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1. Introduction

Let () be the Riemann’s zeta function and n(r) (r = v-=1(1/2—3)) the 10gdrithmic
derivative of ¢ which is of the form: '

n(r)= > > (logp)e "losr)

pEPrim n>1

= Z Z e~V Tnlog pi)r (1)

i>21 n>1

where Prim = {p;;1 > 1} is the set of prime numbers and a;, ='(logp,-)e‘"(1°37"')/2.
This series converges absolutely and uniformly in any half plane (r) < -1/2 — ¢
(¢ > 0) and has meromorphic continuation to the whole complex plane. Then the
Riemann Hypothesis that the roots of ¢((s) all do lie on R(s) = 1/2 is equivalent to
showing that the non imaginaly poles of n(r) all do lic on S(r) = 0.

Let G be a connected semisimple Lie group with finite center, ' a maximal compact
subgroup of G and I" a discrete subgroup of G such that I'\G is compact. Then for each
character y of a finite dimensional unitary representation of I, Gangolli[{G1] investigates
a zeta function Zr(s, x) of Selberg’s type, Selberg[S] originally introduced into the case
of SL(2,R). The logarithmic derivative ng(r) of Zr(s,x) (r = v/—1(po — s) and py is
a positive real number depending only on (G, K)) is of the form:

ne(ry=x ZZusmxxw%(l_z(a)r"‘e—“"”; )

§EPrimr n2>1 AEL :
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where Primr is a complete set of representatives for the conjugacy classes of prime
elements in I' and us (§ € Primr) the logarithm of the norm N(§) of 6. For other
notations refer to [G1]. This series converges absolutely and uniformly in any half
plane &(r) < —pg — e (e > 0) and has meromorphic continuation to the whole complex
plane. Especially, the poles of ng(r) all do lie on S(r) = 0 or R(r) = 0, so the Riemann
Hypothesis holds true for Zr(s,x). In what follows we shall rearrange the series as

16(r) = 30 3 bipe Ve ueiT 3)

i1 n>1

for which the exponents satisfy cinus; = cjmus; if and only if i = j and n =m.

We here note that (1) and (3) are quite similar in their forms. Therefore, if two
distributions of Prim and Primp are similar in the logarithm of their norms, it is
hoped that n and ng have the same properties, especially, the Riemann Hypothesis
holds for n and then, for ¢ also. In this paper we let G = SL(2,R) and make an
assumption of magnitude and distance of N(§) for § € Primr, which guarntees the
similarity between the distributions (see (A) in §2 and (B) in §6). Then, under a week
assumption (A) we shall obatin an integral expression of 7 in terms of g such as

W)= [ e (@

(y = 1/2 4+ € and see Proposition 3.3). Unfortunately, this formula is valid only for
S(v) < =L (L is a large positive number and see Proposition 5.1). Then, the Riemann
- Hypothesis is equivalent to showing that the right hand side of (4) has analytic con-
- tinuation to $(v) < 0 except v = —/=1/2. Under a strong assumption (B) we shall
obtain the continuation and prove the Riemann Hypothesis (see Theorem 6.1).

Since n(r) and ng(r) have a different growth order as 7 — oo (cf. [E], Chap.9 and
[H], Chap.6), we see that the distribution of Prim and the one of norms of Primr does
not coincide. On the other hand we know that the prime number theorem that gives an
approximation of the number of primes less than a given magnitude holds in an exactly
same form for both Prim and Primp (cf. [E},Chap.4 and [H], Chap.2). Therefore,
according to these facts we can believe that two distributions of Prim and Primr are
similar in their norms. Actually, our strong assumption (B) expresses a similarity in
the following fashion: there exists an injective map

w:Prim —  Primp (5)

for which log N(w(p)) < 1/4logp or log N(w(p)) < logp and the distance §(p) be-
tween log N(w(p)) and the nearest element being of the form log N(w(q)) (¢ € Prim) is
bounded below by o(log N(w(p)))~? for positive constants ¢ and 8, roughly speaking,
log N(w(p)) < logp for almost all p € Prim, but, if §(p) is sufficiently small like in the
case of twin prime elements, it must be log N(w(p)) < 1/4logp. At present we have
no idea to find a discrete subgroup I' of SL(2,R) satisfying this property, however, we
have enough reason to believe that a similarity between Prim and Primr deduces the
Riemann Hypothesis. '



