goooboooogn
0 7800 19920 32-53

Structure Theorems for Positive Radial Solutions to

a Semilinear Elliptic Equation

HMETEAY EYH BENEN WEX- (Eiji Yanagida)

§ 1. Introduction

This is a joint work with Prof. N. Kawano of Miyazaki University
and Prof. S. Yotsutani of Ryukoku University.

In this paper we investigate the structufe of positive radial

solutions to the following semilinear elliptic equation

au + K(x|)uP = 0, x € Ro,

n n ‘2
where p > 1, n> 2, A =2 3%2/5x;2 and |x| = { b3 !xilz} .
; i=1 ’ i=1

Since positive radial solutions (i.e. solutions with wu(x) = u([x[) > 0
for all x € R") are of particular interest, we will study the initial

value problem

(r"~tu.), ¢+ " *K(r)(u*)® = 0, r > 0,
(Ko)

u(0) = a > 0, '
where r = |x| and u* = max{u, 0}. We assume that
(K)

{ K(r) € C1((0,0)), K(r) 20 and K(r) 20 on (0, o), and
rK(r) € L*(0, 1).

We can prove that, for each a > 0, there exists a unique solution
u(r) € C([0,)) n C2((0,©)) of (Kg), which will be denoted
by u(r;a).

We classify solutions of (Ko) according to the behavior as r » oo,



For the sake of convenience,

We say that

(i) u(r;e) is a zerc-hit solution if wu(r;a)

(ii) u(r;q) is a slow-decay solution if u(r;a) is
‘[0, ©) and %{yoor“‘au(r;a) = 00,

(iii) wu(r;a) is a fast-decay solution if wu(r;a) is
[0; ), %iyéor"'zu(r;a) exists and is finite

We can prove that every solution of (Kq) is claséified
above three types (see (d)‘of Proposition 2.1 below).

To investigate the structure of solutions of (Ka),

.- n - n - 2 r n-1
6(r) = =7 k() . jo s~ 1K (s)ds,
and introduce the assumption
G(r) 20 on (0, o);
(G)‘t there exists R; € [0, od] such that G(r)

. r € (0, R1)

We note that, by (K) and

%

for any r € (0, ). We also note that

n> 2,

s""1K(s)ds < o

1 (n=2) (p+1) (n+2)~-(n-2)p
= 2 2 V
G- (r) s+ 15 {r K(r)}.,
and
lim G(si) = 01

i» o0

20

and G.(r) £0 for r e (Rl, ).
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we introduce the following definitions.
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where {g;} is a sequence such that ¢; + 0 and ¢&,"K(e;) » 0 as
i =+ ©o,

Now- we state our main theorem.

Theorem 1. Suppose that (K) and (G) hold. Then the structure of

solutions to (Kg) is classified into one of the following three types:

(i) Type Z : ul(r;a) is a zero-hit solution for every a > 0.

(ii) Type S : u(r;a) is a slow-decay solution for every a > 0.

(iii) Type M : There exists a unique positive number «° such that

u{r;a) is a zero-hit solution for every a ¢ (a*, ), u(r;a*)

is a fast-decay solution, and u(r;a) is a slow-decay solution

for every a € (0, a*).

Let us explain the relation between known facts and the above
theorem. Concerning a sufficient condition so that the structure is
either of Type Z or Type S, the results by Ding-Ni [3] and their
extensions by Kusano-Naito [5] are very useful. The following

theorems are slight modifications of Theorems 2, 3 and 4 of [5].

Theorem 2. Suppose that (K) holds and that G(r) # 0 and G(r) 2 0
on (0, o). Then the structure of solutions to (Ko) is of Type Z.
Theorem 3. Suppose that (K) holds and that G(r) # 0 and G(r) £ 0

on (0, o). Then the structure of solutions to (Ko) is-of Type S.

