グラフの連結度の一般化について

慶大・理工 金子篤司 (Kaneko Atsushi)

An (a,b)-n-fan means a union of n internally disjoint a-b paths. Menger's theorem is one of the most fundamental theorems in graph theory. Its vertex version states that a (di)graph G has an (a,b)-n-fan if and only if G is n-connected between a and b, and its edge version states that a (di)graph G has n edge-disjoint a-b paths if and only if G is n-edge-connected between a and b. As a common generalization of those two versions, Egawa, Kaneko and Matsumoto [2] proved the following theorem.

Theorem 1. Let G be a multi(di)graph of order at least two, let a and b be distinct vertices of G, and let λ and n be positive integers. Then, there exist λ edge-disjoint (a,b)-n-fans in G if and only if for any k with $0 \le k \le \min\{n-1, |V(G)| - 2\}$ and for any subset X of $V(G) - \{a,b\}$ with cardinality k, G - X is $\lambda(n-k)$ -edge-connected between a and b.

A pair (t, s) of nonnegative integers is said to be a connectivity pair for distinct vertices x and y of a graph G if it satisfies the following conditions which were introduced by Beineke and Harary [1]:

- (1) For any subset $T \subseteq V(G) \{x, y\}$ and any subset $S \subseteq E(G)$ with $|T| \leq t$, $|S| \leq s$ and |T| + |S| < t + s, $G - (T \cup S)$ still contains an x - y path,
- (2) there exist a subset $T' \subseteq V(G) \{x, y\}$ and a subset $S' \subseteq E(G)$ with |T'| = t and |S'| = s, $G (T' \cup S')$ contains no x y path.

Using the above-mentioned mixed version of Menger's Theorem, Enomoto and Kaneko [3] proved the following. **Theorem 2.** Let q, r, s and t be integers with $t \ge 0$ and $s \ge 1$ such that t+s = q(t+1)+r, $1 \le r \le t+1$, and let x and y be distinct vertices of a graph G. If q+r > t holds, and if a pair (t,s) is a connectivity pair for x and y, then G contains t+s edge-disjoint x-y paths $P_1, P_2, \cdots, P_{t+s}$ such that $P_1, P_2, \cdots, P_{t+1}$ are openly disjoint x-y paths.

In [4], Kaneko and Ota investigated the graphs having this type of connectivity as their global connectivity. They obtained the following results.

A graph G is said to be (n, λ) -connected if it satisfies the following conditions:

- (1) $|V(G)| \ge n+1$,
- (2) for any subset $S \subseteq V(G)$ and any subset $L \subseteq E(G)$ with

 $\lambda | S | + | L | < n \lambda$, G - S - L is connected.

The (n, λ) -connectivity is a common extension of both the vertex-connectivity and the edge-connectivity, because the (n, 1)-connectivity is identical with the *n*-(vertex)-connectivity and the $(1, \lambda)$ -connectivity is identical with the λ -edge-connectivity. An (n, λ) -connected graph G is said to be *minimally* (n, λ) -connected if for any edge e in E(G), G - e is not (n, λ) -connected. Let G be a minimally (n, λ) -connected graph and let W be the set of its vertices of degree more than $n\lambda$. Then they first proved that for any subset W' of W, the minimum degree of the subgraph of G induced by the vertex set W' is less than or equal to λ . This result is an extension of a theorem of Mader, which states that the subgraph of a minimally *n*-connected graph induced by the vertices of degree more than *n* is a forest. By using their result, they showed that if G is a minimally (n, λ) -connected graph, then

- (1) $|E(G)| \leq \frac{\lambda (|V(G)| + n)^2}{8}$ for $n + 1 \leq |V(G)| \leq 3n 2$
- (2) $|E(G)| \leq n \lambda (|V(G)| n)$ for $|V(G)| \geq 3n 1$.

Furthermore, they studied the number of vertices of degree $n\lambda$ in a

minimally $n\lambda$ -connecetd graph.

References

- [1] L. W. Beineke and F. Harary, The connectivity function of a graph, Mathematika 14 (1967) 197 - 202.
- [2] Y. Egawa, A. Kaneko and M. Matsumoto, A mixed version of Menger's theorem, to appear in *Combinatorica*.
- [3] H. Enomoto and A. Kaneko, The condition of Beineke and Harary on edge-disjoint paths some of which are openly disjoint, preprint.
- [4] A, Kaneko and K Ota, On minimally (n, λ) -connected graphs, preprint.