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On an affine space partition of the variety of N-stable flags

and a generalization of the length-MAJ symmetry

ITARU TERADA

Department of Mathematics, University of Tokyo

1. Introduction. J. Matsuzawa introduced in his talk at Nagoya Conference for Com-

mutative Algebra and Combinatorics, August 1990 (or even $e_{c\urcorner rlier}$ at the AMS Sum-

mer Institute at Arcata 1986) the following two-variable polynomial $G_{\mu}(q,t)$ which could

be regarded as a simultaneous “q-analogue” of the Poincar\’e polynomials of two vari-

eties. Let $\mu$ be a partition of $n$ (namely $\mu=(\mu_{1}, \mu_{2}, \ldots, \mu\iota)$ with $\mu_{i}\in Z>0$ such that

$\mu_{1}\geq\mu_{2}\geq\cdots\geq\mu\iota$ and $\sum_{i=1}^{n}\mu_{i}=n$). We fix such $\mu$ once and for all in this note. Then

his polynomial is:

$G_{\mu}(t, q)= \sum_{\lambda\vdash n}I^{\sim_{\zeta_{\lambda_{l}\iota}(q)I\zeta_{\lambda’(1^{n})(t)}}}$
.

In this expression $\lambda\vdash n$ means that $\lambda$ is a partition of $n$ , and $\lambda’$ is the conjugate partition

of $\lambda$ defined by $\lambda‘=$
$(\lambda_{1}’, \lambda_{-}’,, . .., \lambda_{l}’,),$ $l‘=\lambda_{1},$ $\lambda_{j}’=\#\{i|\lambda_{l}\backslash \geq j\}(1\leq j\leq l’)$ (see [Mac,

p. 2]).

Then an interesting property is the following:

$G_{\mu}(t^{2},1)=P_{\mathcal{P}_{\mu}}(t)$ , and $G_{\mu}(1, q^{2})=P_{B_{N}}(q)$ .

The right hand sides denote the Poincar\’e polynomials of the varieties $\mathcal{P}_{\mu}$ and $\mathcal{B}_{N}$ respec-

tively. $\mathcal{P}_{\mu}$ is a generalized flag variety of $GL(n, C)$ associated to its parabolic subgroup of

type $\mu$ ; namely the variety consisting of all chains $V_{1}\subset V_{2}\subset\cdots\subset V_{l}$ of linear subspaces

of $C^{n}$ with $\dim V_{i}=\mu_{1}+\mu_{2}+\cdots+\mu;(1\leq i\leq l)$ .

The other variety $\mathcal{B}_{N}$ is the key subject of this note. Let $N$ be a nilpotent $n\cross n$ matrix

with Jordan cells of size $\mu_{1},$ $\mu_{2},$ $\ldots,$ $\mu_{l}$ . (Such $N$ will be called of Jordan type $\mu.$ ) Then $\mathcal{B}_{N}$
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is defined to be the variety of all N-stable complete flags, i.e. chains $V_{1}\subset V_{2}\subset\cdots\subset V_{n}$ ,

$\dim V:=i(1\leq i\leq n)$ , of subspaces of $C^{n}$ each of which is stable under the transformation
$N$ . Since all such $N$ are conjugate (for a fixed $\mu$ ) under conjugation by $GL(n, C),$ $\mathcal{B}_{N}$ is

isomorphic for all such $N$ .

In this note we give a comb:natorial interpretation of this polynomial. We use a result

on connection between a partition of the variety $\mathcal{B}_{N}$ into affine spaces and the Schubert

cell decomposition of the variety $B$ of all complete flags, and we borrow a recent theorem

on the Springer representation due to G. Lehrer-T. Shoji and N. Spaltenstein.

The main result is described as follows.

TIIEOREM. Let $\mu$ be a partition of $n$ , and $G_{\mu}(q, t)$ be defined as above. Then we have:

(1)
$G_{\mu}(t, q)= \sum_{T\in RDT(\mu)}q^{l(T)}t^{MAJ(w_{T})}$

,

where the notation is explained below.