2. Notations

Let G = SL(2,R) and let x be the trivial character of . Then py = 1/2 and the
explicit form of 7¢ is given by

nG(r) = Z Z S]nh(;/'li/z) -—\/-_lnu.'r’ . (6)

i21 n2>1
where uU; = Ug;, and in (3) Cin="n and
bin ™! = 2u; ! sinh(nu;/2) < ce™i/2. )

- For general references to the basic properties of ng see [G1], [H] and [S]. We denote

the increasing sequence of prime numbers as p; = 2,p2 = 3,p3 = 5,... and the one

of the norms of elements in Primr as N(6;),N(62),N(83),... respectively. We define
= log N(é;) and

Sin = 1 inf  |nu; — mu;| (8)
(m.5)A(m, ) '

for 7 > 1 and n > 1. Then, each §;, is positive, because {u;;i > 1} does not have a
finite point of accumulation (see [G2], p.415). Moreover, it is easy to see that there
exists a positive constant C' such that for each «a > 0and g > 1

Ein = €in(01,,8, C) — Ce—an(logpi)efﬂnui S 5in . (9)

for all ¢ and n > 1. We fix such a pair of a and f till the end of §4.
As said in §1, the Riemann Hypothesis holds for 4. Actually, the poles of ng are
all simple and are as

{vi;j € Z}U {rj;1 <j <2M}, (10)
where v; € R and r; € /=1R (cf. [G1], Proposition 2.7 and [H], p.68). Then it is
known that v_; = —v; and the poles of ng which concentrate along [—v/~1/2,+/~1/2]

can be denoted as

{VOarj)Fj;l-SjSM}$ (11)

where we let 71,73,...,7) be the poles of ng which concentrate along [—+/—1/2,0) and
Tj=—T; =TjtM. We denote the residues of n¢ at v; and r; by n; and m; respectwely

Then, n_j =nj; and mj =mjpy =1for 1 < j < M (cf. [H], Chap.2).
We fix sufficiently small (resp. large) positive numbers ¢ and 5 (resp E), and a
p031twe number y such that 1/2 <y <1/2+e¢.



3. Transition from ng to 7

Let ¢ be a C*° compactly supported function on R satisfying

(¢) supp(¢) C (-1,1),
(1) #(0)=1, . (12)
(iii) ¢®(0)=0 (1<k<2M)

and let

azn ( —_'I’l(v'logp.i)) (t € R.) (13)

Ein

hin(t) =
for 1 > land n > 1. Then it is easy to see that h,-n satisfies the following conditions.

(2)  supp(hin) C (n(logpi) — €in, n(log pi) + €in), )
(4) hin(n(logps)) = 3% (14)
(i35) i (n(logp:)) =0 (1 <k < 2M).

Without loss of generality we may assume that €;; < 1/2log2 and thus, supp(h;,) C
[1/210g2, o) for all i and n > 1. Here we put hin(z) = (27)71 [ hin(2)e~V"1%%dz
and

H(v,z)= Y eY~llmui=nlogrdef, (i) — g) (152)
,n>1 .

_ Z —/=T(n(log p;)v—nu;z) Zzn an¢(€zn(y — 7). (15b)

i,n>1 .

We now consider a condition for which the series (15) converges. For 6 20 and 1<
p,q < oo such that 1 / p+ 1/q = 1 we suppose that v and z satisfy

(ag) —-E<S(v),S(z) < E,

Py S(v)-1/2—-(1-0a<-1/p-§
(5%) {—3(.%)+1/2-(1-9)55_1/q._5,

where § is a fixed sufficiently small positive number (see §2). Then, substituting the
definition of a;, and b;, (see (1) and (7)) for (15b), we see that |v — z|°|H(v,z)| is
dominated by

c Z logpie(ﬁ‘(u)—l/2)n(logp;)e(—-S‘A(z)+1/2)nu.-€$n—01(€in(y _ x))9$(€in(V _ "’3))1‘
in>1 - - (16)



Since ¢ is rapidly decreasing and is holomorphic of exponential type < 1 (cf. [Su],
p.146), for each N € N there exists Cy > 0 for which

18()] < Cn(1+|2])™Nel¥@! (2 € ©). Yy
Therefore, it follows from (9) and (ag) that |v — z|°|H(v, z)| is dominated by
601—90[01+162EC Z logpie(g(u)—1/2—(1—0)a)n(logp;)e(—&(z)+l/2—(l—0)ﬂ)nu.~,
in>1 (18)

where [6] is the greatest integer not exceeding 6. Then, this series converges absolutely
and uniformly by (b5'?) and the Holder’s inequality.

