#### A SUBRECURSIVE INACCESSIBLE ORDINAL

Noriya Kadota (Hiroshima University) (角田 法也 (広島大·工))

### INTRODUCTION

The purpose of the article is to prove the minimal subrecursive inaccessibility of the ordinal  $\tau$  introduced by Wainer[6]. We call an ordinal  $\alpha$  subrecursive inaccessible (or s-inaccessible) if the slow-growing hierarchy  $\{G_{\gamma} | \gamma \leq \alpha\}$  of number-theoretic functions catches up with the fast-growing hierarchy  $\{F_{\gamma} | \gamma \leq \alpha\}$  i.e., there exists  $p < \omega$  such that for all x > p,

$$G_{\alpha}(x) < F_{\alpha}(x) \leq G_{\alpha}(x+1)$$
.

In the article, we will complete the proof of the result of [6] that  $\tau$  is a minimal s-inaccessible, by showing

- (I) Collapsing theorem (Section 2), and
- (II) (3)-built-upness of  $\tau$  (Section 3).

We will use the result of [4] (the strong normalization theorem) when we will show (I) and (II).

It is known from the results of Girard[3] (cf.[6,Example 4]) that the set-theoretic ordinal height of  $\tau$  is  $\sup\{|\mathrm{ID}_{\nu}|:\nu<\omega\}$  where  $\mathrm{ID}_{\nu}$  is the theory for  $\nu$ -times iterated inductive definitions and  $|\mathrm{ID}_{\nu}|$  is its proof-theoretic ordinal. Hence (II) above indicates that Wainer's fundamental sequences for  $|\mathrm{ID}_{\nu}|$  ( $\nu<\omega$ ) is natural in the sense of subrecursive hierarchy theory.

## §1. SUBRECURSIVE INACCESSIBILITY

In this section we will define a tree-ordinal  $\tau$  following [6] and show that  $\tau$  is minimal s-inaccessible (Theorem 1.10 below) assuming the collapsing theorem and (3)-built-upness of  $\tau$  which will be proved in Sections 2 and 3 respectively. In the following, the letters k, m, n, p, x denote non-negative integers.

DEFINITION 1.1.(1)(cf.[1]) The set  $\Omega$  of the *tree-ordinals* consists of the infinitary terms generated inductively by:

- (i)  $0 \in \Omega$ .
- (ii) If  $\alpha \in \Omega$ , then  $\alpha+1 \in \Omega$ .
- (iii) If  $\alpha_x \in \Omega$  for all  $x < \omega$ , then  $(\alpha_x)_{x < \omega} \in \Omega$ . (In this case we call  $(\alpha_x)_{x < \omega}$  limit and write  $\alpha[x]$  instead of  $\alpha_x$ .)
- (2) For a given  $p < \omega$ , the subset  $\Omega^{(p)-bu} \subseteq \Omega$  of (p)-built-up tree-ordinals consists of those  $\alpha \in \Omega$  satisfying that:

 $\lambda[x] \prec_p \lambda[x+1] \quad \text{for all limit } \lambda \not \leq \alpha \text{ and } x < \omega,$  where the relations  $\langle \ ( \prec_p ) \ \text{on } \Omega \text{ are the transitive closure of}$  (i)  $\beta \prec \beta+1$  ( $\beta \prec_p \beta+1$ ) (ii)  $\beta[x] \prec \beta$  for all  $x < \omega$  ( $\beta[p] \prec \beta$  resp.) if  $\beta$  is limit.

Then we define the fast-growing  $\{F_\alpha\}_{\alpha\in\Omega}$  and slow-growing  $\{G_\alpha\}_{\alpha\in\Omega}$  hierarchies as follows:

$$F_{0}(x) = x+1, G_{0}(x) = 0,$$

$$F_{\alpha+1}(x) = F_{\alpha}^{x}(F_{\alpha}(x)), G_{\alpha+1}(x) = G_{\alpha}(x)+1,$$

$$F_{\lambda}(x) = F_{\lambda}[x](x), G_{\lambda}(x) = G_{\lambda}[x](x),$$

where  $\lambda$  is limit and the superscript x denotes iteration x-times

of  $F_{\alpha}$  (i.e., if  $F:\omega \to \omega$  then  $F^{0}(x) = x$ ,  $F^{m+1}(x) = F(F^{m}(x))$ ).

PROPOSITION 1.2([5,Theorem 3.1]). For some p <  $\omega$ , we assume  $\alpha \in \Omega^{(p)-bu}$ . Then the following holds:

- (1)  $F_{\alpha}(x) < F_{\alpha}(x+1)$  and  $G_{\alpha}(x) \leq G_{\alpha}(x+1)$  for  $p \leq x+1$ .
- (2) If  $\beta \leq_m \alpha$  for  $p \leq m$ , then  $F_{\beta}(x) < F_{\alpha}(x)$  and  $G_{\beta}(x) < G_{\alpha}(x)$  for x > m.