We will give simplified new proofs of Theorems 2 and 3 by using
an idea for the proof of Theorem 1.
Yanagida [12] showed that the structure of positive radial

solutions of Matukuma's equation ( K(r) = (1 + r2)-!? “and
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1 <p<(n+t 2)/(n-2)) is of Type M, which gave an affirmative
answer to the conjecture in [11]. (See also [13].) His proof strongly
depends on the results of Li-Ni [8] concerning the existence of a
fast-decay‘solution and the precise asymptotic behavior of slow-decay
solutions. Later, in Theorem 9 of [4], Yanagida's result is slightly
extended to the case where G.(r) > 0 for r € (0, R;), G.(Ry) = 0,
G,(r) <0 for r e (Ry, ©), and 1 < p < (n + 2)/(n - 2).

We see from Theorem 1 that one of the essential sufficient
conditions for Type M is (G), which is represented in terms of G(r)
and its derivative G.(r) and does not include the restriction on p.
Therefore, Theorem 1 is also useful for a conformal scalar curvature
eqﬁation (p = (n ¢ 2)/(n - 2)). Moreover, as we will see, we do not
need the precise information about the asymptotic behavior of slow-decay
solutions for the proof of Theorem 1. |

It is easily seen from Theorem 1 that, under the assumptions (K)
and (G), a simple sufficient condition for Type M is the existence of a
fast-decay solution. Fortdnately, a lot of useful results for the
existence of fast-decay solutions are obtained in [8], [9], [10], [7],
[1] and [2]. Combining these results with Theorem 1, we can completely
understand the structure of positive radial solutions to, e.g., the
Matukuma-type equation.

New ingredients in the proof of Theorem 1 are characterizations
of the fast-decay solutions and slow-decay solutions in terms of the
well-known Pohozaev identity and its modifications. Moreover the
structure theorem obtained in [12] is considerably generalized with a
simpler proof.

The organization of this paper is as follows. In §2, we include
some preliminary‘results which will be used throughout this paper. In
8 3, we give proofs of Theorems 2 and 3. In 84, we give a proof of

our main theorem (Theorem 1). In §5, we give an application of our



36

theorems to the Matukuma-type equation.

8§ 2., Preliminaries

In this section, we collect some fundamental facts which will be

frequently used throughout this paper. We also show some useful

characterizations of fast-decay solutions and slow-decay solutions in

terms of the Pohozaev identity.

The following fact is well-known and fundamental.

Proposition 2.1. Suppose that (K) holds. Then there exists a unique
solution u(r) € C([0,)) n C2((0,90)) of (Kg). Moreover, ﬁ(r) has

the following properties:

(a) %ﬂpo ru, (r) = 0,

() u,(r) = - J ; (s/r)" " 'K(s)u*(s)?Pds £ 0 for ali r 5 0,

(¢) wu(r) 4is non-increasing on [0, o),

(d) r®-"{r"-2u(r)}., is non-increasing on (0, o), and r" " 2u(r) is
non-decreasing on [0, o) provided that u(r) is positive
on [0, o).
(e) if %apoou(r) = 0, then
lim_ r* 2u(r) = - 1 lim _r" 'u,. (r)
r»> o n-2 r»>®
1 00 .
= I r" 'K(r)u(r)®dr £ oo,
n - 2 0
Proof. See, e.g., Propositions 4.1 and 4.2, (4.5), Lemmas 7.1 and 7.2
of [11]. Q.e.d.
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Lemma 2. 1. Suppose that (K) holds. If u is a solution of (Kq),

then there exsits a sequence {e;} such that &, + 0, ¢;"K(¢;) » 0,

and P(gi;u) » 0 as i » oo,

Proof. It follows from (K) that
o -
0 £ J 0 r*"1'K(r)dr < oo.

Hence there exsits a sequence {¢;} such that ¢, ¢« 0 and

£;"K(e;) » 0 as i » oo, Moreover, by (a) of Proposition 2.1, we have

(r"-2y)ru, = 0,

- n_1 = -
%mor uu, %ww
: Ny 2 = 13 n-2 2 -
%worlu pﬂor (ru;) 0.
Thus we get the conclusion. : Q. e.d.

