TRANSFER IMAGE FOR STUNTED PROJECTIVE SPACES

和歌山大学教育学部 今岡光範 MITSUNORI IMAOKA

Let $N_i \xrightarrow{r} M_i = L_i N_i \xrightarrow{r} N_{i+1} \xrightarrow{\delta_{i+1}} \Sigma N_i$ be the cofiber sequence such that $S^0 = N_0 \xrightarrow{r} M_0 \xrightarrow{r} M_1 \to \dots$ is the geometric realization by Ravenel [Ra] of the chromatic resolution, where L_i is the Bousfield localization [Bo] with respect to the $v_i^{-1}BP_\bullet$ -homology. Throughout this note, we assume that spectra are always localized at an odd prime p. The authors of [BC] revealed that the double S^1 -transfer

$$t_2: \Sigma^2 CP_0^{\infty} \wedge CP_0^{\infty} \to S^0$$

factors through $\delta_1 \delta_2 : \Sigma^{-2} N_2 \to S^0$. The purpose of the present note is to remark that their result is also valid for the double S^1 -transfers

$$t_2: \Sigma^{-2(m+n-1)}CP_m^{\infty} \wedge CP_n^{\infty} \to S^0$$
 for all integers m and n .

Here CP_k^{∞} denotes the suspension spectrum of the Thom space for the k-Whitney sum $k\xi$ of the canonical complex line bundle ξ over CP^{∞} .

Theorem. For the second stage N_2 of the chromatic filtration at an odd prime p, there is a map $u: \Sigma^{-2(m+n-1)}CP_m^{\infty} \wedge CP_n^{\infty} \to \Sigma^{-2}N_2$ satisfying $\delta_1 \delta_2 \circ u = t_2$.

We will prove the theorem using an analogous method as in [BC], that is, we will see that the strategy in [BC;Th.5.2] is applicable to our situation. The crucial point is to prove the following lemma, in which a map \bar{U}_1 is defined later in (2).

Lemma 1. There is a map U_2 satisfying the following homotopy commutative diagram:

where i is the bottom inclusion.

 t_2 is the composition $t(t \wedge 1)$ of the transfer maps $t: \Sigma^{-2k+1}CP_k^{\infty} \to S^0$ for k=m and n, and t is homotopic to the attaching map to the bottom cell of $\Sigma^{-2k+2}CP_{k-1}^{\infty}$ ([Kn]). Thus the lemma induces a required map $u: CP_{m+1}^{\infty} \wedge CP_{n+1}^{\infty} \to \Sigma^{2(m+n)}N_2$ in our theorem, and the rest of this note is devoted to the proof of this lemma.

Let $U_1 \in \pi^{2k}(CP_k^{\infty}; Q)$ be the Thom class of $k\xi$ for the rational theory SQ = HQ, $q: SQ \to SQ/Z_{(p)}$ the mod $Z_{(p)}$ quotient and $c: CP_k^{\infty} \to CP_{k+1}^{\infty}$ the collapsing map. Then, we have an element $\bar{U}_1 \in \pi^{2k}(CP_{k+1}^{\infty}; Q/Z_{(p)})$ satisfying $q_*(U_1) = c^*(\bar{U}_1)$. Since $N_1 = SQ/Z_{(p)}$, \bar{U}_1 represents a map

$$\bar{U}_1: CP_{n+1}^{\infty} \to \Sigma^{2n} N_1$$

which is the map in Lemma 1.

Lemma 1 will be established by using Lemma 8 below, and before it we need to prepare some generalization of a result due to Miller [Mi]. Let E be a ring spectrum such that E_*E is flat over $E_* = \pi_*E$ and $H^0(E;Q) \cong Q$. Furthermore, we assume that E is oriented by $x \in E^2(CP^\infty)$. Then, $E^*(CP_k^\infty) \cong E^*[[x]]\{U\}$ for a Thom class U of $k\xi$, and $E_*(CP_k^\infty) \cong E_*\{\beta_k, \beta_{k+1}, \ldots\}$, where β_i is the dual element of Ux^{i-k} . We put $\hat{\beta}_k(T) = \sum_{i>k} \beta_i T^{i-k} \in E_*(CP_k^\infty)[[T]]$.