**Proof.** Induction on  $\alpha \in \Omega$  similarly to [5, Theorem 3.1].

LEMMA 1.3. For  $p < \omega$  and  $\alpha \in \Omega^{(p)-bu}$ , the following holds:

- (1) For all x > p,  $G_{\alpha}(x) < F_{\alpha}(x)$ .
- (2) If  $\alpha$  is s-inaccessible (see Intro. for the definition), then  $\alpha$  is limit and  $G_{\alpha}$  eventually dominates every  $F_{\beta}$  with  $\beta < \alpha$  (i.e., for all but finitely many x,  $F_{\beta}(x) < G_{\alpha}(x)$ ).

*Proof.* (1) Induction on  $\alpha$ . (2) Clearly  $\alpha$  cannot be 0. For any  $\beta+1\in\Omega^{(p)-bu}$  and x>p,

 $G_{\beta+1}(x) = G_{\beta}(x)+1 < F_{\beta}(x)+1 \leq F_{\beta}(x+1) \leq F_{\beta}^{X+1}(x) = F_{\beta+1}(x).$  Hence  $\alpha$  must be limit. Assume  $\beta < \alpha$ . Then  $\beta+1 < \alpha$  since  $\alpha$  is limit, and then we can see that for some m > p,  $\beta+1 <_m \alpha$ . Hence  $F_{\beta}(x+1) < F_{\beta}^{X+1}(x) = F_{\beta+1}(x) < F_{\alpha}(x) \leq G_{\alpha}(x+1)$ , by 1.2.

PROPOSITION 1.4([7,p.215]). Let p <  $\omega$  and  $\alpha \in \Omega^{(p)-bu}$  satisfy that  $G_{\alpha[n+1]} = F_{\alpha[n]}$  for all n <  $\omega$ . Then  $\alpha$  is s-inaccessible and, if  $\alpha[0]$  is finite (i.e.,  $\alpha[0] = 0+1+\cdots+1$ ), then no  $\beta < \alpha$  is s-inaccessible.

*Proof.* If  $G_{\alpha[n+1]} = F_{\alpha[n]}$  for each n, then  $F_{\alpha}(x) = F_{\alpha[x]}(x) =$ 

 $G_{\alpha[x+1]}(x) \leq G_{\alpha[x+1]}(x+1) = G_{\alpha}(x+1)$  and so  $\alpha$  is s-inaccessible. If  $\alpha[0]$  is finite and  $\beta < \alpha$  were s-inaccessible then  $\alpha[0] < \beta$  since  $\beta$  is limit. So  $\alpha[n] < \beta \leq \alpha[n+1]$  for some n. By 1.3, for sufficient large x,  $G_{\alpha[n+1]}(x) = F_{\alpha[n]}(x) < G_{\beta}(x) \leq G_{\alpha[n+1]}(x)$  since  $\beta \leq_x \alpha[n+1]$ .

DEFINITION 1.5([6]). The sets  $\Omega_n$  of higher level tree-ordinals are defined by induction similarly to the case of  $\Omega$ :

- (i)  $0 \in \Omega_n$ .
- (ii) If  $\alpha \in \Omega_n$ , then  $\alpha+1 \in \Omega_n$ .
- (iii) If  $\alpha_{\gamma} \in \Omega_n$  for all  $\gamma \in \Omega_k^{(k < n)}$ , then  $(\alpha_{\gamma})_{\gamma \in \Omega_k} \in \Omega_n^{(k < n)}$ . (In this case, we call  $(\alpha_{\gamma})_{\gamma \in \Omega_k}$  limit and write  $\alpha[\gamma]$  instead of  $\alpha_{\gamma}$ .)

In the following we identify  $\Omega_0$  with  $\omega,$  and  $\Omega_1$  with  $\Omega.$ 

DEFINITION 1.6([6,Definition 5]). The level n fast-growing hierarchies of functions  $\phi_n : \Omega_{n+1} \times \Omega_n \to \Omega_n$  is defined by:

(i) 
$$\varphi_n(0,\beta) = \beta+1$$
,

(ii) 
$$\varphi_n(\alpha+1,\beta) = \varphi_n^{\beta}(\alpha,\varphi_n(\alpha,\beta)),$$

(iii) 
$$\varphi_n(\lambda, \beta) = (\varphi_n(\lambda[\gamma], \beta))_{\gamma \in \Omega_k}$$
 for  $\lambda = (\lambda[\gamma])_{\gamma \in \Omega_k}$  (k

(iv) 
$$\varphi_n(\lambda, \beta) = \varphi_n(\lambda[\beta], \beta)$$
 for  $\lambda = (\lambda[\gamma])_{\gamma \in \Omega_n}$ ,

where  $\varphi_n^{\ \beta}$  denotes the iteration  $\beta$ -times of  $\varphi_n(\text{i.e.,if } \psi:\Omega_{n+1}\times\Omega_n)$   $\longrightarrow \Omega_n$ , then  $\psi^0(\alpha,\beta)=\beta$ ,  $\psi^{\delta+1}(\alpha,\beta)=\psi(\alpha,\psi^{\delta}(\alpha,\beta))$ ,  $\psi^{\lambda}(\alpha,\beta)=(\psi^{\lambda[\gamma]}(\alpha,\beta))_{\gamma\in\Omega_m}$  for  $\lambda=(\lambda[\gamma])_{\gamma\in\Omega_m}$ .