Lemma 3.1. If v and z satisfy (ag) and (b)), then the series H(v,z) converges
absolutely and uniformly, and is holomorphic of v and z. Moreover, if (b)'7)(6 > 0) is
satisfied, there exists a positive constant C such that

|H(v,2)| < Cly — 2],

Throughout this paper we assume the following condition:

(A) There exists a positive constant A such that -

u; < Alogp; foralle> 1.

Then we can replace (bZ’é) with
(22 { S()-1/2-(1-8a+v<-1/p=34,
P =S(@) +1/2-(1-8)p~v/A< ~1/g -6,

where v > 0. We fix such a v.
We next let —y < —yo < E and

(22 ) {3(1/)—1/2—(1—9)@+75_1/,,_5’
8,790 yo + 1/2-(1-60)8-v/A<-1/q-6.

Then, if v satisfies (ag) and (cpY, ., ,,)(8 € N), it follows similarly as above that

R

R—v=Tyo

<c Z logpie(%‘(u)—lﬂ)n(logP-‘)e(yo+1/2)nu.-€i—’f [51_"/ : |(€in$)9$(€in(l/ — z))|dz
i,n>1 R—v-1yo

and by letting z = (z — v) + v,

< CC_GC(;+262ECP9(IV|) Z logpie(i‘f(l')—l/2+00+7)n(1°gPi)e(yo+1/2+9ﬂ—‘7/A)nu.-’
i,n>1 . (19)

where Py is a polynomial of degree 8 with coeflicients depending only on 6. Then this

series converges absolutely and uniformly by (czj{'_ll, +.30) and the Holder’s inequality.



Lemma 3.2. Let v be in a compact set S in the tube domain defined by (ag) and
(ch¥1.4.40) (6 € N and —y < —yo < E). Let f be a function on R ~ +/=1yo such

that f(z) = O(|$|9)‘b Then, there exists a positive constant C' for which fR—\/—_lyo
|[f(z)H(v,z)|dz < C. Especially,

R—v-1yo

Tyof(v) = / f(z)H(v, z)dz

is well-defined and is holomorphic of v satiéfying (ag) and (Cgfl,-y,yo)'

Proposition 3.3. Let P vbe a polynomial of degree k(0 < k< 2M) and v satisfy (ag)

and (c’l.:jf_lmy)'. Then,

() PWn() = Ty(Pre)(v)
= [ P@ne@H o),
R—/=Ty

(33) 0=/R—\/__l P(z)ne(z)H (v, —z)dz.

Proof. Since ng(z) = O(1) for z € R — /=1y (sée [H], Proposition 6.7) and (c}7, _ )

k+1,v,y
implies (¢}, . _,), the right hand sides of (i) and (i) are well-defined and are holomor-

phic of v satisfying (ag) and (¥, . ) (see Lemma 3.2). Therefore, we may suppose

that S(v) < —y. Since mu; > 0 for all m,j > 1, it follows that
/ e~V=I™ 2 By, 2)de
R—/—1y
:/ e~V=IMGZ (1 ) dz.
R
Then, substituting the definition of H(v, z) (see (15a)), we see formally that

— Z / e—\/—_lm'uj:r:e\/__l(luk—-I(logpk)):r:ilkl(”__:L_)d:E v
R

kI>1 .
. Z e_\/:f(mu;—luk+l(10gpk))V/ e\/:T(muj—hfk+l(logpk))zilkl(x)dx
E,I>1 R
— Z e_\/—_l(mu'j_l"k+l(1°gp‘k))yhkl(nzuj — luk + l(logpk))'
k,I>1 ‘

Since each support of hy is diéjointed from the others, it is easy to see that the condition
that S(v) < —y guarantees the validity of the above. calculation. Moreover, since the



support of hy is contained in (I(log pr) — €1, I(log pi) + €x1) and hyi(I(log pr)) = apdby
(see (14)(%) and (iz)), it follows from (9) and the definition of 8 (see (7)) that

= exj€tmhri(l(log pk))e"‘/‘—”(“’g Pr)v

~1,- /=TI
= exjetmarndy; € (g p)v,

where €;; = 1 if ¢+ = 7 and 0 otherwise. Therefore, we can deduce that
Tyna(v) = / ne(z)H(v,z)dz
R—/—1y