Notation. $RDT(\mu)$ is the set of row-decreasing tableaux of shape $\mu$ . By a row-decreasing

tableau here we mean a tableau in which each letter in the range 1 through $n$ appears

once and the entries in each row decrease from left to right. (The row-decreasing tableau

is a temporary term used in this note.)
$l$ in the right-hand side is a function $RDT(\mu)arrow Z_{\geq 0}$ defined in \S 3. It reduces to the

usual length function on $\mathfrak{S}_{n}(l(w)=\#\{(i,j)|1\leq i<j\leq n, w(i)>w(j)\})$ in the case

$\mu=(1^{n})$ . $Trightarrow w\tau$ is an injective map $RDT(\mu)arrow \mathfrak{S}_{n}$ also defined in \S 3. $MAJ(w)$ denotes

the major index (also called the greater index) of $w\in \mathfrak{S}_{n}$ , namely $MAJ(w)=$
$\sum_{1<i\leq n-1}i$

(see [St, p. 23]). $w(:\overline{)}>w(i+1)$

The formula (1) reduces to the following expression which represents the length-MAJ

symmetry proved by D. Foata and M.-P. Sch\"utzenberger in [FS]:

(2)
$\sum_{w\in 6_{n}}q^{l(w)}t^{MAJ(w)}=\sum_{\lambda\vdash n}If_{\lambda(1^{n})}(q)I\zeta_{\lambda(1^{\mathfrak{n}})(t)}$

.

Their method was to construct a bijection $\phi:\mathfrak{S}_{n}arrow \mathfrak{S}_{n}$ preserving the “inverse” descent

set $D(w^{-1})=\{i|1\leq i\leq n-1, w^{-}(i)>w^{-1}(i+1)\}$ (see [St, p. 21] for $D(\cdot)$ ) and

satisfying $l(\phi(w))=MAJ(w)$ .
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H. Naruse gave another proof of. (2) using the representation of $\mathfrak{S}_{n}$ on $H^{*}(B, C)$ . He

also gave some suggestions as to a partition of $B_{N}$ into affine spaces and a definition of

the function $l$ above. This brief note is a realization of his idea. The detailed version will

be published elsewhere.

2. Kostka-Foulke $s$ polynomials and nice bases for $C[\mathfrak{S}_{n}]$-modules. First let us

recall some properties of the Kostka-Foulkes polynomials. The $I^{\sim_{\zeta_{\lambda\mu}(q)}}$ are defined from

the $K_{\lambda\mu}(q)$ by the relation

$I^{\sim_{\zeta_{\lambda\mu}}}(q)=q^{n(\mu)}K_{\lambda\mu}(q^{-1})$ where $n( \mu)=\sum_{i=1}^{l}(i-1)\lambda_{i}$ .

For the definition of $I_{1_{\lambda\mu}’}(q)$ , we refer the reader to [Mac, \S III.6].

Here are some properties of the Kostka-Foulkes polynomials. Let $\lambda$ and $\mu$ be partitions

of a positive integer $n$ .

PROPERTY 1. $K_{\lambda\mu}(1)$ is equal to $I\zeta_{\lambda\mu}$ (the Kostka number), which can be counted as

the number of semistandard tableaux (called just tablaux in [Mac]) with shape $\lambda$ and

weight $\mu$ (see [Mac, \S III.6]).
PROPERTY 2. $I^{\sim_{\zeta_{\lambda\mu}(t)}}= \sum_{i}\langle H^{2i}(\mathcal{B}_{N}, C), V_{\lambda}\rangle_{6_{\mathfrak{n}}}q^{i}$

(see [Mac, Ex. III.7.9]. Caution:

In [Mac] $\mathcal{B}_{N}$ is denoted as $X_{\mu}$ ). Here $H^{2i}(\mathcal{B}_{N}, C)$ is regarded as a $C[\mathfrak{S}_{n}]$-module via

the so-called Springer representation. There seems to be two kinds of the Springer rep-

resentations differing from each other by the signature character. Here we use the one in

which the trivial representation appears in $H^{0}$ . The symbol $V_{\lambda}$ denotes the irreducible
$C[\mathfrak{S}_{n}]$ -module indexed by the partition $\lambda$ . The angular bracket ( , } $e_{n}$ denotes the

intertwining number of $C[\mathfrak{S}_{n}]$ -modules.