Note that, in the case n = 0,  $\varphi_0(\alpha,\beta)$  =  $F_{\alpha}(\beta)$  for  $\alpha \in \Omega_1$  and

 $\beta \in \Omega_0(=\omega) \,. \ \text{We define} \ \omega_k \in \Omega_n \ \text{by} \ \omega_k = (\gamma)_{\gamma \in \Omega_k} \ (\text{i.e.,} \ \omega_k[\gamma] = \gamma) \,.$ 

DEFINION 1.7([6,Definition 7]). The sets  $T_n \subseteq \Omega_n$  of named tree-ordinals are defined inductively by:

- (i) 0, 1,  $\omega_0$ , ...,  $\omega_{n-1} \in T_n$ .
- (ii)  $T_k \subseteq T_n$  for k < n.
- (iii) If  $\alpha \in T_{n+1}$  and  $\beta$ ,  $\gamma \in T_n$ , then  $\varphi_n^{\gamma}(\alpha, \beta) \in T_n$ .

COLLAPSING THEOREM([6]). Let  $x < \omega$ ,  $\alpha \in T_2$  and  $\beta \in T_1$ . Then  $G_{\varphi_1(\alpha,\beta)}(x) = F_{c\alpha}(G_{\beta}(x)),$ 

where the function c (=  $c_x$ ) which collapses each  $T_{n+1}$  to  $T_n$  is defined by: c0 = 0, c1 = 1,  $c\omega_0$  = x,  $c\omega_{k+1}$  =  $\omega_k$ ,  $c(\phi_{k+1}^{\quad \gamma}(\delta,\xi)) = \phi_k^{\quad c\gamma}(c\delta,c\xi), \quad c(\phi_0^{\quad \gamma}(\delta,\xi)) = \phi_0^{\quad \gamma}(\delta,\xi). \text{ Hence, in particular, if } \alpha \text{ is generated in } T_2 \text{ without reference to } \omega_0$  then, as  $G_{\omega_0}(x) = x$ , we have  $G_{\phi_1}(\alpha,\omega_0) = F_{c\alpha}$ .

Proof. See Section 2.

DEFINITION 1.8([6,Example 4]). We define  $\tau = (\tau[x])_{x < \omega}$  by setting  $\tau[0] = 3$ ,  $\tau[n+1] = \varphi_1(\dots \varphi_n(\varphi_{n+1}(3,\omega_n),\omega_{n-1}),\dots,\omega_0)$ .

THEOREM 1.9.  $\tau$  is a minimal s-inaccessible tree-ordinal.

*Proof.* From Section 3,  $\tau$  is (3)-built-up. Hence 1.4 and the collapsing theorem complete the proof.

### §2. THE COLLAPSING THEOREM

In this section we will prove the collapsing theorem used in Section 1 using the strong normalization theorem in [4]. First, we introduce term structures  $\langle \bar{T}_n, NT_n, \cdot [\,\cdot\,], \longrightarrow \rangle$  by considering each element in  $T_n$  as a finitary term and each defining equation of  $\phi_n$  (Definition 1.6) as a rewrite (or reduction) rule of the terms. Let  $\bar{0}$ ,  $\bar{1}$ ,  $\bar{\omega}_0$ ,  $\bar{\omega}_1$ , ...;  $\bar{\phi}_0$ ,  $\bar{\phi}_1$ , ... be formal symbols.

DEFINITION 2.1. The sets  $\bar{T}_n$  of terms are defined inductively by:

- (i)  $\bar{0}$ ,  $\bar{1}$ ,  $\bar{\omega}_0$ ,  $\bar{\omega}_1$ , ...,  $\bar{\omega}_{n-1} \in \bar{T}_n$ .
- (ii)  $\bar{T}_k \subseteq \bar{T}_n \text{ for } k < n.$
- (iii) If a  $\in \bar{T}_{n+1}$  and b, c  $\in \bar{T}_n$ , then  $\bar{\phi}_n^c(a,b) \in \bar{T}_n$ .

Naturally, terms in  $\bar{T}_n$  are interpreted as tree-ordinals by the function ord:  $\bar{T}_n \longrightarrow T_n$  such that (i)  $\operatorname{ord}(\bar{0}) = 0$ ,  $\operatorname{ord}(\bar{1}) = 1$ ,  $\operatorname{ord}(\bar{\omega}_k) = \omega_k$ , (ii)  $\operatorname{ord}(\bar{\phi}_n^{\ c}(a,b)) = \phi_n^{\ ord(c)}(\operatorname{ord}(a),\operatorname{ord}(b))$ .