= Z bjm/ e~ VTImUTH(y, z)da

jmz1 YR=V=Ty
= Z ajme—\/—_lm(loz; p;i)v (20)
Jm21

= n(v).
Here we rewrite P(v) as
P(v) = R, (v — z) + P(z),

where R, is a polynomial of degree k with coefficients depending only on k and v. Then
the formula (¢) follows from (20) provided that

/ (v — z)na(z)H(v,z)dz =0 (1 <1<k). (21)
R—V/=Ty

We now show (21). If we define H®(v,z) by replacing h;, in (15a) with (\/-1)"'h§2,
we easily see that the left hand side of (21) is equal to

/ ne(2)HP (v, z)de.
R—v=1y

Obviously, this integral is finite by the condition (¢}, . ). Then, applying the same
argument that deduces (20), especially, by using (14)(222) instead of (14)(¢7), we can show
that this integral is equal to 0. The formula (iz) follows by the quite same way. O

We now let £ and § (resp. E) sufficiently small (resp. large). Then, we can deduce
the following,

Corollary 3.4. The equations (i) and (it) in Proposition 3.3 hold for v satisfying

{3(V)—1/2+ka+7< -1/p

where v > 0,1<p,g<ocoandl/p+1/g=1.



4 A'relation betWeen'n and the ‘poles of ng'

We keep the notations and the assumption (A). We first recall that ng satisfies the
functional equation:

ng(z) + ne(—= ) =cz tanh nx (22)

(see [H], Proposition 4.26). In this section we shall express n as the sum of an integral
of z tanh 7z and the residues of 7¢.

Lemma 4.1. Let P be a polynomial of degree k(0 < k <. 2M) and let v be in a compact
- set S satisfying I(S) < 0, (ag) and (c}s ;o). Then the series > jez niP(v;) H(v,v5)
converges absolutely and uniformly. Especially, 3~ .o, n;P(v;) H(v,v;) is well-defined
and is holomorphic of v satisfying \S‘(S) <0, (aE) and (C’Zﬁs,y,o)
Proof. Since v; € R and v € S, Lemma 3.1 1mphes that for z € R
|H(v,2)| < Clv — 2|+ ~ (1 4 [2[)=+9),
Then, noting the fact that
Z n; ~ 2% (z— 00)
{s;v}<z)
(see §2 and [G1], Propositionl.Z); we see that
> il PE)H(, )]
JjEZ
~ i+ )

JEZ

~d D L+l

k=0 k<|v; |<k+1
NZ(l +k)‘2 <oo. 0O
We now suppose that v satisfies S(v) < 0, (ap) and (cg? ). We note that, if
|S(z)] £ €, then ztanh7z = O(|z]) and ne(z) = O(|z]) (see [H], Proposition 6.7).

Therefore, since (cg’? ,) implies (c§’? ..) and (cf’? ), it follows from Lemma 3.2 and
Lemma 4.1 that '

/ca:tanhmcH(u,vz)dx ,

R .

=/ cz tanh rz H (v, —x)dz
/R++/“Te

= z)+ —z))H (v, —z)dz
L., - 6@+ o), —2)

= :cHu;:z:d:L'+/ z)H (v, —z)dz.
o re@Ame s [ na(e)E (-2



The second term is equal to

A _Fyna(w)H(V —2)de = S miHv) — S H(y-r;)

J€Z 1M

=‘—ZnJH(U VJ)-— Z H(v, —rJ)

JEZ 1<;<M

by Proposition 3.3(iz). Therefore, it follows from Proposition 3.3 () that
n(v) = / ne(z)H(v,z)dz
R-/=1y :
==/ | ne(z)H (v, z)dz + Z H(v,r;)
R—/=T¢

1<5<M :
=/ ca:tanhvr:z:H(u,:c)dm+anH(u, vi) + Z H(v,rj).
R JEZ 1<j<2M

Then, letting ¢ and § (resp. E) sufficiently small (resp. large), we can obtain the
following,

Proposition 4.2. If v satisfies
S(v) < min(0,1/2 — 5a — v — 1/p)
{1+5ﬂ‘<7/A—1/q, ‘
wherey > 0,1 <p,g< o0 andl/p+1/q=1, then

n(v) = c/Ra:ta,nh‘lrxH(u,m)dx + anH(u, vj) + Z - H(v,rj).

j€z : 1<j<2M
We put
Po(z) = (v =) (0?2 = rd). .. (v* —r2)). (23)

Then, repla,cing.ng with Pgng, we can obtain the following proposition by the quite
same way. ‘ ’