PROPERTY 3.
$I \iota_{\lambda(1^{n})}’(t)=\sum_{T\in STab(\lambda)}t^{c’(T)}$

(see [Mac, Ex. III.6.2]). Here STab$(\lambda)$ is

the set of the standard tableaux of shape $\lambda,$ $n_{c}\gamma rnely$ tableaux containing each letter from

1 to $n$ once and in which the entries increase (a) from left to right along each row and

(b) from top to bottom along each column. If $T\in STab(\lambda)$ , then $c’(T)$ is the sum of

$i(1\leq i\leq n-1)$ such that $i+1$ lies to the right in $T$ (in the shaded part of Fig. 1).

There is a similar (but more complicated) interpretation of $K_{\lambda\mu}(t)$ for a general $\mu$ , shown

by A. Lascoux and M.-P. Sch\"utzenberger, as a sum of some powers of $t$ determined by
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the positions of entries in the semistandard tableaux of shape $\lambda$ and weight $\mu$ (see [Mac,

\S III.6]), but we don’t need that. Using this, we also know that $I\zeta_{\lambda(1^{\mathfrak{n}})(t)}=\Xi(V_{\lambda})$ defined

just below.

Fig. 1.

Definition (nice bases). Let $(\rho, V)$ be a representation of $\mathfrak{S}_{n}$ over $C$ , and let $s_{i}(1\leq$

$i\leq n-1)$ denote the transposition $(i, i+1)\in \mathfrak{S}_{n}$ . A basis $\{e_{k}\}_{k\in K}$ of $V$ (where $K$ is

some index set) is called nice if there exists a subset $K_{i}$ of $K,for$ each $i(1\leq i\leq n-1)$

for which the $p(s;)- fixed$ part of $V$ is precisely spun by the basis vectors indexed by the

elements of $K;:V^{\rho(s:)}=\oplus_{k\in K:}Ce_{k}$ .

Remark (existence). It is known that any $C[\mathfrak{S}_{n}]$-module admits a nice basis. In fact,

since any $C[\mathfrak{S}_{n}]$-module is semisimple, it suffices to show that any irreducible $C[\mathfrak{S}_{n}]-$

module has one. Let $(p_{\lambda’}, V_{\lambda’})$ be the irreducible representation of $\mathfrak{S}_{n}$ indexed by the

conjugate partition of $\lambda$ . The representation of $\mathfrak{S}_{n}$ on $V_{\lambda’}$ obtained by sending $s$ ; to

$.-p_{\lambda’}(s;)$ is also irreducible and is equivlent to the one indexed by $\lambda$ . Then any W-graph

basis of $V_{\lambda’}$ serves as a nice basis for $\rho_{\lambda}$ (not $\rho_{\lambda’}$ ).

Definition $(\Xi(V))$ . Let $(\rho, V)$ be as above, and let $\{e_{k}\}_{k\in K}$ be a nice basis. We define

$\Xi(V)$ to be a polynomial in $t$ obtained by summing up, for $k\in K$ , the monomial obtained

by raising $t$ to the power $\sum$ $i$ .
$1\leq i\leq n-1$

$\rho(S_{1})e_{k}=e_{k}$

Remark. $\Xi(V)$ is independent of the choice of the nice basis. $\Xi(V)$ is clearly additive

with respect to $V$ .
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3. Reduced lengths or folded lengths of row-decreasing tableaux and the

representatives $w\tau$ . The reduced (or folded) length is a temporary term used in this

note.

Definition $(l(T))$ . Let $T$ be a row-decreasing tableau of shape $\mu$ . We define its reduced

or folded length $l(T)$ to be the sum for $i$ in the range $1\leq i\leq n-1$ of the number $l_{i}(T)$

of entries greater than $i$ sitting in the shaded area in Fi$g$ . $2$ .

Fig. 2.

10864

Example $(l(T))$ . Let $T=1131972^{\cdot}$ This is a row-decreasing tableau of shape (4, 3, 3, 1).
5

We have $l_{1}(T)=1,$ $l_{2}(T)=1,$ $l_{3}(T)=1,$ $l_{4}(T)=0,$ $l_{5}(T)=3,$ $l_{6}(T)=0,$ $l_{7}(T)=1$ ,

$l_{8}(T)=0,$ $l_{9}(T)=2$ and $l_{10}(T)=l_{11}(T)=0$ , so that $l(T)=9$ .