Abbreviations. 
$$\bar{\varphi}_{n}(a,b) = \bar{\varphi}_{n}^{\bar{1}}(a,b), b+1 = \bar{\varphi}_{n}(\bar{0},b).$$

DEFINITION 2.2. The sets  $\operatorname{NT}_n$  of normal terms in  $\overline{T}_n$ ;  $\operatorname{dom}(a) \in \{\phi, \{\overline{0}\}, \overline{T}_0, \dots, \overline{T}_{n-1}\}$  and a[z] for  $a \in \operatorname{NT}_n$ ,  $z \in \operatorname{dom}(a)$  are defined inductively by:

- (N1)  $\bar{0} \in NT_n$ ;  $dom(\bar{0}) = \phi$ .
- (N2)  $\bar{1} \in NT_n$ ; dom( $\bar{1}$ ) = { $\bar{0}$ },  $\bar{1}$ [ $\bar{0}$ ] =  $\bar{0}$ .
- (N3)  $\bar{\omega}_i \in NT_n \ (i < n); \ dom(\omega_i) = \bar{T}_i, \ \omega_i[z] = z.$
- (N4)  $NT_k \subseteq NT_n$  for k < n.

- (N5) Let a  $\in$  NT<sub>n+1</sub>, b,c  $\in$  NT<sub>n</sub> and A =  $\bar{\varphi}_n^c$ (a,b). Then A  $\in$  NT<sub>n</sub> if one of the following holds:
  - (i)  $c = \overline{1}$  and  $a = \overline{0}$  (i.e., A = b+1);  $dom(A) = {\overline{0}}$ , A[z] = b.

(ii) 
$$dom(c) = \bar{T}_k(k < n); dom(A) := dom(c), A[z] = \bar{\phi}_n^{c[z]}(a,b).$$

(iii) 
$$c = \overline{1}$$
 and  $dom(a) = \overline{T}_k(k < n)$ ;  $dom(A) = dom(a)$ , 
$$A[z] = \overline{\phi}_n(a[z],b).$$

A term-rewriting system(S) (see e.g.Dershowitz[2] as for the definition) is introduced so that, for every term in  $\bar{T}_n$  which is not normal, some rewrite rule in (S) is applied to it:

Definition of the rewrite rules of (S): For normal a,b,c;

(R1) 
$$\bar{\phi}_n^{\bar{0}}(a,b) \longrightarrow b$$
, (R2)  $\bar{\phi}_n(\bar{1},b) \longrightarrow \bar{\phi}_n^{\bar{b}}(\bar{0},\bar{\phi}_n(\bar{0},b))$ ,

(R3) 
$$\bar{\varphi}_n(a+1,b) \longrightarrow \bar{\varphi}_n^b(a,\bar{\varphi}_n(a,b)),$$

(R4) 
$$\bar{\phi}_n^{c+1}(a,b) \longrightarrow \bar{\phi}_n(a,\bar{\phi}_n^c(a,b)),$$

(R5) 
$$\bar{\varphi}_n(a,b) \longrightarrow \bar{\varphi}_n(a[b],b)$$
 if dom(a) =  $\bar{T}_n$ .

PROPOSITION 2.3. For every  $a \in \overline{T}_n$ ,  $a \in NT_n$  if and only if there is no  $b \in T$  such that  $a \xrightarrow{1} b$  (where  $a \xrightarrow{1} b$  means that b is obtained from a by a single application of some rule of (S)).

П

Proof. Induction on the length of a.

STRONG NORMALIZATION THEOREM([4,Theorem 1]). Every term a in  $\bar{T}_n$  is strongly normalizable (i.e., there is no infinite sequence such that a  $\xrightarrow{1}$  a<sub>1</sub>  $\xrightarrow{1}$  a<sub>2</sub>  $\xrightarrow{1}$  ...).

Proof. See [4, Theorem 1].

Now we introduce a function  $\bar{c}$  which represents the function c (in the collapsing theorem) on the terms as follows: (for each fixed  $x < \omega$ ) (i)  $\bar{c}\bar{0} = \bar{0}$ ,  $\bar{c}\bar{1} = \bar{1}$ ,  $\bar{c}\bar{\omega}_0 = \bar{x}$ ,  $\bar{c}\bar{\omega}_{k+1} = \bar{\omega}_k$ , (ii)  $\bar{c}(\bar{\phi}_{n+1}^{\ \gamma}(\delta,\xi)) = \bar{\phi}_n^{\ \bar{c}\gamma}(\bar{c}\delta,\bar{c}\xi)$  and  $\bar{c}(\bar{\phi}_0^{\ \gamma}(\delta,\xi)) = \bar{\phi}_0^{\ \gamma}(\delta,\xi)$ , where  $\bar{x}$  is the numeral of  $x(i.e.,if\ x=0\ then\ \bar{x}=\bar{0}$ ; if x=y+1 then  $\bar{x}=\bar{\phi}_0(\bar{0},\bar{y})\ (=\bar{y}+1)$ ).

LEMMA 2.4. Let  $a \in \bar{T}_n$ . Then the following hold.

- (1) If a = b+1 for some b, then  $\bar{c}(b) = \bar{c}b+1$ .
- (2) If  $a \in NT_n$  and  $dom(a) = \overline{T}_0$ , then  $\overline{c}(a[\overline{x}]) = \overline{c}a$  and  $ord(a[\overline{x}]) = ord(a)$  for  $x < \omega$
- (3) If  $a \in NT_n$  and  $dom(a) = \overline{T}_k$  for some k > 0, then ord(a[b]) = ord(a)[ord(b)] and  $ord(\overline{c}(a[b])) = ord(\overline{c}a)[ord(\overline{c}b)]$  for  $b \in dom(a)$ .
- (4) If  $a \xrightarrow{1} b$ , then ord(a) = ord(b) and  $ord(\bar{c}a) = ord(\bar{c}b)$ .