The following Pohozaev identity is uséful for investigating the

properties of solutions.

Proposition 2.2. Suppose that (K) holds. If u is a unique solution

of (Ko), then we have the identity

d - + p.*r
(2.1) i P(r;u) = G, (r)u*(r)r*t,

Moreover, there exists a sequence {&;} such that & ¢+ 0,

e "K(e;) » 0, G(gy) » 0 and P(g;;u) » 0 as i » o, and

(2.2)  P(r;u) = G(o)u*(r)®*' - (p + 1) lim J‘" G(s)u* (s) Pu. (s)ds.
i 1+ 00 £
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Proof. For (2.1), see, e.g., Proposition 4.3 of [11].
1t follows from Lemma 2.1 that there exists a sequence {&;} such
that &, ¢+ 0, ¢&;"K(eg;) » 0 and P(e;;u) = 0 as i » oo, The identity

(2.1) is equivalent to

S p(riw) = S (6@ () - G+ D) 6wt ()7, (x).
r dr

Integrating this over [&;, r], we obtain

(2.3)  P(r;u) - P{eizu) = G(r)u*(r)P*t - G(ei)u* (g )P

-(pt1) J Z‘G(s)u*(s)pus(s)ds.

Here,

G(g;) =

p 1 1 e "K(ei) - - ; L I gi s"" 'K(s)ds » 0 as i » oo,

Hence, letting i » o in (2.3) and using P(e;;u) » 0 and

G(e;)u*(g;)P** = 0 as i » oo, we aobtain (2.2). Q.e.d.

Remark 2.1. The rearrangement as in the right-hand side of (2.2) was

employed in Lemma 1 of Kusano and Naito [5].

Remark 2. 2. If is easily seen from the proof above that, if

u; = ulrsa;) (3 1, 2, +++, J) are solutions of (K, ), we can find

a common subsequence {e;} such that ¢; ¢+ 0, €,"K(e;) » 0 and

P(Ei;UJ) + 0 as i » o for eyery‘ J = 1’ 2, e ]

In the following lemmas, we will give very useful characterizations

of fast-decay solutions and slow-decay solutions, respectively.



Lemma 2. 2. Suppose that (K) holds. If u . is a fast-decay soluti
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on

of (Ko), then there exists a sequence {r;} such that r; » o and

P(ri;ju) » 0

Proof. Since u 1is a fast-decay solution, we have

%@wuh)=0

and
lim ro-Yu.(r)] = I *© r""'K(r)u(r)Pdr ¢ o
r- o0 0

by (e) of Proposition 2.1. Hence, in view of n > 2, we get

Il_imoor"‘1uur = %ipoo(r““ur)u =0
-
and
%gyoor“ure = %ipoo(r"“ur)zra‘“ = 0.

On the other hand, we have

j :o r" 'K(r)u(r)?dr < oo,

Hence there exists a sequence {r;} such that ;; - 00 and

r."K(r)u(r;)” + 0 as i » o. Thus we obtain the conclusion. Q.
Remark 2.3. It is easily seen from the proof above that, if wu;
(6 =1, 2, +++ , J) are fast-decay solutions, we can find a common

subsequence {r;} such that r, » © and P(riju;) » 0 as i » o

e. d
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for every 4 =1, 2, +++ , J.

Lemma 2. 3. Suppose that (K) holds. If u is_a slow-decay solution

-~
i

of (Kg), then there exists a sequence {r;} such that r; » ® as

i » o0 and
P(;i;u) <0

for every i.

Proof. Since X(r) Z 0 on (0, o), we have u,(rj;a) < 0 for

sufficiently large r. It follows from the equation (Kq) that

P(r;u) = l.rau,{(n - 2)r""%u ¢+ r"" 24} ¢ ru{r""'K(r)u*}
2 , p +1
= 2 ey (rn-2u), - ru(c"-tu,)
9 r r p + 1 r)r
= - ruu (__]; (rn-au)r + 1 - (rn-iur)r }
r 2 r"t2y pt+t1 -ty
= - n _9{__1_ n-2 1 pn =1 }
rtuse o 3 log(rn-2u) ¢ P log(-r"~'u,)
R e B RCL G I ST =l
rhuge o ot 1 5 log(r™-2u) + P log g .