Definition $(w\tau)$ . Let $\mu$ be a partition of $n$ . Then we denote by $T_{\mu}^{0}$ the row-decreasing

tableau of shape $\mu$ obtained by putting the letters 1 through $n$ starting from the rightmost

column and proceeding to the left, filling each column from top to bottom. For any row-

decreasing tableau $T$ of shape $\mu$ , we denote by $w\tau$ the element of $\mathfrak{S}_{n}$ obtained by reading

the entries of $T_{\mu}^{0}$ in the order designated by $T$ . In other words, if the position $(p, q)$ in $T$

is filled by $i$ , then the same position $(p, q)$ in $T_{\mu^{0}}$ is filled by $w_{T}(i)$ .
8 521

Example $(w\tau)$ . If $\mu=(4,3,3,1)$ , then $T_{\mu}^{0}=1074963$ . For the row-decreasing tableau $T$

11

shown in the above example, we have $w\tau=(\begin{array}{llll}51234 678 9 101134611127510 89\end{array})$ .

Remark. If $\mu=(1^{n})$ , then any tableau of shape (1“) containing each of letters 1 though

$n$ exactly once is clearly a row-decreasing tableau. If we denote the entry in the i-th row

5
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by $\sigma(i)$ , then $w\tau=\sigma^{-1}$ and $l(T)=l(\sigma)$ . This shows that, in this case, our result reduces

to the identity (2) in \S 1 describing the length-MAJ symmetry.

4. Preparation of the proof of the identity. As can easily be seen from Property 3,

we have $I\zeta_{\lambda’(1^{\mathfrak{n}})(t)}=t^{\frac{n(n-1)}{2}1_{-\lambda(1^{n})}’(t^{-1})}(=I^{\sim_{\zeta_{\lambda(1^{\mathfrak{n}})(t))}}}$ and the lesser index LES$(w)$ if $w$

defined by LES
$(w)=w(i)<w(i+1) \sum_{1\leq i\leq n-1}i$

satisfies LES$(w)= \frac{n(n-1)}{2}-MAJ(w)$ , our assertion

is equivalent to the following identity:

$c_{LAIM}.\sum_{\lambda\vdash e_{\mathfrak{n}}}I^{\sim_{\zeta_{\lambda\mu}(q)I\zeta_{\lambda(1^{\mathfrak{n}})(t)=\sum_{T\in RDT(\mu)}q^{1(T)}i^{LES(w_{T})}}}}$
.

We prove this identity by computing

$G’(q, t)= \sum_{j}\Xi(H^{2j}(\mathcal{B}_{N}, C))q^{j}$

(where these cohomology groups are regarded as $C[\mathfrak{S}_{n}]$-modules via the Springer repre-

sentation) in two different ways.

First, we compute $G’(q,t)$ according to the irreducible decomposition of $H^{*}(\mathcal{B}_{N}, C)$

and show that it gives the left-hand side of the claim. We have

$G’(q, t)= \sum_{j}\sum_{\lambda}(H^{2j}(\mathcal{B}_{N}, C),$
$V_{\lambda}$ ) $\Xi(V_{\lambda})q^{j}$

$= \sum_{\lambda}I^{\sim_{t_{\lambda_{l^{l}}}’(q)\Xi(V_{\lambda})}}$
(by Property 2)

$= \sum_{\lambda}I^{\sim_{\zeta_{\lambda\mu}}}(q)I\zeta_{\lambda(1^{n})(t)}$
(by Property 1)

which equals the left-hand side of the claim.

5. An affine space partition of $\mathcal{B}_{N}$ and the Schubert cells. Now we use a partition

of $B_{N}$ into affine spaces to show that $G’(q,t)$ is equal to the right-hand side of the claim.

Such a partition has been given by N. Spaltenstein [Sp] for $\mathcal{B}_{N}$ and by N. Shimomura

[Sh] for a similar variety consisting of N-stable generalized flags.
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Our point here is to clarify the relationship between such a partition and the Schubert

cell decomposition of $\mathcal{B}$ , the variety consisting of all complete flags in $C^{n}$ . Let

$\mathcal{B}=I1_{n}^{x_{w}}w\in 6$

$X_{w}\approx C^{l(w)}$

be a Schubert cell decomposition of B. (See [$H$ , p. 121-122] for example, although there

is considerable difference in notation.) It is quite natural to ask the following question.