*Proof.* (1)-(4) Induction on the length of a.

LEMMA 2.5. If  $x < \omega$  and  $a \in \bar{T}_1$ , then  $G_{ord(a)}(x) = ord(\bar{c}a)$ .

*Proof.* From the strong normalization theorem, the proof is proceeded by transfinite induction on a over the well-founded ordering << (where << on  $\bar{T}_n$  is defined as the transitive closure of (i) b[z] << b for normal b with z  $\in$  dom(b), (iii) d << b for non-normal b with b  $\xrightarrow{1}$  d).

Case 1.  $a = \overline{0}$ . This case is trivial.

Case 2.  $a \in NT_1$  and  $dom(a) = \{\overline{0}\}$ . Then  $a = \overline{1}$  or b+1 for some  $b \in \overline{T}_1$ . If  $a = \overline{1}$ , the assertion is trivial. If a = b+1, then  $G_{ord(a)}(x) = G_{ord(b)}(x)+1 = ord(\overline{c}b)+1 = ord(\overline{c}a)$  by I.H.(= induction hypothesis) and 2.4(1).

Case 3.  $\mathbf{a} \in \operatorname{NT}_1$  and  $\operatorname{dom}(\mathbf{a}) = \overline{T}_0$ . By 2.4(2) and I.H.,  $G_{\operatorname{ord}(\mathbf{a})}(\mathbf{x}) = G_{\operatorname{ord}(\mathbf{a}[\bar{\mathbf{x}}])}(\mathbf{x}) = \operatorname{ord}(\bar{c}(\mathbf{a}[\bar{\mathbf{x}}])) = \operatorname{ord}(\bar{c}\mathbf{a}).$  Case 4.  $\mathbf{a} \xrightarrow{1} \mathbf{b}$  for some b. By 2.4(4) and I.H.,  $G_{\operatorname{ord}(\mathbf{a})}(\mathbf{x}) = G_{\operatorname{ord}(\mathbf{b})}(\mathbf{x}) = \operatorname{ord}(\bar{c}\mathbf{b}) = \operatorname{ord}(\bar{c}\mathbf{a}).$ 

Proof of the collapsing theorem(in Section 1). For a  $\in \bar{T}_2$  and b  $\in \bar{T}_1$ , we have  $\bar{c}(\bar{\varphi}_1(a,b)) = \bar{\varphi}_0(\bar{c}a,\bar{c}b)$  and hence  $\mathrm{ord}(\bar{c}(\bar{\varphi}_1(a,b))) = \bar{\varphi}_0(\mathrm{ord}(\bar{c}a),\mathrm{ord}(\bar{c}b))$ . Thus,

$$G_{\varphi_{1}}(\operatorname{ord}(a), \operatorname{ord}(b))^{(x)} = G_{\operatorname{ord}(\bar{\varphi}_{1}(a,b))}^{(x)}(x)$$

$$= \operatorname{ord}(\bar{c}(\bar{\varphi}_{1}(a,b)) \quad \text{by 2.5}$$

$$= \varphi_{0}(\operatorname{ord}(\bar{c}a), \operatorname{ord}(\bar{c}b))$$

$$= F_{\operatorname{ord}(\bar{c}a)}^{(G)}(\operatorname{ord}(b)^{(x)}) \quad \text{by 2.5}.$$

For given  $\alpha \in T_2$  and  $\beta \in T_1$ , we choose a and b above such that (i) ord(a) =  $\alpha$ , ord( $\bar{c}a$ ) =  $c\alpha$  and (ii) ord(b) =  $\beta$  (we can choose such a and b since the elements of  $T_n$  are constructed by the same way as to the element in  $\bar{T}_n$ ). This completes the proof.  $\Box$ 

# §3. (3)-BUILT-UPNESS OF $\tau$

In this section we will prove that  $\tau$  is (3)-built-up. This completes the proof of Theorem 1.9 ( $\tau$  is minimal s-inaccessible). First, we remark that the following proposition holds:

PROPOSITION 3.1([4,Lemma 3.4]). Let  $\alpha \in T_n$  and  $\alpha = (\alpha[\gamma])_{\gamma \in \Omega_m}$ . Then  $\alpha[\gamma] \in T_n$  for every  $\gamma \in T_m$ .

*Proof.* For a given  $\alpha = (\alpha[\gamma])_{\gamma \in \Omega_{\underline{m}}} \in T_{\underline{n}}$ , there is a normal a  $\epsilon$   $T_{\underline{n}}$  such that  $\operatorname{ord}(a) = \alpha$  by 2.4(4) and the strong normalization theorem. We fix such an a  $\epsilon$   $T_{\underline{n}}$  with the minimal length. The proof of this proposition can be proceeded by induction on the length of this term a for  $\alpha$ .