Since u is a slow-decay solution, we have

lim r"-2%y = oo,

r» 0
Moreover, it follows from (d) of Proposition 2.1 that (r""2u), 2 0,
which implies

- rhly,

< -
PRI n 2.

Thus we see from 1/(p + 1) < 1/2 that
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. ] log(r"-2y) +

p t1 2 p t1

as r » oo, Therefore there exists a sequence {;;} such that

A

r, »+ 00 as i » ©© and

1 - }- n-2 1 - rn_1Urv] } )
{ ( p t 1 2 log(r u) + p +1 log rn-2y v

<0

A
r = r;

for every i. Thus we complete the proof. Q.e.d.

We will give some sufficient conditions so that a solution of (Kg)

may either be a zero-hit solution or a slow-decay solution.

Lemma 2. 4. Suppose that (K) holds, and let u = u(r;a) be a solution

of (Ko) satisfying wu(r;a) # a. If there exists & = §(a) > 0 and
ro = ro(a) > 0 such that

P(r;u) 2 5 for all r € (ry, ),

then u jis a zero-~hit solution.

Proof. It follows from Lemmas 2.2 and 2.3 that u can be neither a
fast-decay solution nor a slow-decay solution. Therefore u must be a

zero-hit solution. ' Q. e. d.

u(r;a) be a solution

Lemma 2. 5. Suppose that (K) holds, and let u

of (Ko). If there exists 6 = s(a) > 0 and ro

ro(a) > 0 such that

0 for all r € (0, o),

A

(2.4) P(r;u)

A

(2.5) P(r;u) -5 for all r € (r,, ),

then u is a slow-decay solution.
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Proof. It follows from (2.5) and Lemma 2.2 that u cannot be a
fast-decay solution. We will show that u must be a slow-decay

solution. Suppose that u is a zero-hit solution. Then there exists

R > 0 such thét‘

u(r) >0 on [0, R), wu(R) = 0.

It is easily seen from the uniqueness of solutions of an initial value
problem that wu,(R) ¢ 0. Hence P(R;u) > 0, contradicting (2.4).
Q.e.d.

We will give a simple sufficient cohdition for the openness of the

sets of initial values of slow-decay solutions and zero-hit solutions.

Lemma 2. 8. Suppose that (K) holds and that there exists R; > 0 such
that G, (r) Ri;. Then the set o

A
1%

0 for r

{ a>0 ; u(r;a) 1is a slow-decay solution of (Kg)

satisfying u(r;e) # @ on (0, o) }

is an open set.

Proof. Let u(;;ao) be a slow-decéy solution satisfying u(r;a) # a
on (0, o), It follows from Lemma 2.3 and the assumption that there

exists a positive number p, such that
(2.6)  P(posul+;ag)) <0
and

Ge(r) £0 for r > po.

Hence, by Proposition 2.1, the continuity of solutions with respect to

initial data, and (2.6), there exists & > 0 such that, for any



a € (ag - &, ao t &), the inequalities

P(poiu(+;a)) < - 8,
u(r;a) > 0 on [0, pol,

d
— P(r;u(+;a)) €0 on [po, o),
dr
hold, where |
1
B =3 | P(poiul(riag))l > 0.

Hence we obtain -

P(r;u(+;a)) £ P(posu(+;a)) < -8 on [po, o).