PROBLEM. Put $X_{w,N}=X_{w}\cap \mathcal{B}_{N}$ . Does $\mathcal{B}_{N}=II_{w\in e_{\mathfrak{n}}^{X_{w,N}}}$ give a partition into affine

spaces2

In general, this is not true. More precisely, it depends on the position of the “reference

flag” (the unique element of $X_{e}$ , where $e$ denotes the identity element of $\mathfrak{S}_{n}$ ) with respect

to the chosen transformation $N$ . If one takes the usual Jordan canonical form for $N$ and

the “canonical” flag $(V_{1}^{0}, V_{2}^{0}, \ldots, V_{n}^{0})$ defined by $V_{j}^{0}=\oplus_{i1}^{j_{=}}Ce_{i}(j=1, \ldots, n)$ where

$e;=$
$(0, \ldots , 0,1, 0\vee:, \ldots , 0)$ , then we have a negative answer for $\mu=(3,3)$ . (Recall that $\mu$

is the Jordan type of $N.$ )

However, if we $tal\{e$ the following particular transformation $N_{\mu}$ for $N$ (and keep the

canonical reference flag) then the answer is positive.

We specify $N_{\mu}$ using the tableau $T_{\mu}^{0}$ defined in \S 3. We present this rule through an

example. Let $\mu=(4,3,3,1)$ , then $N_{\mu}$ is defined by reading the rows of $T_{\mu}^{0}$ as follows

8 5 2 1

$T_{\mu}^{0}=9$
6 3

$N_{\mu}$ :
10 74

11

$/e_{8}\mapsto e_{5}\mapsto e_{2}\mapsto e_{1}\mapsto 0$

$e_{9}rightarrow e_{6}\mapsto e_{3}rightarrow 0$

$e_{10}\mapsto e_{7}\mapsto e_{4}\mapsto 0$

$\iota e11\mapsto 0$

Now we have the following result:

THEOREM. Let $\mu\vdash n$ and $N_{\mu}$ be defin$ed$ as above. Let $X_{w}$ be the Schubert cell with

respect to the $c$anonic$al$ reference fiag and put $X_{w,N_{\mu}}=X_{w}\cap \mathcal{B}_{N_{\mu}}(w\in \mathfrak{S}_{n})$. Then

(1) $X_{w,N_{\mu}}\neq\emptyset$ if an $d$ on$ly$ if $w=w\tau$ for $someT\in RDT(\mu)$ ,
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(2) $X_{w_{T},N_{\mu}}\approx C^{l(T)}$ for $T\in RDT(\mu)$ , where the function $l(T)$ is defined in the earlier

section.

Remark. (1) $(V_{1}, V_{2}, \ldots, V_{n})\in X_{w_{T}}$ , $N_{\mu}$ if and only if all $V_{i}$ are stable under $N$ (i.e. this

flag belongs to $\mathcal{B}_{N_{\mu}}$ ) and the sizes of the Jordan cells of $N_{\mu}$ acting on $V/V$; are the lengths

of the rows of the tableau obtained from $T$ by removing the squares that are marked as

1 through $i$ .
(2) For $T\in RDT(\mu)$ , the subset

$T\in RDT(\mu)LI^{X_{w_{T}}}$
is closed in $B_{N_{\mu}}(\prec$ denotes the

Bruhat order). $w_{T},\prec w_{T}$

Due to (2) above, the fundamental classes of $X_{w_{T},N_{\mu}}$ form a basis of the homology

groups $H_{*}(\mathcal{B}_{N_{\mu}}, C)$ . Therefore $H^{*}(\mathcal{B}_{N_{\mu}}, C)$ has a dual basis:

$H^{*}(B_{N_{\mu}}, C)=$ $\oplus$ $C[X_{w_{T},N_{\mu}}]^{*}$ .
$T\in RDT(\mu)$

Note that $[X_{w_{T)}N_{\mu}}]^{*}\in H^{2l(T)}(\mathcal{B}_{N_{\mu}}, C)$ .

6. A result of Lehrer-Shoji and Spaltenstein. Next we consider varieties $\mathcal{P}^{j}$ for

$1\leq j\leq n-1$ defined as follows:

$\mathcal{P}^{j}=\{(V_{1}, \ldots, V_{n-1})|V_{l}\subset\cdots\subset V_{n-1}$

(

$lineArsubspac\dim V_{k}=\{k+1(k\geq j)k(k<j)$

es of $C^{n}$ )

$\}$ .

