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A SUBRECURSIVE INACCESSIBLE ORDINAL

Noriya Kadota ( Hiroshima University )

(A8 A4 (AEALT))

INTRODUCTION

The purpose of the article is to prove the minimal subrecur-
sive inaccessibility of the ordinal <t introduced by Wainer([8].
We call an ordinal o subrecursive inaccessible (or s—inaccessi-
bte) if the slow-growing hierarchy {Gylyga} of number-theoretic
functions cateches up with the fast-growing hierarchy {Fylyga}

i.e., there exists p < o such that for all x > p,
Ga(x) < Fa(X) < Ga(X+1)'

In the article, we will complete the proof of the result of

[6] that T is a minimal s-inaccessible, by showing
(I) Collapsing theorem (Section 2), and

(ITI) (3)-built-upness of t (Section 3).
We will use the result of {4] (the strong normalization theorem)
when we will show (I) and (II). |

It is known from the results of Girard[3] (cf.[6,Example 4])
that the set-theoretic ordinal height of <t is sup(lIDvI:v<m}
where IDv is the theory for v-times iterated inductive defini-
tions and IIDV| is its proof-theoretic ordinal. Hence (II) above
indicates that Wainer's fundamental sequences for IIDvI (v<w) is

natural in the sense of subrecursive hierarchy theqry.
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§1. SUBRECURSIVE INACCESSIBILITY

In this section we will define a tree-ordinal t following [86]
and show that t is minimal s-inaccessible (Theorem 1.10 below)
assuming the collapsing theorem and (3)-built-upness of t which
will be prbved in Sections 2 and 3 respectively. In the follow-

ing, the letters k, m, n, p, X denote non-negative integérs.

DEFINITION 1.1.(1)(cf.[1]) The set Q of the tree-ordinals
consists of the infinitary terms generated inductively by:
(i) 0 € Q.
(ii) If o« € Q, then m+i € Q.
(iii) If o, € Q for all x < ®, then (ax)x<m € Q.(In this
case we call (ozx)X<m limit and write a[x] instead of ax.)

(2) For a given p < v, the subset Q(p)—bu c Q of (p)-built-up

tree-ordinals consists of those o € Q satisfying that:
a[x] <p a[x+1] for all limit 2 { « and x < o,

where the relations < (<p) on Q are the transitive closure of
(i) 8 < B8+1 (8 <p g+1) (ii) B[x] < B8 for all x < o (B8[p] < 8

resp.) if 8 is limit.

Then we define the fast-growing {Fa}aen and slow-growing

{Ga}aEQ hierarchies as follows:
Fo(x) = x+1, Gy(x) = 0,
Fap(X) = FL(F (X)), Gyap (X) = G (x)+1,
F,(x) = Fyx () G (x) = G, (%)

where 2 is limit and the superscript x denotes iteration x-times
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of F (i.e.,1f F:o — o then FO(x) = x, F™"1(x) = F(F"(x))).

PROPOSITION 1.2([5,Theorem 3.1]). For some p < ®, We assune

o€ Q(p)—bu. Then the following holds:

(1) F (x) < F_(x+1) and Gy (x) ¢ G (x+1) for p g x+1.
(2) If B <) « for p g m, then Fy(x) < F (x) and Gz(x) < G (X)

for x > m.
Proof. Induction on & € Q similarly to [5,Theorem 3.1]. o

LEMMA 1.3. For p < o and o € Q(p)-bu, the following holds:
(1) For all x > p, Ga(x) < Fa(x).
(2) If ¢« is s—inaccessible (see Intro. for the definition),

then o i8 Limit and Ga eventually dominates every F, with 8 < «

B

(t.e., for all but finitely many X, FB(X) < Ga(x)).

Proof. (1) Induction on a. (2) Clearly o cannot be 0. For any

B+1 € 0 P)7PU 4ng x > p,

Ggaq (X) = Gg(x)+1 < Fyg(x)+1 ¢ Fg(x+1) < Fy H(x) = Fyg, (x).

Hence o must be limit. Assume B < «. Then B8+1 < o since o is
limit, and then we can see that for some m > p, B8+1 <m o. Hence

X+l(

FB(X+1) < FB X) = F8+1(X) < Fa(x) < Ga(x+l), by 1.2. o

PROPOSITION 1.4([7,p.215]). Let p < o and & € QP) " PY gatisry

that Ga[n+1] = Fa[n] for all n < w. Then oo is s—inaccessible
and, if o[0] is finite (i.e., a[0] = O+1l+++++1), then no B { o

18 s—inaccessible.