It follows from this proposition that we can use transfinite induction on the terms in  $\mathbf{T}_n$  (n< $\omega$ ) over the ordering  $\prec$  of  $\mathbf{T}_n$ .

DEFINITION 3.2. The step-down relations  $\leq_k$  (k< $\omega$ ) on  $\cup_{n<\omega} T_n$  are defined inductively as follows:

 $\alpha \prec_k \beta$  if  $\beta \neq 0$  and one of the following holds;

(i) 
$$\alpha \leq_k \gamma$$
 if  $\beta = \gamma + 1$ ,

(ii) 
$$\alpha \leq_{\mathbf{k}} \beta[\mathbf{k}]$$
 if  $\beta = (\beta[\mathbf{x}])_{\mathbf{x} \in \Omega_0}$ 

Note that if  $\alpha$ ,  $\beta \in T_1$  then the relations  $\leq_k$  defined above are the same as ones defined in Definition 1.1(2).

LEMMA 3.3. For  $\alpha \in T_{n+1}$ ,  $\beta \in T_n$  and  $\gamma \in T_n \setminus \{0\}$ ,  $\beta \prec_k \varphi_n^{\gamma}(\alpha, \beta)$ .

*Proof.* The lemma follows immediately from the two claims: □

CLAIM 1. Let  $\alpha \in T_{n+1}$  and  $\beta \in T_n$ . If  $\delta \prec_k \phi_n(\alpha, \delta)$  for all  $\delta \in T_n$ , then  $\beta \prec_k \phi_n^{\gamma}(\alpha, \beta)$  for  $\gamma \in T_n \setminus \{0\}$ .

Proof of Claim 1. Transfinite induction on  $\gamma \in T_n$ .

Case 1.  $\gamma = \eta + 1$ . Then  $\beta \leq_k \varphi_n^{\ \eta}(\alpha, \beta) \prec_k \varphi_n(\alpha, \varphi_n^{\ \eta}(\alpha, \beta)) = \varphi_n^{\ \gamma}(\alpha, \beta)$  by I.H.

Case 2.  $\gamma = (\gamma[x])_{x \in \Omega_0}$ . Then  $\beta \leq_k \varphi_n^{\gamma[k]}(\alpha, \beta) = \varphi_n^{\gamma}(\alpha, \beta)[k]$ 

by I.H. Hence  $\beta \prec_k \phi_n^{\gamma}(\alpha,\beta)$ .

Case 3.  $\gamma = (\gamma[\delta])_{\delta \in \Omega_m} (0 < m < n)$ . We can prove that  $\gamma[\delta] \in T_m \setminus \{0\}$  for  $\delta \in T_m \setminus \{0\}$  similarly to 3.1. Hence  $\beta <_k \phi_n^{\gamma[\delta]} (\alpha, \beta) = \phi_n^{\gamma}(\alpha, \beta)[\delta]$  for  $\delta \in T_m \setminus \{0\}$  by I.H. Therefore  $\beta <_k \phi_n^{\gamma}(\alpha, \beta)$ .

CLAIM 2. Let  $\alpha \in T_{n+1}$ . Then  $\beta \prec_k \varphi_n(\alpha,\beta)$  for all  $\beta \in T_n$ .

**Proof of Claim 2.** Transfinite induction on  $\alpha \in T_{n+1}$ .

Case 1.  $\alpha = 0$ . Then  $\beta \prec_k \beta + 1 = \varphi_n(\alpha, \beta)$ .

Case 2.  $\alpha = \gamma + 1$ . Then  $\delta \prec_k \phi_n(\gamma, \delta)$  for all  $\delta \in T_n$  by I.H.

Hence, by Claim 1,  $\beta <_k \phi_n(\gamma, \beta) \le_k \phi_n^{\beta}(\gamma, \phi_n(\gamma, \beta)) = \phi_n(\alpha, \beta)$ . Case 3.  $\alpha = (\alpha[\gamma])_{\gamma \in \Omega_m}(m < n)$ . By I.H.,  $\beta <_k \phi_n(\alpha[\gamma], \beta) =$ 

 $\varphi_n(\alpha,\beta)[\gamma]$  for  $\gamma \in T_m$ . Hence  $\beta \prec_k \varphi_n(\alpha,\beta)$ .

Case 4.  $\alpha = (\alpha[\gamma])_{\gamma \in \Omega_n}$ . By I.H.,  $\beta \prec_k \varphi_n(\alpha[\beta], \beta) = \varphi_n(\alpha, \beta)$ .  $\Box$ 

LEMMA 3.4. Let  $\alpha \in T_{n+1}$  and  $\beta$ ,  $\delta$ ,  $\gamma \in T_n$ . If  $\gamma <_k \delta$ , then  $\phi_n^{\ \gamma}(\alpha,\beta) <_k \phi_n^{\ \delta}(\alpha,\beta)$ .

*Proof.* Transfinite induction on  $\delta \in T_n$ .

Case 1.  $\delta$  = 0. This case is trivial.

