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1. Introduction.
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Let T = (X,R) bec an undirccted connected finite graph without

loops and multiple edges, where X and R are the vertex and edge

sets. For a vertex x, Fi(x) denotes the set of vertices having

distance i from Xx. ' is said to be distance~-regular if the

numbers ( which are called intersection numbers )

c, = T,_;&xnr & |
a, = | M o nryw |
b= | T, Nl |
are independent of the choices of x € X and y € Fi(x). In what

follows, we always assume that T is a distance-regular graph.
valency and diameter are denoted by Kk and d:

k = | ry L,

1

d Max { i | Cox = ¢ ).

The intersection array is denoted by

;k Cl C2 e + . Ci . e cd—-l C
O ap a "t Ay "ttoag ¥y
Kb, b, +++ b, ++- b -

1 72 i d-1

The
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Let

L =28 (¢, a, b)Y =# (i ]| Cec., a., b, ) = Cc, a, b)) }.

Then by the relation [ 1, page 195 1

these £ columns appear in the intersection array consecutively.
In { 21, it is conjectured that <L c, a, b ) is bounded by
a function of the valency Xk and it is shown that if ¢ = b,

¢ (¢, a, b) < 10k2k.

We shall improve the above bound when ¢ = b = 1.

Theorem.

If k=5, L1, k-2, 1) < 46/k - 3.

Notice that distance-regular graphs of valency 3 or 4 are
classified by [ 3 1, [ 4 1. Our result is useful for the

classification of distance-regular graphs with small valencies, for

example k = 5, 6.

2. Preliminaries.

In what follows, let the intersection array be

* 1 1 Ca+1 s CS c c Cs+£+1 s Cd-l Cd
O al “« o al aa+1 “ o o as a Ty a as+£+1 v e ad_l a
A T I S AR T

The i-th adjacency matrix of [ is denoted by Ai ( 01 <d ) and



"

we set A = A

Proposition 1. ( [ 2, Proposition 1 1)
Let & =4{2( ¢ a b ). Then Lhere exists an eigenvalue 86 of

A such that

k - b - ¢+ 2/bc cos vt 2 n <0<k -5b-c + 2/bc cos

T

|

for each v =1, 2, -, -3,

There cxists a polynomial Ui(I) of degree i such that

Ui(A) = Ai’ and we have vi(k) = ki’ See [ 1 1.

Proposition 2. ( [ 2, Proposition 2 1)

us(x) has roots all less than k - bS - Cq + ZJbScS.

Proposition 3. L5 1)

Let o = L( ¢ b, ) and 6 % = k an eigenvalue of A.

a 1

o

If a] = 0, then the multiplicity m(8) of 6 in A satisfies

ne@) » kek - T

with r» = [(a0 + 1)/2], the integer part of (o + 1)/2.

Proposition 4. (L6 1)
Let o = L« Cyr Ay bl ) and o < L/ cu, au, bu ). Suppose
Couta’ = ! and a, = ay,- Then the following hold



(2) o <o -1 if o=23

(3) o <o -2 1if o = 5.

The results in Proposition 4 are also obtained by A.V.Ivanov

( personal communication ).

Proposition 5. L 71)

Let o =401, 0, k- 1) and o, L1, 1, k- 2 ).

Suppose 0a+a7+1 = 7, k =24 and o = 1. Then a] < 2.

Lemma 6. If L1, k-2, 1) =2, then a; = 0.

Proof. Suppose al Z 0. Then for an edge {y, 2} with
y € FS+1(X), z € FS+2(X), there exists a triangle vyzw, and so we
have bS+1 > 1 or cs+2 > 1, which is a contradiction. u|

3. Prodf of Theorem.

Let I' be a distance rcgular graph with valency Kk and

diameter d. Let ¢-= €1, kx -2, 1> > 0, and
( Cse1’ 8541 bs+1 y = o= Csre * Bg4p bs+{ )
= (1, k - 2, 1 ).
Let o = {£( Cis @y b1 ) and r = [( o + 1 )/21.
By the relation ci < Ci+1 ' bi p-3 bi+1 , we have the following

intersection array
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sk 1 e s o 1 1 o e o 1 1 .0 1 Cs.}.t.{.l PRI Cd_l Cd
“ .. - o v - o
0 al al aa+] as k-2 k-2 as+t+1 dd—l ad
kK b, =+ b, b e+ b 1 R 1 1 .. 1 %
1 o 1 "o+l S L

Firstly we need two lemmas to estimate the number of vertices n

and the number s above.