Then $pJ$ has a similar classical decomposition:

$\mathcal{P}^{j}=$

$\prod_{w\in 6_{\mathfrak{n}}}$

$Y_{w}^{j}$ and for such $w$ we have $Y_{w}^{j}\approx X_{w}\approx C^{l(w)}$ .
$w(j)<w(j+1)$

Now let $\mathcal{P}_{N}^{j}$ be the subvariety of $pJ$ consisting of N-stable elements, and put $Y_{w^{j},N}=$

$Y_{w^{j}}\cap P_{N}^{j}$ . Then we can show that, if $N=N_{\mu}$ , then $\mathcal{P}_{N_{\mu}}^{j}$ has a similar decomposition as

follows:

$\mathcal{P}_{N_{\mu}}^{j}=$

$T\in RDT(\mu)[]$
$Y_{w_{T}^{j},N_{\mu}}$ and for such $w$ we have $Y_{w_{T},N_{\mu}}^{j}\approx X_{w_{T},N_{\mu}}\approx C^{l(T)}$ .

$w_{T}(j)<w_{T}(j+1)$
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We have a natural projection $\pi:\mathcal{B}_{N}arrow P_{N}^{j}$ which induces a map on the cohomology

groups $\pi^{*}:$ $H^{*}(\mathcal{P}_{N}^{j}, C)arrow H^{*}(\mathcal{B}_{N}, C)$. If $N=N_{\mu}$ , then the $[Y_{w_{T}^{j},N_{\mu}}]^{*}(T\in RDT(\mu)$ ,

$w\tau(j)<w\tau(j+1))$ form a basis of $H^{*}(\mathcal{P}_{N_{\mu}}^{j}, C)$ . The map $\pi^{*}$ sends $[Y_{w_{T},N_{\mu}}^{j}]^{*}$ onto

$[X_{w_{T},N_{\mu}}]^{*}$ if $w\tau$ appears in the decomposition of $P_{A_{\mu}’}^{j}$ .

The following fact has been \‘ohown by T. Shoji, G. I. Lehrer $[ShoL]$ and N. Spaltenstein

[Sp2].

THEOREM (Shoji-Lehrer, Spaltenstein). Let $N,$ $\mathcal{B}_{N},$ $j,$ $P_{N}^{j},$
$\pi,$ $s_{j}$ be all as ab$ove$. Then

we $h$ave:

$\pi^{*}:$ $H^{*}(\mathcal{P}_{N}^{j}, C)arrow^{\simeq}H^{*}(\mathcal{B}_{N}, C)^{s_{j}}$ .

7. Conclusion of the proof. From the above theorem, it follows that the set of

$\{[X_{w_{T}},N_{\mu}]^{*}\},$ $T\in RDT(\mu)$ , is a nice basis of $H^{*}(\mathcal{B}_{N_{\mu}}, C)$ . $[X_{w_{T},N_{\mu}}]^{*}$ is fixed by $s_{j}$ if and

only if $w\tau(j)<w\tau(j+1)$ . Therefore we have

$G’(q,t)= \sum_{j}\sum_{T\in RD’\Gamma(\mu)}t^{LES(w_{T})}q^{j}$

$l(T)=j$

$=$ $\sum$ $t^{LES(w_{T})}q^{l(T)}$ ,
$T\in RDT(\mu)$

which concludes our proof.

8. Discussion. (1) Can one characterize (up to conjugacy) the pairs $(N, F)(N$ a nilpo-

tent $n\cross n$ matrix of Jordan type $\mu,$
$F$ the reference flag for the Schubert cell decomposition

of $\mathcal{B}_{N}$ ) for which $\{X_{w,N}\}$ gives a partition of $\mathcal{B}_{N}$ into affine spaces?

(2) Can one find a Foata-Sch\"utzenberger type proof of the identity (1)?

(3) (suggested by R. Stanley) Can one find an interpretation of a more general poly-

nomial
$\sum_{\lambda\vdash n}I^{\sim_{\zeta_{\lambda\mu}(q)\tilde{K}_{\lambda\nu}(t)}}$

for partitions $\mu,$ $\nu$ of $n$ in general? (This polynomial has also

been investigated by J. Matsuzawa.) A first step would be to find some interpretation of
$I^{\sim_{t_{\lambda\mu}’}}(t)$ in the space $V_{\lambda}$ which would generalize $\Xi(V_{\lambda})$ .
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