43

Thus we have uf{r;a) > 00 on [0, ©) as in the proof of Lemma 2.5,

and u(r;a) £z a on (0, ) in view of the definition of P(r;u(:;a))

and K(r) 2 0. Furthermore, by Lemma 2.2, u{r;a) cannot be a

fast-decay solution. Hence u(r;a) must be a slow-decay solution

satisfying u(r;a) # @ on (0, o). Q.e.d.
Lemma 2. 7. Suppose that (K) holds. Then the set

{ a >0 ; u(r;a) is a zero-hit solution of (Kq) }
is an open set.
Proof. This is obvious from Proposition 2.1 and the continuity of
solutions with respect to initial data. Q.e.d.
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8 3. Proofs of Theorems 2 and 3
We will give new proofs of Theorems 2 and 3 by using the

characterizations obtained in the previous section.

Proof of Theorem 2. Let u = u(r;a) be a solution of (Ko). It
follows from the assumption and (2.2) that there exists & = 5(a) > 0

and ro = rofla) such that
P(r;u) 25 >0 for all r € (ry, o),

Since uf(r;a) 2z «a on (0, o) by (K), we get the conclusion by

Lemma 2. 4. ‘ Q. e.
Proof of Theorem 3. Let u = u(r;a) be a solution of (Kg). It

follows from the assumption and (2.2) that there exists &5 = 5(a) > 0

and ro = ro(a) such that

P(r;u) £ 0 for all r € (0, o0),
P(r;u) £ - 6§ for all r € (ro, o).
Hence we get the conclusion by Lemma 2. 4. Q. e.

8§ 4. Proof of Theorem 1
In this section, we give a proof of Theorem 1. The following two

propositions are important in the proof.

Proposition 4.1. Suppose that (K) and (G) hold. If e¢(r) 1is a

fast-decay solution of (Xq), then it holds that

P(r;e) 20 and P(r;e) 20 on (0, o).
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Proposition 4. 2. Suppose that (K) holds. If there exists a

fast-decay solution ¢(r) of (Ko) satisfying

P(r;je) 20 and P(r;e) 20 on (0, o),

then the structure of solution of (Ko) is of Type M with o° = ¢(0).

Before we prove the above propositions, we will prove Theorem 1.

P fofT em 1. if there exists a fast-decay solution, then the'
structure of solutions of (Ko) is of Type M by Propositions 4.1 and 4.2.
Consider the case where there is no fast-decay solution. We note
that u(r;e) 2 « on (0, o) for every a > 0 in view of K(r) # 0
on (0, o). By Lemmas 2.6 and 2.7, the sets of initial values of
slow-decay solutions and zero-hit solutions are open sets. Hence, if
there exist a slow-decay solution, then there is no zero-hit solution
so that the structure of solutions is of Type S.  Similarly, if there .
exists a zero-hit solution, then the structure of solutiohs is of

Type Z. ‘ ' Q.e.d.
Now we prove Proposition 4.1.

0 0 oposition 4.1. We see from the assumption G(r) # 0 and
G(g;) » 0 as i » o that G.(r) # 0, which implies P(r;¢) # 0 on
(0, ©) in view of (2.1). We will show that P(r;®#) 2 0 on (0, o0).

It follows from Lemma 3.1 that

P(r;v) = G(r)e(s)?*' - (p + 1) lim jr G(s)e(s)" 9, (s)ds.
1 ~» 00

Since G(r) 20 on [0, Ry) and ¢.(r) £ 0, this implies that
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P(r;¢) 2 0 on (0, Ry).

Suppose that there exists r; € (R;, ®©) such that P(r;;¢) < 0.

Then, since Ge(r) £0 on (Ry, o), it follows from (2.1) that
P(r;v) £ P(r;;¢) <0 on [ry;, o),
By Lemma 2.2, this implies that ¢(r) cannot be a fast-decay solution.

This is a contradiction. @.e.d.

We divide the proof of Proposition 4.2 into several steps. In what
follows, we use the notation
‘r, = inf { r € [0, o©) ; K(r) > 0 }.
We note that r, é [0, o) in.§iew of (K) and that
| u(r;a) = a for r e [0, r;].

Lenma 4. 1. Suppose that (X) holds. Let u = u(r:a) be a solution

of (Ko), let ¢ = u(r;a’) be a positive solution of (Ko') with

a # a, and let R > r,.