Let $\log^E T$ be the power series which gives a strict isomorphism from the formal group law defined by the orientation class x of E to the additive formal group law, over $E_{\bullet} \otimes Q$. Then, by the method designed in [Mi], we have the following:

Lemma 3.
$$(\bar{U}_1)_{\bullet}(T\hat{\beta}_{k+1}(T)) = \left(\frac{\log^E T}{T}\right)^k - 1$$
 in $\pi_{\bullet}(E; Q/Z)[[T]].$

Now, we consider the spectrum E(1) which represents a wedge summand of the complex K-theory $K_{(p)}$ localized at p and whose coefficient group is $E(1)_* = Z_{(p)}[v_1, v_1^{-1}]$ for $v_1 \in E(1)_{2(p-1)}$. Then Lemma 3 holds for the case of E = E(1), and in this case the formula of $\log^{E(1)} T$ is given by

Theorem 4 (S.Araki [Ar]).

$$\log^{E(1)} T = \sum_{i \ge 0} \frac{\frac{p^i - 1}{p - 1}}{p^i} T^{p^i}$$

Let $\exp^{E(1)} T$ be the formal power inverse of $\log^{E(1)} T$, and put

(5)
$$\left(\frac{T}{\exp^{E(1)}T}\right)^k = \sum_{i>0} B(k,i)T^i \in (E(1)_* \otimes Q)[[T]]$$

for $B(k,i) \in E(1)_{2i} \otimes Q$. Clearly B(m,0) = 1, and B(1,i) is the E(1)-theory Bernoulli number in the sense of [Mi].

Let $\psi^{\gamma}: E(1) \to E(1)$ be the stable Adams operation for a positive integer γ which generates the unit group of Z/p^2 . Then ψ^{γ} is a ring homomorphism on $E(1)^*(\)$, and it holds that $\psi^{\gamma}(v_1) = \gamma^{p-1}v_1$ and $\psi^{\gamma}(x) = (1/\gamma)[\gamma](x)$, where $x \in E(1)^2(CP^{\infty})$ is the orientation class and $[\gamma](x)$ means the formal group sum of γ numbers of x. The following is easy to see by these properties, (5) and Theorem 4.

Lemma 6. Let $U_k^{E(1)} \in E(1)^2(\mathbb{C}P_k^{\infty})$ be a Thom class of $k\xi$. Then we have the following:

(1)
$$\psi^{\gamma}(U_k^{E(1)}) = U_k^{E(1)}(1 + \sum_{i>0} (\gamma^i - 1)B(-k, i)x^{-k}(\log^{E(1)} x)^{k+i});$$

(2)
$$\psi^{\gamma}(\log^{E(1)} x) = \log^{E(1)} x$$
.

Let Ad be the fiber spectrum of $\psi^{\gamma} - 1 : E(1) \to E(1)$, and $j : Ad \to E(1)$ the inclusion. A unit $\iota \in E(1)_0$ induces a map $\iota : N_1 = SQ/Z_{(p)} \to E(1) \wedge SQ/Z_{(p)}$, and we have $\iota = j_*(\iota')$ for a unique $\iota' \in \pi_0(Ad; Q/Z)$, since $(\psi^{\gamma} - 1)_*(\iota) = 0$ and j_* is monomorphic. By [Ra], there is an equivalence

(7)
$$\zeta: M_1 \simeq AdQ/Z_{(p)}$$
 with $\iota' \simeq \zeta \circ r: SQ/Z_{(p)} = N_1 \to Ad \wedge SQ/Z_{(p)}$.