Proposition 4.3. If v satisfies

{ $(v) < min(0,1/2 — (5 + 2M)a — v —1/p)
1+(5+2M)B<v/A-1/q,
where v 20,1 <p,g<o0 andl/p+1/q=1, then

Pg(v)n(v) = /R—-\/:Te UG(SC)PG(:I:)H(V,:B)J:C

= / ztanh 7z Po(2)H (v, z)dz + ZRJP(;'(V])H(V vj).
R.
JEZ
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5. Some modifications

5.1. In the proof of Proposition 3.3 each term b,-,,e"‘/:T"“‘"" of ng(r) (ui = log N(é;))
transfers to a;,e~V-1n(ogpi)r of n(r) under the integral formula. Obviously, to verify
such an integral formula 6;’s need not be taken over all elements in Primr, and it is

enough for each p; to correspond to a unique element du(iy in Primp. Actually, for an
injective map

A w:N —= N
we put
1

6in = § (m,l,-ngm Inuw(i) - muw(j)la (24)
(m,w (i ))A(n,w(i)) _

e, = e (a, ,C) = CemomloBrde=hnuuiy, (25)
n t— 1 .

hy, = 2in g iz nlogrdy gy (26)

bu(iyn Ein - \
Hy(v,z) = Yy eV imue@—nlogrdze (, _ g) @7
i,nz1

(cf. (8), (9), (13) and (15)). Then it is easy to see that all results in the preceding
sections are also valid when we replace §in,€in, hin and H(v,z) by 6%,,e% ,h%, and
H, (v, z) respectively and (A) by

(A). There exists a positive constant A such that
uyiy < Alogp; forall: > 1.
5.2. We next modify the n functions. Let

n°(r) = Z a;e~V—Tlogpi)r (28)
i>1 v

where a; = (log p;)e~(°82))/2 and let

mo(r) =Y bV, ()

i>1

where b; = u;/2sinh(u;/2). Then, it is easy to see that n(r) — °(r) and ng(r) —

n&(r) are holomorphic on ¥(r) < 0 (cf. [H], Proposition 3.5). Therefore, in order to

prove the Riemann Hypothesis for # it is enough to prove it for 7°. Since 1° and ng

inherit all singuralities from 7 and ng respectively, the whole arguments in the previous

sections except one using the functional equation (22) are also applicable to n° and ng.

Especially, if we define 6%, e¥(e, 8,C), h¢¥ and H(v,z) by eliminating the sufix n in

(24)-(27) respectively, we see that all the results in §2 and §3 are also valid when we
replace n,ng and H by n°,n& and HJ respectively and (A) by (A),.



5.3. We now let
w:D —- N, DCN

be an injective map, and for each i € D we define 6§¥,¢¥ (o, 3,C) and hY as above.
Moreover, we put

no(r) = Z a;e~V—10og pi)r (30)
i€D
Hi(v,2) = ) eVTHm—nlosrdzhe () — ) (31)
i€D

and we define the corresponding assumption (A),, we denote by the same letter, by
replacing ¢ > 1 with ¢ € D. Then repeating the same arguments in §3, especially, taking
7 sufficiently large in Corollary 3.4 and Proposition 4.3, we can deduce that

Proposition 5.1. Let us suppose that (A), holds. Then there exists a positive con-
stant L such that if $(v) < —L,

0w = [ e Hxw s,

(i) Pa(w)n(v) = / Po(e)ne(z)HE (v, 2)dz.

R—y—1le

6. A proof of the Riemann Hypothesis under an assumption

We retain the notations in the previous sections. We here make an assumption on
magnitude and distance of u;(z € N), which is stronger than (A), and then give a proof
of the Riemann Hypothesis. The assumption can be stated as follows.

(B) There exist an injective map w : N — N and positive constants ¢ and 8 for
which, except a finite number of 7, one of the following conditions holds:

(B1) uw@) < 1/4logpi,
(B2) wuy(;y <logp; and | au;z) < 67
We here put Dy = {i € N; (B{) holds} for £ = 1,2 and Dy = N — D; U D,. In what
follows for each w¢ = w|p,(¢ = 1,2, 3) we shall prove that Pg(v)ng, (v) (£ =1,2,3) (see
(30)) is holomorphic on —2L < §(v) < —3e.
Ne,: Since (B1) implies (A)., (see 5.3), it follows from Proposition 5.1 that

