (w) T L (w) T L®(w)  (disjoint union)
(e £i(w) =LY (w) + 4L (w) + L (w))
So, we will show (a) §L{" () = £4,(;)(01), (b) $L{ (w) = £i(02) and
(c) nL53)(w) = {i(03), where w = 0y0,03 (0 € Q;,7=1,2,3).
We define the mappings ¢; from Lgl) (w) to Lgyei(o1), 2 from
LEZ)(w) to Li(o2) and @3 from Lga)(w) to Li(¢3) as follows :
01((2,7)) := (02(3), 03(4)),
¢2((3,7)) = (3,5) and
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Then, @1, 2,3 are bijections. Hence (a),(b),(c) are valid. So, we
obtain the first equation of (ii).

The second equation of (ii) follows immediately from the definitions.

LEMMA 2.7.

Under the same assumptions as Lemma 2.6, we have
(i) 6, = Q071

Moreover, for j € [n] and w € &, we put
Lj(w) = {(i,4);i < j,w(i) > w(j)} and
£(w) = 4L (w).

Then, we have the next formulas.
(i) £(w) = Lyy(w™?) for all i € [n] and all w € &,,.
(i) £:(10) = &1 (01) + £y (02) + £y y (0)

for all i € [n] and all w = 020307 " (0; € Q5,5 = 1,2,3).

ProOF:

(i) follows from Q, = Q710 = Q37 Q05 = 30, and Lemma

2.6-(1) easily. So we will show (i) and (iii).

We define the mapping ¢ from L;(w) to Lm)(w‘l) as follows :

¢((5,7)) = (w(3), w(z)).

Then ¢ is bijection, so we obtain (ii).
Next, for w € &, and i € [n], we put

8
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IO () = {(i,§) € Li(w)i1 < 0,7 () < bk +1 < o171(5) < n}
IO (w) := {(i,5) € Li(w)1 < al-l(i),‘al—‘(3)$s’ k} and
IO (w) = {(1,§) € Li(w)i k +1< 0y=2(8),01=2() < ),

where w=03030,7! (0 € Q; j=1,2,3).

Then, since {(1,7) € Li(w);1 < 0771(:) < k,k+1 < 0,71(j) <

n}=0, we have the following formula.
Li(w) = ifT)(w) Hljf\z/)(w) o I/J\f;)(w) (disjoint union).
So, we will show
@ P(w) = ti(or ™),
(b) IL (1) = £y, -1(3)(02) and

(©) ﬂf”(w) = Ly1(03).

We define the mappings ¢; from L( )(w) to Liy(o171), 92 from
L(2)(w) to Ly, -1(;)(02) and 13 from L( )(w) to Ly, -1(;)(03) as follows :

$1((4,4)) = (i,5),
$2((5,9)) = (0171(4),017(j)) and
¢3((z 7)) —(01 1(8),0171(3))-
Then, 11,42, %3 are bijections. Hence (a) (b), (c) are valid. So, we

have (iii) from (a),(b),(c) and (ii). §

LeMMA 2.8.

For o1 € Qy,m € [k] and s € [n] \ [k], we have

lm(01) = 01(m) —m and Z,(a]) =3 — al(s’).
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PROOF:

This Lemma follows ’from the definition of ; éasily. |

COROLLARY 2.9.
For A = (ai;) € M(n,K), k € [n], we have the following formulas.

k

(im—m) 1,2, ,k
(i) detg, A= Y (—g)==t det,D| _
21522y y 2k
{il 1i2)"' )ik}< U{ik+1)ik+23"' ,i,,}<=[n]

k+1,k+2,- n
~detg D | ] ) .
tk4+152k42," " 5in

k

. 2 (im=m) 11,22, 5k
(i) detg A= Y (—q)m= dety, D Lo L

{il ’i2,"' yik}< U{ik-l-l 1ik+2y"' 7in}<=[n}

det, D Lk41,2k425" " 5 ln .
k+1,k+2,--,n

83 Some applications

We will give an extension of the length generating function for cer-

tain subsets of G,,.

DEFINITION 3.1.

For k € [n], we put
) = {w € Gp;w(i) <i+k—1for all ie [n]}. .

Then, we have

10



PROPOSITION 3.2.

£ 4 Ly -k —k .
Ewesﬁ.") qll(w)q22(w) R (w) _ H;;l (kg Hj=1(])9n—j+1)
where () :=1+q+¢*+ -+ ¢ .

In particular,

Zwesf.") qt(w)

=(1+g+ @+ -+ )L A +a+ 2+ +47).

PROOF:

Let us consider the following matrix.

k-times
(1 1 1 110 -0 \
1 1 1--1{1 00
1 1 1 11 1 0
MP=]111-1[1 - 11 |€MnR)..
1 1 1 11 11
\1 1 1 - 1|1 -1 1)

From the shape of the matrix, non zero terms occurring in the ex-

plicit expansion of the q-determinant correspond to the elements of S
k w

On the other hand, we obtain the next formula by the exparision formula

with respect to the 1-st row and induction.

detq M'(lk) = H‘::lk(k)—q.' Hf:l(j)-—q,.-;.;.; .

11
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Hence

w) ' nlW k
Ewes,(,") qfl( )qﬁz(w) _qﬁ (‘ ):det._q M,(, )

—k k .
=H?—_—1 (k)g: Hj:l(J)yn-,~+1- |
We obtain the following formulas from Proposition 3.2

COROLLARY 3.3.
. H(w) o(w O (w
(i) EwGGn Q1l( )Q22( )“‘Qn ()
j—1
= H?:](l +qn—j+1+ q,zl_j_‘_l +--- 4+ qu—j+1)-

(i) Yues, ¢ =[Tjea(L+a+ +--+ ¢,

Note that (ii) is a well known formula ( for example, see [S] ).

By a similar argument, we can also show that the Fibonacci number

fn is given in the following manner.

fa=H{w € 6pnji—1<w(i) <i+1for all i€ [n]}.

We would like to conclude this article with the following rémark on

multiplicativity for q-determinant.

Let K be a commutative ring with unit. Suppose we could define a

"

g-product “xg’ over M (n, K(q)) having the following properties :

(1) The g-product “#4” coincides with the ordinary matrix product if
we specify q=(1,1,---,1).

(2) For all A,B € M(n,K(q)), detq(A *q B) = (detq A)(detq B).
Then we would be able to find more interesting properties about the

12



q-determinant. But so far, we can only define such a product for n<2.

REMARK 3.4.

For n > 3, the product of the next form seems to be natural and
satisfies the condition (1) a’bove,“but unfortunately this does not satisfy

the condition (2) above.

| FOI' A ((l,]) B = (bz]) S M(n I{(Q))

), - k@ g

Axq B = 21<z g, k<n aikbrjqy 2 ij>

where E;; (1 < ¢,j < n) are the matrix units and ri(m) (1 <
i,7,k,m <n) €R. ’
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