Proof. 1If G

alns1] = Fa[n] for each n, then Fa(x) = F (x)

o[x]
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Ga[x+1](x) < Ga[x+1](X+1) = G, (x+1) and so « is s-inaccessible.
If o¢[0] is finite and B < & were s-inaccessible then a[0] < B
since B is limit. So a[n] < 8 £ a[n+1l] for some n. By 1.3, for
sufficient large x, Ga[n+1](x) = Fa[n](x) < GB(X) < Ga[n+1](X)

since 8 éx x[n+1]. o

DEFINITION 1.5([6]). The sets Qn of higher level tree-
ordinals are defined by induction similarly to the case of Q:
(i) 0 € Qn. |
(ii) If o € Qn, then o+l € Qn.

(iii) If aY € Qn for all y € Qk(k<n), then (dy) € Qn.(In

yer

this case, we call (ay) limit and write aly] instead of ay.)

YGQk
In the following we identify QO with o, and Ql with Q.

DEFINITION 1.6([6,Definition 5]). The level n fast-growing

hierarchies of functions ¢n:Qn+1xQn — Qn is defined by:
(i) @n(O.B) = B+1,

(11) o (e+1,8) = o Plao (0,8)),

(iii) wn(x,ﬁ) = (wn(A[Y],B))YGQk for A = (A[?]lyegk,(k<n),
(1v) 0,(2.8) = 0, (A[B1.8) for a = (x[¥])yeq -
where @nB denotes the iteration B-times of mn(i.e.,if w:Qn+len

— . then ¢’(x,8) = 8, ¥ M (x,8) = ¥l ¥’(.8)), ¥ B) -

alrl -
(¥ (a,B))YeQm for 1 = (x[y])yenm.

Note that, in the case n = 0, @O(u,B) = Fa(B) for o € Ql and
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B € QO(= ©). We define o € Qn by @ = (7) (i.e., mk[Y] = v).

yer

DEFINION 1.7([6,Definition 7]). The sets Tn (e Qn) of mnanmed
tree-ordinals are defined inductively by:

(1) 0, 1, agy,-**,0, 1 € T.

(ii) Tk c Tn for k < n.

e Y
(iii) If o € Tn+1 and B8, y € Tn’ then ¢, (xx,B) €T

COLLAPSING THEOREM([6]). Let x < w, o € T2 and 8 € T.. Then

G J(X) = F oo (6y(x)),

¢1(a,8

where the function ¢ (= cx) which collapses each Tn+l to Tn i8

defined by: ¢0 = 0, ¢1 =1, coy = X, COp 4 = O,
Y - cY Y . Y :

c(ey,, (8,8)) = ¢ " (cd,ck), clo, (8,8)) = ¢, (8,8). Hence, in

particular, if a is generated in T2 without reference to @,

then, as Gmo(x) = X, we have G¢1(a'm0) = Fca'

Proof. See Section 2. o

DEFINITION 1.8([6,Example 4]). We define t = (t[x])x<m by

setting <[0] = 3, <t[n+1l] = ml(...wn(w (3,wn),m ),...,wo).

n+l n-1

THEOREM 1.9. T is a minimal s—inaccessible tree-ordinal.

Proof. From Section 3, v is (3)-built-up. Hence 1.4 and the

collapsing theorem complete the proof. O
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§2. THE COLLAPSING THEOREM

In this section we will prove the collapsing theorem used in
Section 1 using the strong normalization theorem in [4]. First,
we introduce term structures <Tn,VTn,-[~],——4> by considering
each element in Tn as a finitary term and each defining equation
of @, (Definition 1.6) as a rewrite (or reduction) rule of the

terms. Let 0, 1, o ml, ..o ¢O’ ¢1,

0 be formal symbols.

DEFINITION 2.1. The sets Tn of terms are defined inductively
by:

(1) O’ ]-, a)o) (Dl.---.(t)

(ii) T, ¢ Tn for kK < n.

‘s = = - C =
(iii) If a € Tn+1 and b, c € Tn’ then ®, (a,b) € Tn'

Naturally, terms in Tn are interpreted as tree-ordinals by
the function ord: Tn — T, such that (i) ord(0) = 0, ord(l) =

1, ord(a,) = a, (i1) ord(p ®(a,b)) = ¢n0rd(c)(ord(a),ord(b)).