(i) I u > ¢ on [0, R), then

1]
(=2

(u/¢), on (0, r:],
(u/¢)r

N
(=]
(=]
=]
—~
a]
N
=
[

(ii) 1 u <v on [0, R), then

(u/¥), = 0 on (0, r.J],
(u/¢), > 0 on (r:, R].
Proof. - Since u and + are solutions of (Kq) and (Kg-),

respectively, we have
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(4.1) (r"~tu,)r + " 'K{(r)u®

1 i
o [==]

(4-2) (rn_l‘}‘r)r +rn_iK(r)‘\l‘p

Multiplying~(4.1) by ¢, (4.2) by u, and subtracting them, we obtain
[s“lhAQ¢@)-¢Jﬂu@H]g=1 j;yﬂxwuounv1-1m&

Thus, by (a) of Proposition 2.1, we get

1 r - -
W/¥)e = = =gz | 5 8" KR ul(u/9)P 7t - 1hds.
From this, we obtain the conclusion. Q.e.d.
Lemma 4, 2. Suppose that (K) holds. Let u = u(r;a) be a solution

of (Ko) and let ¢ = u(r;a’) be a positive solutions of (Ko:) with

@' # o satisfying P(r;v) 2 0 and P(r;v) #0 on [0, o0),

(i)  If a > e and if u > 0 on [0, R) Afor some R > r,, then

(u/¥): = 0 on (0, r.],
(u/‘P)r <0 on (rzv R)-

(ii) If a < a', then u > 0 on [0, o) and

(u/“")r =0 on (01 rz]n
(u/¥): >0 on (r;, o).

Proof. We will show (i). If wu and ¢+ do not intersect, then the
conclusion follows from Lemma 4.1. Consider the case where u and ¢

intersect at some point in (0, R), and put

R := inf {r € (0, R) ; u(r) = v(r)}.
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We note that r, < R < R.

Suppose that there exists a € (R, R) such that

(u/¥). <0 on (re ),  (u/#)e | cas = 0.

We put b := u(a)/v(a). Then we have 0 < b < 1, because u/v is

strictly decreasing on [R, al] and u(R)/+(R) = 1. Hence we obtain
(4.3) u(a) = by(a), u, (@) = by, (a),

by noting (u/v). ] +=a = 0.
It follows from (2.1) that

L P(riu) - b7 IP(riW)} = LW - bRt} =S B(rie),
dr dr
which implies that
d
i {P(r;u) - bP*'P(r;¥)}
r .
d d
= — { {(u/%)P*t - bP*'}P(r;%) } - P(r;e) — (u/e)P*t,
dr dr

Integrating this over [eg;, a] and letting i » o, we see from (4.3)

that

P(a;u) - b**'P(a;y)
= - (p 4 1) lim ja P(s;v)(a/e)® (u/¥)4ds,
1> OO €

where {e;} 1is the sequence as in Lemma 3.1. Using (4.3) in the

left-hand side, we obtain

2 (0% = b t)rze, (r0724),

r=a

==+ D ling [2 P(sin) (@/6)7(u/4) ds.
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The left-hand side is nonpositive, because 0 < b <1, p>1, +. £0
and (r""24), 2 0 by (d) of Proposition 2.1. On the other hand, since
(u/¥). < 0 on (rz, a), it follows from Proposition 4.1 that the

right-hand side is nonnegative. Consequently we obtain

(4. 4) (rn=2¢). | r-a = 0,
(4.5) P(r;+) 0 on (0, a).

1]

It follows from (d) of Proposition 2.1 and (4.4) that
(r"=2¢), =0 on [a, ).
Thus we obtain
K(r) =0 on [a, o0),
which implies that
G(r) =0 on (a, o).
Hence we get
P(r;¢) =0 on (0, o)

in view of (2.2) and (4,5). This contradicts the assumption

P(r;v) 2 0. Thus the proof of (i) is completed.