Case 2.  $\delta = \eta + 1$ . By I.H. and 3.3,  $\varphi_n^{\gamma}(\alpha, \beta) \leq_k \varphi_n^{\eta}(\alpha, \beta) <_k$ 

$$\begin{split} &\phi_n(\alpha,\phi_n^{\phantom{n}\eta}(\alpha,\beta)) = \phi_n^{\phantom{n}\delta}(\alpha,\beta)\,.\\ &\quad \text{Case 3. } \delta = \left(\delta[x]\right)_{x\in\Omega_0}. \text{ By I.H., } \phi_n^{\phantom{n}\gamma}(\alpha,\beta) \preceq_k \phi_n^{\phantom{n}\delta[k]}(\alpha,\beta) = \\ &\phi_\alpha^{\phantom{n}\delta}(\alpha,\beta)[k]. \text{ Hence } \phi_n^{\phantom{n}\gamma}(\alpha,\beta) \prec_k \phi_n^{\phantom{n}\delta}(\alpha,\beta)\,.\\ &\quad \text{Case 4. } \delta = \left(\delta[\xi]\right)_{\xi\in\Omega_m}(0< m< n)\,. \text{ Then } \phi_n^{\phantom{n}\gamma}(\alpha,\beta) \prec_k \phi_n^{\phantom{n}\delta[\xi]}(\alpha,\beta) = \\ &\phi_n^{\phantom{n}\delta}(\alpha,\beta)[\xi] \text{ for } \xi\in T_m\backslash\{0\} \text{ by I.H. Hence } \phi_n^{\phantom{n}\gamma}(\alpha,\beta) \prec_k \phi_n^{\phantom{n}\delta}(\alpha,\beta)\,. \end{split}$$

LEMMA 3.5. Let  $\alpha$ ,  $\gamma \in T_{n+1}$ ,  $\beta \in T_n \setminus \{0\}$  and n > 0. If  $\gamma <_k \alpha$ , then  $\phi_n(\gamma, \beta) <_k \phi_n(\alpha, \beta)$ .

*Proof.* Transfinite induction on  $\alpha \in T_n$ .

Case 1.  $\alpha$  = 0. This case is trivial.

Case 2.  $\alpha = \eta + 1$ . By I.H. and 3.3,  $\varphi_n(\gamma, \beta) \leq_k \varphi_n(\eta, \beta) \leq_k \varphi_n(\alpha, \beta) = 0$ .

Case 3.  $\alpha = (\alpha[x])_{x \in \Omega_0}$ . By I.H.,  $\varphi_n(\gamma, \beta) \leq_k \varphi_n(\alpha[k], \beta) = 0$ 

 $\varphi_{n}(\alpha,\beta)[k]$ . Hence  $\varphi_{n}(\gamma,\beta) \prec_{k} \varphi_{n}(\alpha,\beta)$ .

Case 4.  $\alpha = (\alpha[\xi])_{\xi \in \Omega_{\underline{m}}} (0 < m < n)$ . By I.H.,  $\phi_n(\gamma, \beta) \prec_k \phi_n(\alpha[\xi], \beta)$ 

 $= \varphi_{\alpha}(\beta)[\xi] \text{ for } \xi \in T_{m} \setminus \{0\}. \text{ Hence } \varphi_{n}(\gamma,\beta) \prec_{k} \varphi_{n}(\alpha,\beta).$  Case 5.  $\alpha = (\alpha[\xi])_{\xi \in \Omega_{n}}. \text{ By I.H., } \varphi_{n}(\gamma,\beta) \prec_{k} \varphi_{n}(\alpha[\beta],\beta) =$ 

 $\varphi_{n}(\alpha,\beta)$  for  $\beta \in T_{n} \setminus \{0\}$ .

THEOREM 3.6([4,Theorem 3]). (1) Let  $\alpha \in T_n^+$  and  $\alpha = (\alpha[\xi])_{\xi \in \Omega_m}$ . If  $\gamma$ ,  $\delta \in T_m$  and  $\gamma \prec_k \delta$ , then  $\alpha[\gamma] \prec_k \alpha[\delta]$  (where the sets  $T_n^+$  ( $\subseteq T_n$ ) are defined inductively by:

- (i) 0, 1,  $\omega_0$ ,  $\cdots$ ,  $\omega_{n-1} \in T_n^+$ , (ii)  $T_k^+ \subseteq T_n^+$  for k < n,
- (iii) if  $\alpha \in T_{n+1}^+$ ,  $\gamma \in T_n^+$  and  $\beta \in T_n^+ \setminus \{0\}$ , then  $\varphi_n^{\gamma}(\alpha, \beta) \in T_n^+$ ).
  - (2) Each  $\alpha \in T_1^+$  is (k)-built-up for all  $k < \omega$ .

