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A Construction of Solutions of the Ernst Equations

Takashi HASHIMOTO and Ryuichi SAWAE

Department of Mathematics, Faculty of Science
Hiroshtma University, Higashi-Hiroshima, 724, Japan

In this article, we give a prescription for constructing formal solutions of
the Ernst equations which are derived from the stationary axially symmetric
Einstein-Maxwell equations. This is based on the treatment of [1].

0. Preliminaries
Let ds? = g;jdz*dz’ be a metric and A = A;dz' a electro-magnetic potential on
R1+3, Then the Einstein-Maxwell field equations are given by
R,‘j = 87rT,-j, VkF“c =0 (i,j,k =0, 1,2,3),

where R;; is Ricci curvature and

Fij = 8;A; — 0 A,

1 p_ 1 kl

T;; = g(FikF} = 79 FuF )-

Since we are concerned with stationary axisymmetric solutions, we choose a

coordinates (z°,z!,22,2%) = (7, ¢, 2, p) on R™*3 where 7 is time and (¢, z, p)
are the cylindrical coordinates on R3.

We assume that the metric ds? takes the form

1

ds? = hijda'de? — A*((dz?)? + (dz®)%) (A >0)
=0 .

and h = (hij), A and A; depend onlyv on z and p. Moreover, we assume that

hoo # 0,det h = —p? and Ay = A3 = 0, which are physically reasonable.

Then the stationary axisymmetric Einstein-Maxwell field equations are
given, in matrix form, as follows:

d(p~thexdA) =0 (1)

d{p ' hexdh —2(p"'hex dA)'A - 24 (p" he x dA)} = 0, (2)
i) "

= %tr(h"laphh"lazh) ~ 200, Ah™10, 4, (3.2)

A



apA . _1_ _p_ -1 2 -1 2
22 = — o+ S (A7 0,h)? - (h710,h)%}

— p(8,*AR™10,A — 8, AR5, A), (3.b)

where 4 = (io) LE= ( Ol (1)) and * =Hodge operator for the metric dz2 +
1 -

dp®. Since hgo # 0 and det h = —p?, we can parametrize h as

h= (f{u fwzf-wﬂ/f)*

It is known that (3.a) and (3.b) are integrable, so we shall be concerned
with (1) and (2) in what follows.

Next we introduce the so-called Ernst potential.

Note that every closed form is exact since we consider it locally.

B,
*dB = p~lhedA. (4)

From (1), there exists a 2x1-matrix valued function B = (BO) such that

Substituting (4) into (2), |

d(p~'hexdh +2dB*A + 2Ad*B) = 0.
The (1,1)-th entry reads |

d(p"lfz *dw + 2A0d By — 2BydAg) = 0.
Therefore, there exists ¢ such that
p~f2dw = xdy + 2(Ao *dBy — By xdAg) = 0.
Using f, Ao, bo and ¢, we put
v=Ag+1iBo, u=f—|v|>+iy..

The pair (u,v) is called the Ernst potential. Then the following fact is well

known. ‘

PROPOSITION 1. (k,A) is a solution of (1) and (2) if and only if (u,v) is a
solution of the following equations:
f(dxdu+p~1dp A xdu) = (du + 29dv) A *du, (5)
f(d*dv+p~ldp A xdv) = (du + 25dv) A *dv. (6)
But we change the definition of » into the following one: '
u=f+ [ 4,
so that our Ernst equations become
f(d*du+ p~ldp A xdu) = (du — 29dv) A xdu,
f(d*dv+ p~ldp A xdv) = (du — 29dv) A *dv.
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1. Ernst Potential

Next we rewrite the equations (5°) and (6 ") in terms of matrix.

Let
G ={g € SL3(C); g*Jg = J} = SU(1,2),

]
where J = ( 1 ), and K its maximal compact subgroup, i.e.,
-3

K={geG;g*9g=1}.
We define the Cartan involution © by ©(g) = (g*)~! for g € G.
Let G = KAN be an Iwasawa decomposition with

’ 1 ;a>0
(RS
1
{( v 1);¢en,vec}.
v +iv?f2 i 1 |

Now we parametrize an element P in AN as follows [2]:
fl/? 0 0
P= V2v 1 0 .
((1// +ilo*)/ 112 2w/ 12 1/f1’2)
with f, v and ¥ as above.

It is well known that (u,v) is a solution of (5°), (6") if and only if P is a
solution of the following equation:

d(p*dMM~1)=0 with M =06(P)"'P. (7)

A

N

Let g the Lie algebra of G, i.e.,
g={Xesl3(C); X*J+JX =0},

where J is as above. We denote by 8 the involution of g induced from the
involution © of G.