Lemma 8. There is an element $u_2 \in E(1)^{2(m+n)}(CP_m^{\infty} \wedge CP_{n+1}^{\infty}) \otimes Q$ satisfying

(1)
$$(i \wedge 1)^* q_*(u_2) = \iota_*(\bar{U}_1)$$
 in $E(1)^{2(m+n)} (\Sigma^{2m} CP_{n+1}^{\infty}; Q/Z_{(p)})$ and

(2)
$$(\psi^{\gamma} - 1)_{\bullet}(u_2) \in E(1)^{2(m+n)}(CP_m^{\infty} \wedge CP_{n+1}^{\infty}),$$

where $i: S^{2m} \to CP_m^{\infty}$ and $q: E(1) \wedge SQ \to E(1) \wedge SQ/Z_{(p)}$ are the bottom inclusion and the mod $Z_{(p)}$ quotient respectively.

By (2) in this lemma, we have $q_*(u_2) = j_*(u_2')$ for some $u_2' \in Ad^{2(m+n)}(CP_m^{\infty} \wedge CP_{n+1}^{\infty}; Q/Z)$. Since $j_*: Ad^{2(m+n)}(CP_m^{\infty} \wedge CP_{n+1}^{\infty}; Q/Z) \to E(1)^{2(m+n)}(CP_m^{\infty} \wedge CP_{n+1}^{\infty}; Q/Z)$ is monomorphic, we have $(u_2') \circ (i \wedge 1) = (\iota' \circ \bar{U}_1)$ in $Ad^{2(m+n)}(\Sigma^{2m}CP_{n+1}; Q/Z)$ by (1) in Lemma 8. Thus, by (7), we can take U_2 in Lemma 1 to be $(\zeta)^{-1} \circ u_2'$, and thus Lemma 8 yields Lemma 1.

We put

$$g_n(T) = T^{-1}\left(\left(\frac{\log^{E(1)} T}{T}\right)^n - 1\right) \in (E(1)_* \otimes Q)[[T]],$$

and consider the following element of $(E(1)_* \otimes Q)[[S,T]]$ by using B(k,i) in (5):

$$h_{m,n}(S,T) = \sum_{k,l>0} a_{k,l}B(-m,k)B(-n,l)S^{-m}(\log^{E(1)}S)^{m+k}T^{-n-1}(\log^{E(1)}T)^{n+l},$$

where $a_{k,l} = (\gamma^k - 1)/(\gamma^{k+l} - 1)$. Then $g_n(T) = (\bar{U}_1)_*(\hat{\beta}_{n+1}(T))$ in $\pi_*(E(1); Q/Z)[[T]$ by Lemma 3. By putting $E(1)^*(CP_0^{\infty} \wedge CP_0^{\infty}) = E(1)^*[[x,y]]$, we regard $E(1)^*(CP_m^{\infty} \wedge CP_{n+1}^{\infty})$ as a free $E(1)^*[[x,y]]$ -module with $U_m^{E(1)}U_{n+1}^{E(1)}$ as a base. Then Lemma 8 follows from the next Lemma.

Lemma 9. The element $u_2 = U_m^{E(1)} U_{n+1}^{E(1)} (g_n(y) + h_{m,n}(x,y))$ of $E(1)^{2(m+n)} (CP_m^{\infty} \wedge CP_{n+1}^{\infty}) \otimes Q$ satisfies (1) and (2) of Lemma 8.

The proof of Lemma 9 is straightforward using Lemmas 3 and 6, and we can complete the proof.

REFERENCES

- [Ar] S. Araki, Typical Formal Groups in Complex Cobordism and K-theory, Lecture Notes Math., Kyoto Univ. 6, Kinokuniya Book Store, 1973.
- [BC] A. Baker, D. Carlisle, B. Gray, S. Hilditch, N. Ray and R. Wood, On the iterated complex transfer, Math.Z.199 (1988), 191-207.
- [Bo] A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), 257-281.
- [Kn] K. Knapp, Some applications of K-theory to framed bordism: e-invariant and transfer, Habilitationsshrift (1979).
- [Mi] H. R. Miller, Universal Bernoulli numbers and the S¹-transfer, Can.Math.Soc.Conf.Proc. 2 (1982), 437-439.
- [Ra] D. C. Ravenel, A geometric realization of the chromatic resolution, Proc. J.C. Moore Conf., Princeton (1983), 168-179.
- [R2] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.