Some results on Ehrhart polynomials of star-shaped triangulations of balls

Takayuki Hibi

日比孝之(北海道大学)理学部

Department of Mathematics Faculty of Science Hokkaido University Kita-ku, Sapporo 060, Japan

In this paper we extend the work [Sta5] and [H4] on Ehrhart polynomials of convex polytopes.

First, we recall what the Ehrhart polynomial of a convex polytope is. Let $\mathcal{P} \subset \mathbb{R}^N$ be an integral convex polytope, i.e., a convex polytope any of whose vertices has integer coordinates, of dimension d and $\partial \mathcal{P}$ the boundary of \mathcal{P} . Given an integer n > 0 we write $i(\mathcal{P},n)$ for the number of rational points $(\alpha_1,\alpha_2,...,\alpha_N)$ in \mathcal{P} such that each $n\alpha_i$ is an integer. In other words, $i(\mathcal{P},n)=\#(n\mathcal{P}\cap\mathbb{Z}^N)$. Here $n\mathcal{P}:=\{n\alpha;\alpha\in\mathcal{P}\}$ and #(X) is the cardinality of a finite set X. The systematic study of $i(\mathcal{P},n)$ originated in the work of Ehrhart (cf. [Ehr]), who established that the function $i(\mathcal{P},n)$ possesses the following fundamental properties:

- (0.1) $i(\mathcal{P},n)$ is a polynomial in n of degree d. (Thus $i(\mathcal{P},n)$ can be defined for every integer n.)
- (0.2) $i(\mathcal{P},0) = 1$.
- (0.3) ("loi de réciprocité") $(-1)^d$ $i(\mathcal{P},-n)=\#(n(\mathcal{P}-\partial\mathcal{P})\cap\mathbb{Z}^N)$ for every integer n>0 .

We say that $\mathrm{i}(\mathcal{P},n)$ is the Ehrhart polynomial of \mathcal{P} .

We define the sequence $\,\delta_0$, $\,\delta_1$, $\,\delta_2$, \ldots of integers by the formula

$$(1 - \lambda)^{d+1} [1 + \sum_{i=0}^{\infty} i(\mathcal{P}, n) \lambda^{n}] = \sum_{i=0}^{\infty} \delta_{i} \lambda^{i}.$$
 (*)

Thus, in particular, $\delta_0=1$ and $\delta_1=\#(\mathcal{P}\cap\mathbb{Z}^N)-(d+1)$. Also, $\delta_i=0$ for every i>d by, e.g., [Staʒ, Corollary 4.3.1], and $\delta_d=\#((\mathcal{P}-\partial\mathcal{P})\cap\mathbb{Z}^N)$ by (0.3). Moreover, each δ_i is non-negative [Sta_1]. When d=N, ($\sum_{0\leq i\leq d}\delta_i$)/d! is equal to the volume of \mathcal{P} ([Sta_3, Proposition 4.6.30]). We say that the sequence $\delta(\mathcal{P}):=(\delta_0,\delta_1,...,\delta_d)$ which appears in Eq. (*) is the δ -vector of \mathcal{P} . Some linear inequalities on the δ -vector of \mathcal{P} are known, e.g.,

- (1.1) ([Sta5]) If $\delta_j \neq 0$ and $\delta_{j+1} = \delta_{j+2} = \ldots = \delta_d = 0$, then $\sum_{0 \leq \ell \leq i} \delta_{\ell} \leq \sum_{0 \leq \ell \leq i} \delta_{j-\ell}$ for every $0 \leq i \leq \lfloor j/2 \rfloor$.
- (1.2) ([H4]) When $(\mathcal{P}-\partial\mathcal{P})\cap\mathbb{Z}^N$ is non-empty, then $\delta_1\leq\delta_i$ for every $1\leq i < d$.

See also [Sta $_6$], [B-M], [H $_1$], [H $_2$] and [H $_3$] for further results on Ehrhart polynomials of convex polytopes.