DEFINITION. Let A and T be g-valued 1-forms defined by
1 1
A= -2-(dPP"1 +6(dPP™1)), = E(dPP‘1 - 6(dPP7Y)).
We define a g-valued 1-form Q with a spectral parameter to be

Q:Q(s)=A+1

— 25z — 2zp%

A

1,
with A = {(1 — 252)? + 4s%p?}1/2,
Note that Q(0) = A+ T =dPP-L



PROPOSITION 2. () satisfies the integrability condition, i.e.,
dQ-QAQ=0
if and only if P is a solution of (7).

For any solution P of the equation (7), by Proposition 2, there exists P =
P(s; z,p) € SL(3, C|[2, p, s]]) which satisfies
dP =QP, Pls=o = P

where C[[z, p, 5]] is a ring of formal power series in 2, p, s and SL(3, C[[z, p, 5]]) is
a group consisting of all matrices of determinant 1 whose entries are the elements
of C[[2, , 5]].

2. A Prescription for Constructing Solutions

Before giving a prescription for constructing solutions of the Ernst equations,
we introduce a formal loop group and its subgroups, following [5].

Let G(*) be an infinite dimensional group
{a(s) € SL(3,C[[s™"]}) 5 9(s)" Jg(s) = J},
where C[[s~!]] is a ring of formal power series in s=! and g(s)* = g(3).

Next we introduce a formal loop group Gr. Let R be a ring of formal power
series C[[z, p]] and I an ideal of R generated by p, i.e., I = (p). We put

In for >0
Ba = { R for n<0.
Then we define '

Or={u=")_ unt™;uy € gl(3, Rn), o is invertible},
nEl

and its subgroups

NR:{u:Zunt“ €EGRrjus =0(n > 0),u0 =1},
ne€l

Pr={u=) ut" € Grjus =0(n <0)}.
nEl

REMARK. If we define

gg’) ={u= Z U t"; u, € gI(3, R-), uo is invertible},
neclZ

then Qg)) also forms a group. And for any g(s) € G,
o((5+2:-pty ) € GrNGY.

Our main theorem is:
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THEOREM. For any g(s) € G(®), there exists uniquely an element k(t) € Gr
which satisfies the following conditions:

() O(k(-1)) = k(t),detk(t) =1 ;

(ii) k(t)g((-?— + 2z — pt)~1)"1 is an element of Pg ;

Putting p(t) = k(1)g((% +22 = o))" = T, 50 pat™,

(i) po is an element of AN and is a solution of the Ernst equation (7).

For the proof we reduce the problem to Birkhoff decomposition (3.17) of formal
loop groups established in [5]:

LEMMA. Any element u of Gr can be uniquely decomposed as

u=w"lv, w€Ng vePr
For the detail of the proof of the theorem, we refer to [3].

3. Examples of Solutions
In this section we shall see how the prescription given in the previous section
works, giving some simple examples.

Note that SL(2, R) can be embedded in G by the mapping

( a b ) a b
il — 1 .
¢ c d)
We use this embedding whenever we treat a field without electro-magnetic po-
tentials. ’

Ezample 1 For g(s) = (—sl—l (1]

the element k(t) € Gr in the theorem is determined in the following way: By
the condition (i) of the theorem, k(¢) is written as

0= (57 )

) with s~! replaced by s™! = -:1 + 2z — pt,

so that 1) b ) 0
_ a -1 b(t p
1= (52 o) (242 1) €7 ®)
Then the (1,2)-th entry of the right hand side of (8) can be expanded as

b(t)#b1t+b2t2 .-,



since po is lower triangular.

In a similar way the (2.2)-th entry reads

a(t) =ao+art +azt’ +---.
Since the (1,1)-th entry
(o= + 33 +-+0) + Gt 4t +-2) (§+22— pt)

contains no negative-power-terms in t, it follows that a(t) = ao.

By the same reason for the (2,1)-th entry, it follows that

b(t) = bit, and by + pao =0.

Since det k(t) = 1, it follows that

N
0= V1-p2
Therefore
- _ 1 1_p2 0
Po = 1-p2 2z 1)/’
and

_ 1 1—p?)2 4422 2
M=@(p01)p0_—_1_p2(( ”2)z “ lz).

This is the first example given in [4].

Next we give another example which has a non-trivial electro-magnetic
potential.

1 -1
Ezample 2 For g(s) = cs™! 1 (where ¢ is an arbitrary
' ief?s~2/2 desT! 1
complex number), k(t) is given by
a —Cpat —i|c|?p?at? /2
k()= | —2cpt™1/(2 = |c|2p?) (2+[c]?p?)/(2 = [c]?p®) 2icpt/(2 - |c|*p?) |,
i|c|?p%at=2/2 —icpat™?! a

and M = ©(p; ! )po is given by

a~2 + 4|c|?2% + 4a®|c|[*2* 2Cz + 4a%e|c]?2®  —2ia®|c|?2?
M= 2cz + 4a’c|c|?23 1 + 4a?|c|?2? —2ia2cz
2ia?|c|?2? 2ia%cz a?

where
2

TP
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