Rational points of bounded height on toric varieties

VICTOR V. BATYREV

Let Σ be a complete d-dimensional regular fan in $N_{\mathbf{R}}$ defining a smooth compact d-dimensional toric variety over a number field F, $\Sigma^{(i)}$ the set of all i-dimensional cones in Σ . Let the elements of $\Sigma^{(1)}$ have integral generators e_1, \ldots, e_n . We define some rational function on $s = (s_1, \ldots, s_n) \in \mathbb{C}^n$ associated with the combinatorial structure of the fan Σ

$$f_{\Sigma}(s) = \sum_{\sigma \in \Sigma^{(d)}} f_{\sigma}(s),$$

where $f_{\sigma}(s) = (s_{j_1} \cdots s_{j_d})^{-1}$, if e_{j_1}, \ldots, e_{j_d} are generators of the cone σ . For arhimedian completions of F, we put

$$f_{\Sigma,\mathbf{R}}(s) = 2^d f_{\Sigma}(s), \ f_{\Sigma,\mathbf{C}}(s) = (2\pi)^d f_{\Sigma}(s).$$

Denote by $P_{\Sigma}(t_1,\ldots,t_n)$ the rational function defined as the the Gilbert-Poincare serie of the $\mathbb{Z}_{\geq 0}^n$ -graded Stenley-Reisner ring $R(\Sigma)$ corresponding to Σ .

For any prime \mathcal{P} ideal of F, we denote by $\|\mathcal{P}\|$ the cardinality of the residue field of \mathcal{P} , by $\delta_{\mathcal{P}}$ absolute different of the nonarhimedian local field $F_{\mathcal{P}}$, and put

$$f_{\Sigma,\mathcal{P}}(s) = \left(\frac{1}{\sqrt{\delta_{\mathcal{P}}}}\right)^{d} P_{\Sigma}(\|\mathcal{P}\|^{-s_{1}}, \dots, \|\mathcal{P}\|^{-s_{n}}).$$

Denote by $K_{\Sigma}(s)$ the following product

$$f_{\Sigma,\mathbf{R}}^{r_1}(s)f_{\Sigma,\mathbf{C}}^{r_2}(s)\prod_{p}f_{\Sigma,p}(s),$$

where r_1 is the number of real embeddings of F, r_2 is the number of complex embeddings of F.

Let r_F the residue of the Dedekind zeta function $\zeta_F(z)$ at z=1;

$$r_F = \frac{2^{r_1} (2\pi)^{r_2} h R}{\sqrt{|D_F| w}}.$$

Theorem. Let $D(s) = s_1 D_1 + \cdots + s_n D_n$ $(s_i > 0)$ be an effective divisor on toric variety V_{Σ} , $H_{\Sigma}(s,x)$ corresponding height function on F-rational points $x \in T(F) \cong F^*$. Let $T^1(A_F) = (I^1(F))^d$ where $I^1(F)$ is the group of idele with norm 1 of the field F, $d\mu$ the standard Haar measure on $T^1(A_F)$. Then

$$\int_{T^{1}(A_{F})} H_{\Sigma}(s,x)^{-1} d\mu = (2\pi r_{F})^{-d} \int_{M_{\mathbf{R}}} K(s+im) dm.$$

This theorem can be applied to the problem of the asymptotic distribution of rational points of bounded height on toric varieties (cf. [1]).

Example. Let Σ defines \mathbf{P}^d . Then

$$f_{\Sigma}(s) = \frac{s_1 + \dots + s_{d+1}}{s_1 \cdots s_{d+1}}, \ P_{\Sigma}(t_1, \dots, t_{d+1}) = \frac{1 - t_1 \cdots t_{d+1}}{(1 - t_1) \cdots (1 - t_{n+1})},$$

$$K_{\Sigma}(s) = \left(\frac{2^{r_1} (2\pi)^{r_2}}{\sqrt{|D_F|}}\right)^d \left(\frac{s_1 + \dots + s_{d+1}}{s_1 \cdots s_{d+1}}\right)^{r_1 + r_2} \frac{\zeta_F(s_1) \cdots \zeta_F(s_{d+1})}{\zeta_F(s_1 + \dots + s_{d+1})}.$$

Applying the residue formula to the d-dimensional integral, we get

$$\int_{T^1(A_F)} H_{\Sigma}(s,x)^{-1} = \left(\frac{2^{r_1}(2\pi)^{r_2}}{\sqrt{|D_F|}}\right)^d \left(\frac{s_1 + \cdots + s_{d+1}}{s_1 + \cdots + s_{d+1} - d}\right)^{r_1 + r_2} \frac{\zeta_F(s_1 + \cdots + s_{d+1} - d)}{\zeta_F(s_1 + \cdots + s_{d+1})}.$$

The residue of $\int_{T^1(A_F)} H_{\Sigma}(s,x)^{-1} d\mu$ at $s=(1,\ldots,1)$ is

$$\left(\frac{2^{r_1}(2\pi)^{r_2}}{\sqrt{|D_F|}}\right)^d(d+1)^{r_1+r_2-1}\left(\frac{2^{r_1}(2\pi)^{r_2}hR}{\sqrt{|D_F|}w}\right)\zeta_F^{-1}(d+1).$$

This number gives the coefficient in the asymptotic formula of Schanuel for the number of rational points in projective spaces [2].

References

- [1] V.V. Batyrev, and Yu. I. Manin, Sur le nomber des points rationnels de hauter borné des variétés algébriques, Math. Ann. 286, 1990, 27-43.
- [2] S. Schanuel, Heights in number fields, Bull. Soc. Math. France, 107, 1979, 433-449.