On the other hand, let Γ be an integral polyhedral complex in \mathbb{R}^N , i.e., a finite set of integral convex polytopes in \mathbb{R}^N such that (a) if $\mathfrak{P}\in\Gamma$ and \mathfrak{Q} is a face of \mathfrak{P} , then $\mathfrak{Q}\in\Gamma$, and (b) if $\mathfrak{P},\ \mathfrak{P}'\in\Gamma$, then $\mathfrak{P}\cap\mathfrak{P}'$ is a face of \mathfrak{P} and of \mathfrak{P}' . We write $|\Gamma|$ for the underlying space $\cup\ \mathfrak{P}\in\Gamma$ \mathfrak{P} ($\subset\ \mathbb{R}^N$) of Γ , and let $\partial|\Gamma|$ be the boundary of $|\Gamma|$ (in the usual topological sense with respect to the relative topology on $|\Gamma|$ inherited from the standard topology on \mathbb{R}^N). We call $d:=\max\{\dim\mathfrak{P};\mathfrak{P}\in\Gamma\}$ the dimension of Γ . In analogy with $i(\mathfrak{P},n)$, we define for n>0 $i(\Gamma,n)$ to be the number of rational points $(\alpha_1,\alpha_2,...,\alpha_N)$ in $|\Gamma|$ for which each $n\alpha_i\in\mathbb{Z}$. Thus, thanks to (0.3), we easily see

$$i(\Gamma,n) = \sum_{P \in \Gamma} (-1) \dim P i(P,-n).$$

Hence $i(\Gamma,n)$ is a polynomial in n of degree d , however, $i(\Gamma,0)=\chi(\Gamma)$, the Euler characteristic of Γ .

Now, suppose that Γ is an integral polyhedral complex in \mathbb{R}^N of dimension d such that the underlying space $|\Gamma|$ is homeomorphic to the d-ball. Then $\chi(\Gamma)=1$. Hence the δ -vector $\delta(\Gamma)=(\delta_0,\delta_1,...,\delta_d)$ of Γ can be defined by replacing $i(\mathcal{P},n)$ with $i(\Gamma,n)$ in Eq. (*). Thus $\delta_0=1$, $\delta_1=\#(|\Gamma|\cap\mathbb{Z}^N)-(d+1)$ and $\delta_d=\#((|\Gamma|-\partial|\Gamma|)\cap\mathbb{Z}^N)$. Here $\partial|\Gamma|$ is the boundary, which is homeomorphic to the (d-1)-sphere, of $|\Gamma|$. Also, each δ_i is non-negative [Sta4].

We are now in the position to state our main result in this paper.

THEOREM. Let Γ be an integral polyhedral complex in \mathbb{R}^N of dimension d such that the underlying space $|\Gamma|$ is homeomorphic to the d-ball. Suppose that $(|\Gamma|-\partial|\Gamma|)\cap\mathbb{Z}^N$ is non-empty, i.e., $\delta_d\neq 0$, and that $|\Gamma|$ is star-shaped relative to some $\alpha\in(|\Gamma|-\partial|\Gamma|)\cap\mathbb{Z}^N$, i.e., for each β in $|\Gamma|$, the open line segment $\{\,(1\text{-}t)\alpha+t\beta\,;\,0< t<1\,\}$ from α to β lies in $|\Gamma|-\partial|\Gamma|$. Let $\delta(\Gamma)=(\delta_0,\delta_1,...,\delta_d)$ be the δ -vector of Γ .

(2.1) We have the lower bound inequality

$$\delta_1 \leq \delta_i$$

for every $1 \le i < d$.

(2.2) Moreover, the linear inequality

$$\delta_0 + \delta_1 + \ldots + \delta_i \leq \delta_d + \delta_{d-1} + \ldots + \delta_{d-i}$$

holds for every $0 \le i \le [d/2]$.

The proof of (2.1) is based on the same combinatorial technique as in [H₄]. On the other hand, in [Sta₅], the canonical ideal $\Omega(A(\mathcal{P}))$ of a Cohen-Macaulay integral domain $A(\mathcal{P})$ associated with a convex polytope \mathcal{P} plays an essential role for the proof of (1.1).

More generally, in [Sta4, p.202], given an integral polyhedral complex Γ in \mathbb{R}^N , a noetherian graded ring $A(\Gamma)$ is defined as follows. Let X_1 , ..., X_N and T be indeterminates over a field k. A basis of $A(\Gamma)$ as a vector space over k consists of 1 together with all monomials $X^\alpha T^n = X_1^{\alpha 1} \ldots X_N^{\alpha N} T^n$, where n > 0 is an integer and $\alpha = (\alpha_1, ..., \alpha_N) \in (n \mid \Gamma \mid \cap \mathbb{Z}^N)$. In $A(\Gamma)$, multiplication of two monomials $X^\alpha T^n$ and $X^\beta T^m$ is defined by (i) $(X^\alpha T^n)(X^\beta T^m) = X^{\alpha+\beta} T^{n+m}$ if $\alpha \in n$? and $\beta \in m$? for some $\mathcal{P} \in \Gamma$, and (ii) $(X^\alpha T^n)(X^\beta T^m) = 0$ otherwise. (Note that $A(\Gamma)$ is never an integral domain unless $\mid \Gamma \mid = \mathcal{P}$ for some $\mathcal{P} \in \Gamma$.) We define a grading on $A(\Gamma)$ by setting $deg(X^\alpha T^n) = n$. Then the Hilbert function $H(A(\Gamma),n)$ of $A(\Gamma)$ is equal to $i(\Gamma,n)$ for every n > 0.