*Proof.* (1) Similarly to the proof of 3.1, for a given  $\alpha \in T_n^+$ , we can take a normal term a  $\in \overline{T}_n^+$  with the minimal length such that  $\operatorname{ord}(a) = \alpha$  (where the sets  $\overline{T}_n^+$  ( $\subseteq \overline{T}_n$ ) are defined inductively by:

(i)  $\bar{0}$ ,  $\bar{1}$ ,  $\bar{\omega}_0$ ,  $\cdots$ ,  $\bar{\omega}_{n-1} \in \bar{T}_n^+$ , (ii)  $\bar{T}_k^+ \subseteq \bar{T}_n^+$  for k < n, (iii) if a  $\in \bar{T}_{n+1}^+$ , c  $\in \bar{T}_n^+$  and b  $\in \bar{T}_n^+ \setminus \{0\}$ , then  $\bar{\phi}_n^{\ c}(a,b) \in T_n^+$ ). Hence we fix such an a  $\in \bar{T}_n^+$ . The proof of this theorem will be proceeded by the induction on the length of the term a. We have the following cases:

Case 1.  $a = \bar{\omega}_m$ . Then  $\alpha = \omega_m$ . We have  $\alpha[\gamma] = \gamma \prec_k \delta = \alpha[\delta]$ . Case 2.  $a = \bar{\phi}_n(d,b)$  and  $dom(d) = \bar{T}_m$ . Then  $\alpha = \phi_n(\lambda,\beta)$  so that  $\lambda = (\lambda[\xi])_{\xi \in \Omega_m} = ord(d)$  and  $\beta = ord(b) \in T_n^+ \setminus \{0\}$  from the definition of  $T_n^+$  above and  $\alpha \in \bar{T}_n^+$ . Hence, by I.H.  $\lambda[\gamma] \prec_k \lambda[\delta]$  and 3.5,  $\phi_n(\lambda,\beta)[\gamma] = \phi_n(\lambda[\gamma],\beta) \prec_k \phi_n(\lambda[\delta],\beta) = \phi_n(\lambda,\beta)[\delta]$ . Case 3.  $\alpha = \bar{\phi}^{-e}(d,b)$  and  $dom(e) = \bar{T}$ . This case is treated

Case 3.  $a = \bar{\phi}_n^e(d,b)$  and  $dom(e) = \bar{T}_m$ . This case is treated similarly to Case 2, using 3.4. This completes the proof of (1).

(2) We can show that for each  $\alpha = (\alpha[\gamma])_{\gamma \in \Omega_m} \in T_n^+$  and  $\gamma \in T_m^+$ ,  $\alpha[\gamma] \in T_n^+$  similarly to 3.1. Hence for each  $\alpha \in T_1^+$  and limit  $\lambda \leq \alpha$ , we have  $\lambda \in T_1^+$ . Thus by (1),  $\lambda[x] \leq_k \lambda[x+1]$  for all k, k and limit  $k \leq \alpha \in T_1^+$ .

We remark that (k)-built-upness does not hold for some element in  $T_1$  since, if we put  $\alpha = \phi_1(\omega_0, 0)$ , then  $\alpha[x] = \phi_1(x, 0)$  = 1 for all  $x < \omega$ .

THEOREM 3.7([4,Corollary 3.1]).  $\tau$  is (3)-built-up.

*Proof.* From the definition of  $\tau$  (Definition 1.8),  $\tau[x] \in T_1^+$ 

for every x <  $\omega$ . By 3.6(2),  $\tau[x]$  is (3)-built-up. Hence it is sufficient to proove that  $\tau[x] \prec_3 \tau[x+1]$ . For this, we have  $\tau[x] = \varphi_1(\dots \varphi_x(3, \omega_{x-1}) \dots, \omega_0) \prec_3 \varphi_1(\dots \varphi_x(\omega_0, \omega_{x-1}) \dots, \omega_0)$  $= \varphi_1(\dots \varphi_x(\omega_x, \omega_{x-1}) \dots, \omega_0) \prec_3 \varphi_1(\dots \varphi_x(\varphi_{x+1}(3, \omega_x), \omega_{x-1}) \dots, \omega_0)$  $= \tau[x+1] \text{ from } 3 \prec_3 \omega_0 \text{ and } 3.5, 3.3. \text{ This completes the proof.} \square$ 

### REFERENCES

- 1. DENNIS-JONES, E.C, and S.S. WAINER, Subrecursive hierarchies via direct limits. Springer Lect. Notes in Math. 1104(1984), 117-128.
- 2. DERSHOWITZ, N., Orderings for term-rewriting systems. Theoret. Comput.Sci.17(1982),279-301.
- 3. GIRARD, J.-Y.,  $\pi_2^1$  logic, Part 1: Dilators. Ann.Math.Logic 21 (1981),75-219.
- 4. KADOTA, N., On Wainer's notation for a minimal subrecursive inaccessible ordinal. Manuscript.
- 5. KADOTA, N., and K.AOYAMA, Some extensions of built-upness on systems of fundamental sequences. Zeit.Math.Logik 36(1990), 357-364.
- 6. WAINER, S.S., Slow growing versus fast growing. J.Symb.Logic 54(1989),608-614.
- 7. WAINER, S.S., Hierarchies of provably computable functions. In Mathematical Logic (Proc. Summer Sch., Conf. on Math. Logic, Chaika Bulgaria, Sept. 12-23, 1988); Plenum Press, New York (1990) 211-220.

Noriya Kadota; Department of Applied Mathematics Hiroshima-University Higashi-Hiroshima, 724 Japan