Abbreviations. @ (a,b) = @ '(a,b), b+l = § (3,b).

DEFINITION 2.2. The sets NT_ of normal terms in Tn; dom(a) €
{¢.{0},T,.....T _;} and alz] for a € NT, z € dom(a) are defined
inductively by:

(N1) O € NT: dom(0)

H
6

(N2) 1 € NT; dom(1) = {0}, 1[0] = O.
(N3) Bi € NT_ (i<n); dom(e,) = T., 0, [z] = z.

(N4) NT, < NTn for k < n.

k
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_=cC
(N5) Let a € NTn+1’ b,c € NTn and A = ? (a,b). Then A € NTn

if one of the following holds:
(i) ¢ =1 and a = 0(i.e.,A = b+1); dom(A) = {0}, Al[z] =b.

(ii) dom(c) = Tk(k<n); dom(A) := dom(c), Alz] = anc[z](a,b).

(iii) ¢ = 1 and dom(a) = Tk(k<n); dom(A) = dom(a),

Alz] = én(a[Z],b).

A term-reuriting system(S) (see e.g.Dershowitz[2] as for the
definition) is introduced so that, for every term in Tn which is

not normal, some rewrite rule in (S) is applied to it:

Definition of the rewrite rules of (S): For normal a,b,c;

0

(R1) an

(a,b) — b, (R2) o (I,b) — 5 °(0,p, (5,b)),
(R3) ¢ (a+1,b) — o °(a,p (a,b)),

(Ra) o “l(a,b) — o (a,0 %(a,b)),

n

(R5) @ (a,b) — @ (albl,b) if dom(a) = T_.

PROPOSITION 2.3. For every a € Tn, a € NTn if and only if

there i3 no b € T such that a —ia b (uhére a —la b means that b

ig obtained from a by a single application of some rule of (S)).
Proof. Induction on the length of a. a

STRONG NORMALIZATION THEOREM([4,Theorem 1]). Every term a in

T is strongly normalizable (i.e., there is no infinite sequence

n
such that a —— a, 1, a, A, i,
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Proof. See [4,Theorem 1]. ‘ o

Now we introduce a function ¢ which represents the function
¢ (in the collapsing theorem) on the terms as follows: (for each

fixed x < ©) (i) e0 = 0, el = 1, co, = X, co

k+1 - %k’

(11) e(e ,,"(5.8)) = ¢ V(es,c8) and clo,¥(s,8)) = 9,7 (5,8),

where x is the numeral of x(i.e.,if x = 0 then x = 0; if x = y+1

then x = 60(6,5) (= y+1)).

LEMMA 2.4. Let a € Tn' Then the following hold.

(1) If a = b+1 for some b, then c(b) = cb+1.

(2) If a € NT_ and dom(a) = TO’ then c(alx]) = ca and
ord(a[x]) = ord(a) for x < o

(3) If a e'NTn and dom(a) = T, for some k > 0, then
ord(a[b]) = ord(a)[ord(b)] and
ord(e(albl)) = ord(ea)lord(ab)] for b € dom(a).

(4) If a —24 b, then ord(a) = ord(b) and ord(ca) = ord(cb).
Proof. (1)-(4) Induction on the length of a. o

LEMMA 2.5. If x < w and a € T,, then G )(x) = ord(ca).

1’ ord(a
Proof. From the strong normalization theorem, the proof is

proceeded by transfinite induction on a over the well-founded

ordering << (where << on Tn is defined as the transitive closure

of (i) b[z] << b for normal b with z € dom(b), (iii) 4 << b for
‘ 1

non-normal b with b — d).

Case 1. a = 0. This case is trivial.
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Case 2. a € NT, and dom(a) = {0}. Then a = 1 or b+1 for some

b € Tl. If a = 1, the assertion is trivial. If a = b+1l, then

Gord(a)(X) = Gord(b)(x)+1 = ord(eb)+1 = ord(ea) by I.H.(= induc-

tion hypothesis) and 2.4(1).
Case 3. a € NT, and dom(a) = TO' By 2.4(2) and I.H.,
= G

Gord(a)(X) ord(a[i])(x) = ord(e(al[x])) = ord(ea).