Thanks to [Sta4, Lemma 4.6], if $|\Gamma|$ is homeomorphic to the d-ball, then the algebra $A(\Gamma)$ is Cohen-Macaulay. Moreover, the canonical ideal $\Omega(A(\Gamma))$ of $A(\Gamma)$ can be expressed easily by virtue of Hochster's theorem ([Sta2, p.81]). The key lemma for our proof of (2.2) is the existence of an integral polyhedral complex Γ in \mathbb{R}^N with $|\Gamma| = |\Gamma'|$ such that the canonical ideal $\Omega(A(\Gamma))$ possesses a certain non-zero divisor on $A(\Gamma)$ which is required in, e.g., [H5, Proposition (1.3)].

EXAMPLE. Let $\mathfrak{P}\subset\mathbb{R}^3$ be the simplex with vertices A=(1,0,0), B=(0,1,0), C=(0,0,1) and D=(-1,-1,-1). Also, let $\mathbb{Q}\subset\mathbb{R}^3$ be the simplex whose vertices are A, B, C and E=(1,1,0). We define Γ to be the integral polyhedral complex in \mathbb{R}^3 of dimension 3 which consists of \mathbb{P} , \mathbb{Q} , all faces of \mathbb{P} and all faces of \mathbb{Q} . Then the underlying space $|\Gamma|$ is homoemorphic to the 3-ball, and $(|\Gamma|-\partial|\Gamma|)\cap\mathbb{Z}^3=\{(0,0,0)\}$. However, $|\Gamma|$ is not star-shaped relative to the origin of \mathbb{R}^3 . We have $\delta(\Gamma)=(1,2,1,1)$, which fails to satisfy the inequality in (2.1) for i=2 and that in (2.2) for i=1.

The author is grateful to Professor Richard P. Stanley for valuable suggestion on the original version of the present paper.

REFERENCES

- [B-M] U. Betke and P. McMullen, Lattice points in lattice polytopes, *Monatsh. Math.* 99 (1985), 253-265.
- [Ehr] E. Ehrhart, "Polynômes arithmétiques et Méthode des Polyèdres en Combinatoire," Birkhäuser, Basel and Stuttgart, 1977.
- [H₁] T. Hibi, Some results on Ehrhart polynomials of convex polytopes, *Discrete Math.* 83 (1990), 119-121.
- [H₂] _____, Dual polytopes of rational convex polytopes, Combinatorica, in press.
- [H₃] _____, A combinatorial self-reciprocity theorem for Ehrhart quasi-polynomials of rational convex polytopes, European J. Combin., to appear.
- [H₄] _____, A lower bound theorem for Ehrhart polynomials of convex polytopes, Advances in Math., to apper.
- [H₅] _____, Face number inequalities for matroid complexes and Cohen-Macaulay types of Stanley-Reisner rings of distributive lattices, Pacific J. Math., in press.
- [Sta₁] R. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980), 333-342.
- [Sta₂] _____, "Combinatorics and Commutative Algebra," Progress in Math., Vol. 41, Birkhäuser, Boston/Basel/Stuttgart, 1983.
- [Staz] _____, "Enumerative Combinatorics, Volume I," Wadsworth & Brooks/Cole, Monterey, Calif., 1986.
- [Sta4] _____, Generalized h-vectors, intersection cohomology of toric varieties, and related results, in "Commutative Algebra and Combinatorics" (M. Nagata and H. Matsumura, eds.), Advanced Studies in Pure Math., Vol 11, North-Holland, Amsterdam, 1987, pp. 187-213.
- [Sta5] _____, On the Hilbert function of a graded Cohen-Macaulay domain, J. of Pure and Appl. Algebra 73 (1991), 307-314.
- [Sta₆] _____, A monotonicity property of h-vectors and h*-vectors, preprint (March, 1991).