The proof of (ii) is obtained similarly. Q.e.d.
Lemma 4. 3. Suppose that (K) holds. Let ¢;(r) = u(r;e;) (i =1, 2)

be fast-decay solutions of (Ke ) satisfying P(r;e;) 2 0 and

P(r;e;) 20 on (0, c©). Then ¢, = ¢, on (0, ).

Proof. Suppose that ¢, # ¢, and assume without loss of generality

that ©;(0) < ¢,(0)., It follows from Lemma 3.1 that



d d
e P(r;vz) (epo/py) P! Tt P(r;e,)

39 { (92/91)°*'P(r;e1) } - P(r;e:) ¢ (e2/e1) P 1.
r dr

Integrating this over [e&;, o) and letting i » oo, we obtain

r

P(rivs) = (92/91)7*1P(rie1) - (p + 1)[0

P(s;e1) (ea/01)P(va/¢1)" ds,

where {e;} is the sequence as in Lemma 3.1. Hence, we see from the
assumption and (i) of Lemma 4.2 that there exists & > 0 and r; > 0

such that

v
]

P(r;ez) for r € (ry;, ©).

Hence, by Lemma 2.2, ¢,(r) cannot be a fast-decay solution. This is

a contradiction. Q. e. d.
Now let us complete the proof of Proposition 4. 2.

Proof of Proposition 4. 2. It follows from Proposition 4.1 and Lemma
4.3 that the given ¢(r) 1is a unique fast-decay solution.

First we consider the case where a > ¢(0). Then we see that
u(r;a) is not a fast-decay solution in view of the uniqueness of the
fast-decay solution. If we suppose that wu(r;a) 1is a slow-decay
solution, then u/¢ » © as r » o, This contradicts (i) of
Lemma 4.2. Thus u(r;a) must be a zero-hit solution if a > ¢(0).

Next we consider the case where a < ¢(0). Then we see from (ii)
of Lemma 4.2 that u(r;e) is positive on (0, o). Hence u(r;a)
must be a slow-decay solution by the uniqueness of the fast-decay

solution. Q. e. d.
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§ 5. Application

In this section we give an application of Theorems 1, 2 and 3.
The following lemma concerning the existénce of a fast-decay solution
is a slight modification of Theorem 3.19 of [8] for the case 2 2 -2.
The conclusion for the case 2 < -2 is obtained from Lemma 2.1 of [9]

(or the proof of Theorem of [6]) and the proof of Theorem 2.9 of [8].

Theorem A. ([12, Theorems 2.9 and 3.19]) Suppose that (K) holds.

If K(r) satisfies

K(r) = 0(r9 at r 0 for some o > -2,

(n - 2)p - (n + 2)

K(r) = 0(r%) at r = c© for some £ < ”
and
max{l, n+ 2+ 22 } < p < nt+ 2 + 206 ’
-2 n - 2

ca oluti

Lhﬁn Lhexg Qxi§t§ aq > 0 sugh thgh U(I‘;Ql) i a
of (Ka,). |

Now we will investigate a concrete example.

Theorem 5.1. (Matukuma-type equation) Suppose that K(r) is given by

1
= 2
K(r) 1+ o7 T 2 0.

Then the structure of positive radial solutions of (Ko) is as follows.

n+ 2 -2t
n - 2

72

(i) If 1<0p

, then the structure is of Type Z.
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+ 2 - 2 + 2
(ii) If 2-;—j—5~—z < p < 2 parar then the structure is of Type M.
. n+ 2 : )
(iii) If p 2 n -3 then the structure is of Type S.
Proof. Ve note that
(n=2) (p+1) (n+2)-(n-2)p
() = —— r 2 {r ¢ K(r)},
p t+1
n- 2 nt2 -2t n+ 2
e - (oo 2 o (o2 )
2o D &) P n - 2 T P - n -2
Then the conclusion follows from Theorems 1, 2, 3, A with 2= - T
Q.e.d.
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