Case 4. a —la b for some b. By 2.4(4) and I1.H.,
Gord(a)(X) = Gord(b)(x) = ord(eb) = ord(eca). o
Proof of the collapsing theorem(in Section !). For a € Tz and
beT

1+ We have E(Gl(a,b)) = éo(éa,éb) and hence ord(&(él(a,b))

= ¢0(ord(éa).ord(6b)). Thus,

Gol(ord(a),ord(b))(x) = Gord(al(a.b))(X)

ord(é(&l(a,b)) by 2.5

wo(ord(éa),ord(éb))

= F (ord(eb))

ord(eca)

= Ford(za) Cord(p) (X)) by 2.5.

For given o € Tz and 8 € Tl’ we choose a and b above such that
(i) ord(a) = «, ord(ea) = cx and (ii) ord(b) = 8 (we can choose
such a and b since the elements of Tn are constructed by the

same way as to the element in Tn). This completes the proof. 8]

§3. (3)-BUILT-UPNESS OF <

In this section we will prove that t is (3)-built-up. This
completes the proof of Theorem 1.9 (t is minimal s-inaccessible).

First, we remark that the following proposition holds:
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PROPOSITION 3.1([4,Lemma 3.4]). Lel o € Tn and o = (d[?])YEQ
m

Then aly] € Tn for every v € Tm.

Proof. For a given o = (tJt[}"])YGEQ € Tn’ there is a normal a €
m

Tn such that ord(a) = o by 2.4(4) and the strong normalization
theorem. We fix such an a € Tn with the minimal length. The
proof of this proposition can be proceeded by induction on the

length of this term a for «o. )

It follows from this proposition that we can use transfinite

induction on the terms in Tn (n<w) over the ordering < of Tn'

DEFINITION 3.2. The step—down relations <k (k<o) on Un<an

are defined inductively as follows:

o <k g if 8 # 0 and one of the following holds;

(1) a5 v if g =7 + 1,
(i1) o 5k Bkl if 8 = (B[X])XEQO’
(1ii) o <k Bly] for all y € Tm\{O} if 8 = (8[7])Y€Qm (m>0) .

where « 5k § means that o <k 8§ or o = 8.

Note that if o, 8 € Tl then the relations <k defined above

are the same as ones defined in Definition 1.1(2).
R 4
LEMMA 3.3. For o € Th.1 B € T, and y € Tn\{O}, B <k ¢ "(ct,B).

n

Proof. The lemma follows immediately from the two claims: 0O

- 10 -
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CLAIM 1. Let o € Tn+l and 8 € T . If % <k wn(a,s) for all

5 € Tn, then B <k ¢n7(a,8) for y € Tn\{O}.

Proof of Claim 1. Transfinite induction on y € T,
- n n -
Case 1. ¥ = n+1. Then 8 §k ®, (e, B) <k @n(a.¢n (x,8)) =

wnY(a,B) by I.H.

Case 2. v = (v[x]) o . Then 8 £ wny[k](a.ﬂ) = ¢ny(a,8)[k]
0

by I.H. Hence 8 <k Qny(a,B).

Case 3. y = (Y[&])aeQ (0<m<n). We can prove that y[8] €
m

Tn\{O} for & € Tm\{O} similarly to 3.1. Hence 8 <k @nY[B](a,B) =

Y Y
?, (,B)[8] for & € Tm\{o} by I.H. Therefore 8 <k °, (ex,8). o

CLAIM 2. let ¢ € T  ,. Then 8 < o (x,8) for all 8 € T .

Proof of Claim 2. Transfinite induction on o € Th+1'
Case 1. o

0. Then 8 < 8 + 1 = ¢, (o, 8) .

Case 2. o

¥Y+1. Then & <k ¢n(Y,6) for all § € Tn by I.H.
. B -
Hence, by Claim 1, 8 < ¢ (v,8) < o ~(v.e (v.8)) = ¢ (,8).

Case 3. o = (a[y])yenm(m<n). By I.H., 8 <k Qn(a[y],s) =

¢n(a,8)[Y] for vy € Tm. Hence 8 <k ¢n(a,8).

Case 4. o = (a[y])yenn. By I.H., 8 <k wn(a[B].B) = ¢n(a,8). o]

LEMMA 3.4. Let « € T, and B8, &, v € T . If v < 38, then
14 d
o, (,8) < o ~"(a,8).

Proof. Transfinite induction oh d € Tn'
Case 1. 8 = 0. This case is trivial.

Case 2. &

n+l. By I.H. and 3.3, ¢ "(a,8) g ¢ (a,8) <

- 11 -



69

o (.o (. 8)) = o 5(x,8).