Lemma 7. Let 7 be the number of vertices. Then

n < ks.(( k-1)/Ck-2)+ &+ 1)k~ 1 )).

Proof. Since n 0 1 cee 4 kd, we evaluate kj's using

]
=
+
=
+

the property,

biky = ci Ky
For 1 £ s, since ci = 1 and k = bo p3 b] > e 2 bs > 1, we have
_ 2 ) s=-(i-1)
k._y = k;/b._, < k;/ b, £ k /b° < kb,
Hence
Ky o+ Kk, o+ + k. <K (( 1/ b6, )%+ (170 )S'l + + 1}
0 1 s s [ s
b
_ s _ s+1
e o C N GRS M
s
bs
% ——71 Kk
s
Obviously, it holds that
ks+1 = ks+2 = E ks+£ = bsks
For 1 2s + { + 1, since bi =1 and 1 < Conts] < < cy » we

have
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i
ks+£+j < ks+£ /( Corp+1 ) .

Hence

ks+8+1 oot Ry

_ 2
< Kgug ( 1/ Cowtsr © ( 1/ Cosl+1 )

L d-(s+2L) )
¥ f ( 1/ Cs+£.+]. )
1 d-(s+4{)

= kK ( 1 - 1 /¢ )

s+l Carpat 1 . ( s+{+1 )

1

< k.

Covprl ~ 1 s+
< kg, = bk

Therefore we get

n < k (b /(b,—1)+(£+1>b)
5 S s s
kK - 1
SKS((k_l)_l +(£+1)(k—1)).

Note that (( £ + 1 H)x + _ET%—T_ is incrcasing if x = 2. n]
Lemma 8. Suppose L =2 5 and k = 5. Then s < ok - 3).
Proof. Let o' = { - 1 in Proposition 4 and u = s + 1.

Since o' 2 4, o =2 5 Let
ai = £ (1, i, k - i - 1)

Then o, = o and o _, = L. Note that a; = 0 by Lemma 6.

By Proposition 5, al < 2.

By Proposition 4.(3), ai <o - 2 i=2, ***, k - 3.
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Therefore we get

S S T

o
=
i
w

Lo+ 2+ (k-402Ca -2

x(C k -3 ) -2k -5)

<o k - 3) as k =z 5. u}

Now we start the proof of Theorem.

By Proposition 1, there cxists an eigenvalue @ of A such that

K -b-c + 2/bc cos(3n/4) ¢ 8 < k - b - ¢ + 2/bc cos(n/L).

Since b c =1, it holds that

~
I
N
+
[

cos(3n/L) =2 k - 2 + 2( 1 - C3n /7 4 )2 )

1
2
=k - (31 / L2,

Thus we have an cigenvalue G of A such that

k - & ¢ 8 < Kk,

with & = ( 91 / )2,

By Proposition 2, US(I) is positive for

‘I > Kk - bS -<Cs +~2Jbscs,” while

k- bg - oy 2/be; = k- (/B - e )P

s s s
2
=k - ( \/bS -1 )

Hence we get

v (X)) > 0 for xzk—(ﬁ—l)z ce e (1)



Now assume that £ > 46J/k - 3. Since { = Bn( J2 o+ 1 ),

0 > k - [ J2 -1 )2 and so US(O) > 0.
Let m(8) be the multiplicity of € in A.

By Biggs' formula [ 1, page 72 1, it holds that

m(8) = n /
i

WMo

{v.(02%/ x. }. - @
O 1 1

Since £ = an( J2 + 1 ) >2, a; =0 by Lemma 6.

Hence we can apply the Terwilliger bound ( Proposition 3 )

m0) = k( k - 1 )7L, (3)

We shall find an upper bound of m(®), and by comparing it with

(3), we shall prove that £ can not exceed 46/k - 3.

Applying Lemma 7 to (2), we have

m8) < n-k_ /v (02
S s

< ( ks/us(e))2~(( K-1)/Ck=-2)+ (L+1)Ck-1 )].