)= [ as@H, e)ds, (52)
R-vV—=1y

if S(v) £ —L. We now recall the definition of ¢;* (see 5.3 and (9)). Then, we can
choose a sufficiently small positive number 7 depending on ¢ such that

T em (43000 (91)~7 < co. | . (33)
i€D; ' : o : ‘

"
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" of §¥? (see 5.3 and (8)) and (B2) that uu,() 2 Uu,(i,) T 2%

Then, by (B1) and the argument used in (16) (18) we see that if —2L <:Q(v) < —2¢
and (z)=-y=-1/2 —¢,

IH:,I(V,:,;N <ec Z log p;e(~2e=1/2) logP,-'e(€+1)“u1(:’.-)(€?;1')_.,.li/ _ $|—'(‘1++)
i€D,
< c[u — ilf(1+r) Z e’--—(1+3s)uwl(,~)(€:y1)—r
i€D,
< ¢y — 2|~ by (33).

Since qG(a:) O(1) forzr € R—+/-1y (see [H], Theorem 3.10), the above estimate and

, (32) give an analytic continuation of Mo, (v) on —2L < () < —2¢.

7o, In the previous sections ¥ = 6“’(0{ B,C) (see 5.3 and (9)) is deﬁned fora >0
-6

‘ wa (i)

and easily see that all arguments in the previous sections are valid for 47, h“’2 and HJ

wa?
especially, it follows that

and 8 > 1. However, under the second condition of (B2) we may take €? = ou

PG(V)??ZL,(V)=/R_\/:T Pg(z)ng(e)H, (v, z)dz, (34)

if S(v) < —L (see Proposition 5.1). We here put Jo = {1 € D2;1 <e¥?} and J, = {i €
Dy; 27" < e¥? < 2-(n1} (n =1,2,...). Moreover, we denote by i, the number in J,
for which w(75) is the smallest in w2(3)(j°€ Jn) and by kn(¢) (1 € Jn) the number of
elements j in J, satisfying ws(j) < wa(i). Then for each i € J, we see from the definition

€ Jn,w2(§)<wa(i) 6;0 2

' Uy, (in) + 2kn(1)27" for n > 0 and uy,,) 2 o1/02(r=1)/8 for n > 1. Therefore, by (B2)

and the argument used in (16)-(18) we see that if —2L < ¥(v) < -3¢ and Y(z) = —e,

IH:,(Va :L‘)I <ec Z logp;e(_3€—l/2)]°g p.-e(e+1/2)uu2(;)(€:§zz)l—(2M+3) |I/ - ml—(2M+3)

1€D,
oo
Sely—a|TEMID Y0 D | em et (ep) HMED
n=01€J, :
< Cll/ _ :L‘l—(2M+3)(e~€u”2("0) Z e-—-2eko(i)
1€Jp
-~ .
+ Z e—€a1/02("‘1)/’22n(M+1)> z e-—2ck,.(i)2'")
n=1 ie-]n

il -—501“2("'1)/89211(M+1)
< e — oM (s + 3 =

e—2¢ 1 - 6—252—"
: n

< .ClV _ w'-(2M+3).

Since Pg(z)ng(z) = O(|z*M*!) for z € R — \/;—16 (see (23) and [H], Remark 6.8), the -
above estimate and (34) give an analytic continuation of nZ,(v) on —2L < ¥(v) < —3e.
Nas: Since D3 is finite, 7, is holomorphic on the whole complex plane.
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We now obtained that each Pg(v)ng,(v) (€ = 1,2, 3) has an analytic continuation on
—2L < $(v) < —3¢. Therefore, Po(v)n°(v) = Yoy Pg(v)ng,(v) and thus, Pg(v)n(v)
have the same property (see 5.2). Since € can be taken sufficiently small and 7 satisfies
the functional equation (see {E], p.13), it follows that Pg(v)n(v) is holomorphic on
0 < [$(v)| £ 2L. Then, noting the zeros of Pg(v) (see (23) and (11)) and the fact that
that {(s) has no zeros on [0, 1], we can finally obtain the following theorem.

Theorem 6.1. If SL(2,R) has a cocompact discrete subgroup I' with Primp satisfying
the condition (B), then the Riemann Hypothesis holds.

* Remark 6.2. We see that D, # 0. Actually, if D; UD; = N, it follows from the above
argument that n°(v) is holomorphic on I(v) < 0. This contradicts to the fact that n(v)
has a pole at v = —y/=1/2.
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