goooboooogn
g 7760 19920 21-25

Some results on Ehrhart pelynomials of
star-shaped trianguletions of balls

Takayuki Hibi )
SR AN

. Department of Mathematics
Faculty of Science
Hokkaido University

Kita-ku, Sapporo 060, Japan

In this paper we extend the work [Stas] and [H4] on Ehrhart
polynomials of convex polytopes.

First, we recall what the Ehrhart polynomial of a convex
polytope is. Let T C RN be an integral convex polytope, i.e., a
conveX polytope any of whose vertices has integer coordinates,
of dimension d and o the boundary of ¥ . Given an integer
n> 0 we write i(P,n) for the number of rational points
(¢1,%9,..,aN) in P such that each n«; is an integer. In other
words, i(P,n) = #(nPNzZN). Here nP = {no;xe P} and #(X) is
the cardinality of a finite set X . The systematic study of i(P,n)
originated in the work of Ehrhart (cf. [Ehr]), who established that
the function i(P,n) possesses the following fundamental
properties :

(0.1) i(P,n) is a polynomial in n of degree d.

(Thus i(P,n) can be defined for every integer n.)

(0.2) i(®,0) = 1. ’

(0.3) ("loi de réciprocité”) (-1)d i(P,-n) = #(n(P-3aP)NzZN)

for every integer n > 0.
We say that i(P,n) is the Ehrhart polynomial of T .
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We define the sequence 53, 61, 582,... of integers by the
formula

(1-2)d*1 [ 1+ = i(P,n)An] = = § al. *)
~ n=1 1=0
Thus, in particular, 85 = 1 and 81 = #(®nzN) - (d + 1) . Rlso,
8 = O for every i > d by, e.g., [Staz, Corollary 4.3.1], and &4 =
#((P-2P)NZN) by (0.3). Moreover, each §; is non-negative
[Staj]l. When d = N, (2 g<j<q 8;)/d! is equal to the volume of
P (Istax, Proposition 4.6.30]). We say that the sequence §(P) :=
(80,81,..8q) which appearsin Eq. (*) is the §-vector of P .
Some linear inequalities on the 5-vector of P are known, e.g.,
(1.1) (Istas]) If §; =0 and 8541 = 842 = ... =84 = 0,
then X g<p<i 8y = 2 0<p<i 8j-¢ forevery 0 <i < [j/2].
(1.2) (IHgD) When (P-3P)NZN is non-empty, then &1 < §;
forevery 1 <i<d. | |
See also [Stagl, [B-M], [H{], [H2] and [H3] for further results on
Ehrhart polynomials of convex polytopes. :

On the other hand, let [ be an integral polyhedral complex in
RN ,i.e., a finite set of integral convex polytopes in RN such
that (a)if P e " and Q is a face of ©, then Q e ", and (b) if
P, P el,then P n ® isafaceof ® andof ®' . We write
IT'| for the underlying space U Per ® (c RN) of T, and let
2|l be the boundary of |I"| (in the usual topological sense
with respect to the relative topology on |I"| inherited from the
standard topology on RN ). We call d := max(dim®;Pel"} the
dimension of [". In analogy with i(P,n), we define for n > 0
i(I,n) to be the number of rational points (oq,oo,...,a) in [T}
for which each noj € Z . Thus, thanks to (0.3), we easily see

i(Cn) = = (-1)dim® y(p-n).
Pell
Hence i([",n) is a polynomial in n of degree d, howewver, i(I",0)
= X(I"), the Euler characteristic of . : ‘



Now, suppose that [' is an integral polyhedral complex in RN
of dimension d such that the underlying space |I"| is
homeomorphic to the d-ball. Then X(I') = 1. Hence the &-vector
8(I') = (80,81,...6q) of I can be defined by replacing i(®,n) with
i(T,n) in EQ.(*). Thus 8y =1, 81 =#(IT"InzN) - (d + 1) and
8q = #((IT1-3IT)nzZN) . Here 2IT| is the boundary, which is
homeomorphic to the (d-1)-sphere, of || . Rlso, each §; is
non-negative [Stagl.

We are now in the position to state our main result in this
paper. :

THEOREM. Let T" be an integral polyhedral complex in RN of
dimension d such that the underlying space |T"| is
homeomorphic to the d-ball. Suppose that (|II"|-3I)nzN is
non-empty, i.e., 85 = 0, and that |I"| is star-shaped relative to
some o e (IT]-3IT"HnzN ,i.e., for each g in ||, the open
line segment { (1-t)x +tp; 0<t <1} from « to p liesin
Iri-2ir] . Let &) = (80,61,..,64) be the 5-vector of T.

(2.1) We have the lower bound inequality '

forevery 1 <1<d.
(2.2) Moreover, the linear inequality

Sg+81 +...+8 <869 +849-1+...+8g-i

holds for every O < i < [d/2].

The proof of (2.1) is based on the same combinatorial
technique as in [H4]. On the other hand, in [Stas], the canonical
ideal Q(A(®)) of a Cohen-Macaulay integral domain A(P)
associated with a convex polytope T plays an essential role for
the proof of (1.1).
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More generally, in [Stagq, p.202], given an integral polyhedral
complex I in RN , @ noetherian graded ring A(T") is defined as
follows. Let Xq,..., Xy and T be indeterminates over a field
k. A basis of A([") as a vector space over k consists of 1
together with all monomials X&TN = X1 XNXNTN , where
n > 0 is anintegerand o = (oq,.,aN) € (nITInzN). In A,
multiplication of two monomials XXTN and XPTM is defined by
(i) (XoTn)(XPTM) = Xx+pTn+tm jf o« e n® and pe m®P for
some P e [, and (ii) (X&*Tn)(XPTM) = 0 otherwise. (Note that
A(T") is never an integral domain unless || = P for some P e
['.) We define a grading on A(I') by setting deg(X*TN) = n.
Then the Hilbert function H(A(I"),n) of A(T") is equal to i(I',)n)
for every n> 0. '

Thanks to [Stag, Lemma 4.6], if IT] is homeomorphic to the
d-ball, then the algebra A(I") is Cohen-Macaulay. Moreover, the
canonical ideal Q(A(I") of A(I') can be expressed easily by
virtue of Hochster's theorem ([Sta, p.81]). The key lemma for
our proof of (2.2) is the existence of an integral polyhedral
complexr T in RN with IT"] = || such that the canonical
ideal Q(A(T"")) possesses a certain non-zero divisor on A([™)
which is required in, e.g., [Hg, Proposition (1.3)].

EXAMPLE. Let P c R3 be the simpler with vertices A =

(1,0,0), B=(0,2,0), C =(0,0,1) and D = (-1,-1,-1). Rlso, let

Q c R3 be the simpler whose verticesare A, B, C and E =
(1,1,0) . We define " to be the integral polyhedral complex in

R3 of dimension 3 which consists of ©, Q, all faces of © and
all faces of Q. Then the underlying space |I"| is homoemorphic
to the 3-ball,and ({T'|-3IT1)nz3 = { (0,0,0) }. Howevwer, IT| is
not star-shaped relative to the origin of R3. We have &) =
(1,2,1,1) , which fails to satisfy the inequality in (2.1) for i = 2
and that in (2.2) for i = 1.

The author is grateful to Professor Richard P. Stanley for
valuable suggestion on the original version of the present paper.
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