Let ll’ AQ, cee AS be the roots vs(m).
By (1), we may assume
2
- 0 .
0 >k ( J2 -1 ] > X >, > - > Ay

Since ( k - Xi Yk -6)>)=1+ (Ck-086)>C8 - li ) increases
with li' it follows that

k- k- {x - (/2 -1)2)

9 -2, 0 -{x-(v/2-1)2)}

1
1+ (0 -k )( J2 o+ 1 )2
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< as k - & < 8.
— 2
1 - 6( J2 o+ 1 )'
So we have
K v (k) S -
S : S T i ¢ 1
- — 2
v, () v, (8) =1 © ; {1 - 5( J7o+ 1 )_ e ‘
(1 -8z +1 )22
Since r = [( o+ 1 )/2]. o £ 2r and it follows {rom Lemma 8
that
s £« k-3 )< 2rC k - 3 ). cre (5)
By (3), (4) and (5), we have
r-2 1/Ck -2 )+ (8L + 1)

(6)

k( k - 1) < ; —
{1 -s(vz e )2yt

while 0 <1 -8(v@+1)%¢1 by ¢2an( /7 +1)2 and

5
S = (. 3m / ¢ )",
Since { + 1 £ a £ s by Proposition 4.
[ the right hand side of (6) 1]

/Ck -2 ) + s

<

{1 -5s(y/z 41 )2 red
< s + 1

{1 - 5( 7+ 1‘)2 }4r(k-3)
< 2r( kK - 3 ) + 1

{1 - 5( /3 oe 1 )2 }4r (k=3)

2rk
{1 - 5( J3 o+ 1 )2 pAT (k=3)
Hence 4

log Kk + (. r - 2 Jlog ( k - 1)
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Clog 2+ logr + logk - 4rC k - 3 )1og { 1 - 6( /2 + 1 )2},
7)
We want to show that (7) does not hold for large <{.
Namely we shall show the opposite inequality for £ = 46/K - 3
(r -2 >%log C K - 1)
> log 2 + logr - 4rC k - 3 dlog { 1 - 5( J2 o+ 1 )2}. e (8D

= [(Coa + 1 )/21 and

Proposition 4.(3),

r> L+ 1)HY/2 =

[ the left hand side o

™~

= (r - Ylog C k -

+ 4r( k

2 (r -2 )log ( kK -

46/% ~ 3 + 1 46/2 + 1
2 = 2
f (8) 1 - [ the right hand side of (8) 1

1 ) - log 2 - log r

3910 {1 - (an/ 52 (/3+1)2}

1) - log 2 - log r

+ 4r( ](—3)10&‘[1-(—-—2'{——}2' (ﬁ*‘l)z}

> (r - 2 >log ( kK -

+ 4r( kK - 3 )~

( by log (1 - x)

(r - 2>%log ( k -

+ 4r( k - 3 )'[ -
1

> (r - 2 )log ( kK -

|

46/k - 3

1 ) - log 2 - log r

( an/ 46/k - 3 )2'( J2 o+ 1 )2 }
b - Consas/e=3)2( 2«1 )2

2 3
X
X 5 3 ¢ for Q < x < 1)
2
-z -2 - 2% -
1 -z

1 > - log 2 - log r

(31/ 46)2( J2 o+ 1 )2/< kK - 3 )
- (3n/46)2( J2 o+ 1 )2/< kK - 3
1 ) - log 2 - logr




0/2447/C k = 3 ) ]
kK - 3

*Artk -3 )'[ T TTTC0.2447/¢

)
( by (3n/46)2~( J2 o+ 1 )“ ~ 0.244668445 )

= (r - 2)%log (k -1 ) - log 2 - logr

4T X 0.2447 X —r— g —3 WYY
2 (r - 2)log 4 - 1log 2 - log r - 4r X 0.2447 X —— 0?2447
( by k =2 5)
> [ _iﬁlzgi_l_ - } log 4 - log 2 - log[ *iglzgi—L— J
- 4 X 0.2447 X 4G/§2+ L K
( as it is increasing with r. where r 2 —iﬁlzgi—l“ ]

43.01243307 - 0.69314718 - 3.497322742 - 36.83329505

<

> 43.01 - 0.70 - 3.50 - 36.84

1.97 > 0.

This proves the theorem. O
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