Case 3. & = (é[x])XEQ . By I.H., wny(a.B) Sk wna[k](a,B) =
0

é v é
Py (a,8)[k]. Hence @, (ct, B) <k ®, (a,8).

Case 4. & = (3181) ;o (O<men). Then o,"(2.8) <, AN

¢n6(a,8)[€] for & € Tm\{O} by I.H. Hence ¢n?(a,8) <k @na(a,B). o

LEMMA 3.5. Let o, v € T ,, 8 € T N0} and n > 0. If v <, o,

then ¢n(7,8) <k wn(a,B).

Proof. Transfinite induction on o € Tn'

Case 1. «

1}

0. This case is trivial.

Case 2. o

n+l. By I.H. and 3.3, ¢ (v.8) 5 ¢, (n,8) <,

¢n8(n,¢n(n.8)) = ¢n(a,8) since 8 # 0.
Case 3. a = (a{x])erO‘ By I.H., ¢ (v.8) £ o (alk],B8) =
¢n(a.6)[k]. Hence ¢n(r,6) <k wn(a,B).

Case 4. o = (ati])EEQm(0<m<n). By I.H., wn(?,B) <k @n(a[EI,B)

= ¢,(8)[E] for & € T N{0}. Hence ¢ (v,8) < o (a,8).
Case 5. o = (a[é])genn. By I.H., ¢ (v,8) < o (x[8],8) =

¢n(a,8)Afor B € Tn\{O}. o

THEOREM 3.6([4,Theorem 3]). (1) Let « € T; and o = (al8]),qq -
m

If v, & € T, and ¥ <k 5, then aly] <k a[8] (where the sets T;
(ng) are defined inductively by:

. + . . + +
(i) o, 1, @y, e, €T, (ii) T, € T, for k < n,

. . + + + Y +
S (1ii) if o € Tn+1’ Y € Tn and 8 € Tn\{O}, then @, (et,B) € Tn).

+

(2) Each o € Tl is (k)-built-up for all k < w.
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Proof. (1) Similarly to the proof of 3.1, for a given o €
T;, we can take a normal term a € T; with the minimal length

such that ord(a) = o (where the sets T; (ng) are defined

inductively by:

(i) o, 1, 0y, 0,0

+

— + = =+
Tn’ (ii) Tk c Tn for k < n,

m

n-1

ceen s =+ = =+ - C +
(iii) if a € Tn+1’ c € T_. and b € Tn\{O}, then o, (a,b) € Tn)f

B0+ B3 4+

Hence we fix such an a € T.. The proof of this theorem will be

proceeded by the induction on the length of the term a. We have

the following cases:

Case 1. a = o . Then a = o_. We have aly] = v < & = als].

1

Case 2. a an(d.b) and dom(d) = Tm' Then o = ¢n(1,8) so that

X = (l[E])EGQm = ord(d) and 8 = Qrd(b) € T;\{O} from the

definition of T; above and a € T;. Hence, by I.H. a[¥y] <k xl8]
and 3.5, ¢, (x,8)[v] = ¢ (x[v].8) < ¢ (x[8],8) = ¢ (x,8)[8].
Case 3. a = Gne(d,b) and dom(e) = Tm' This case is treated
similarly to Case 2, using 3.4. This completes the proof of (1).
+

(2) We can show that for each a = (01[)'])7,eQ € T; and y € T

+

1
o, we have 2 € TI. Thus by (1), alx] <k A[x+1] for all k, x < ©

m,
x[y] € T; similarly to 3.1. Hence for each « € T, and limit x <

and limit X { o € T;. o

We remark that (k)-built-upness does not hold for some
element in Tl since, if we put o« = ¢1(mo,0), then o[x] = wl(x.O)

= 1 for all x < o.
THEOREM 3.7([4,Corollary 3.1]1). * is (3)-built-up.

Proof. From the definition of t (Definition 1.8), <[x] € TI

- 18 -
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for every X < @. By 3.6(2), <[x] is (3)-built-up. Hence it is
sufficient to proove that t[x] <3 t[x+1]. For this, we have

t[x] = ¢l(...¢x(3,mx_l)...,m0) <3 @l(...¢x(mo,mx_l)...,mo)

Ql("'wx(mx'mx—l)""wo) <3 @l(...¢X(¢ (3,mx).m )...,mo)

X+1 x-1

t[x+1] from 3 <3 @, and 3.5, 3.3. This completes the proof. 0O
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