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TRANSFER IMAGE FOR STUNTED PROJECTIVE SPACES
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Let N; 5 M; = L;N; R Nit1 —6-11 ZN; be the cofiber sequence such that
5% = N, 5 M, AR M; — ... is the geometric realization by Ravenel [Ra] of
the chromatic resolution, where L; is the Bousfield localization [Bo] with respect
to the v 'BP,-homology. Throughout this note, we assume that spectra are

always localized at an odd prime p. The authors of [BC] revealed that the double
S1-transfer

ta : B°CP° ACPS° — S°

factors through 6;62 : £72N, — S° The purpose of the present note is to

remark that their result is also valid for the double S!-transfers
tp : R In=DCp® A CP® - 5° for all integers m and n.

Here CP° denotes the suspension spectrum of the Thom space for the k-

Whitney sum k€ of the canonical complex line bundle £ over CP*.

Theorem.. For the second stage N> of the chromatic filtration at an odd prime
p, there is a map u : Z=Am*In=1)CPP ACP® — T~2N, satisfying 6,6, 0u = ta.

We will prove the theorem using an analogous method as in [BC], that is,
we will see that the strategy in [BC;Th.5.2] is applicable to our situation. The

crucial point is to prove the following lemma, in which a map U; is defined later -
in (2).



Lemma 1. There is a map U, satisfying the following homotopy commutative
diagram:

iA1
%2m P, —— CPY ACPS,

ol ol
72(m +n)1\[1 r N 22(”’+")M1

where 1 is the bottom inclusion.

t, is the composition ¢(t A 1) of the transfer maps ¢ : £=2*+1CPf — §°
for K = m and n, and ¢ is homotopic to the attaching map to the bottom cell
of £-2%#+2CPg° | (IKn]). Thus the lemma induces a required map u : CP,; A
CP, — »2(m+r) N in our theorem, and the rest of this note is devoted to the

proof of this lemma.

Let U; € n2*(CP{;Q) be the Thom class of k¢ for the rational theory
S5Q=HQ, q:5Q — SQ/Z,) the mod Z,) quotient and ¢ : CP® — CPy3, the
collapsing map. Then, we have an element U; € ﬂ2k(CPﬁ1 ; @[ Z(y)y) satisfying
9. (Uy) = ¢*(U1). Since N1 = SQ/Z(,), Uy represents a map

(2) | Uy : CP3, = Z7 N,

which is the map in Lemma 1.

Lemma 1 will be established by using Lemma 8 below, and before it we need
to prepare some generalization of a result due to Miller [Mi]. Let E be a ring
spectrum such that E,E is flat over E, = n,E and HY(E; Q) & Q. Furthermore,
we assume that E is oriented by ¢ € E>(CP*). Then, E*(CP®) & E*[[z]}{U}
for a Thom class U of k¢, and E.(CPg°) 2 E{B,Br+1,...}, Where §; is the
dual element of Uz*~*. We put B (T) = Zizk BT ~* € E.(CP)[[T]).

Let log? T be the power series which gives a strict isomorphism from the
formal group law defined by the orientation class z of E to the additive formal

group law, over E, ® Q. Then, by the method designed in [Mi], we have the
following:



E
Lemma 3. (U}),(TBe1(T)) = (logT T

k v
) ~1 in m(B; Q/Z)T]).
Now, we consider the spectrum E(1) which represents a wedge summand of
the complex K-theory K(;) localized at p and whose coefficient group is E(1). =

Z(p)[v1,v7 ] forv; € E(1)3(p-1). Then Lemma 3 holds for the case of E = E(1),
and in this case the formula of log? OF BT given by

Theorem 4 (S.Araki [Ar]).

p—1
o1
i>0

Let exp?(1) T be the formal power inverse of logE ) T, and put

k
T o
®) (sprr) = ZBGIT € B 0 QT
for B(k,1) € E(1)2 ® Q. Clearly B(m,0) = 1, and B(l 1) is the E(1)-theory
Bernoulli number in the sense of [Mi].

Let 47 : E(1) — E(1) be the stable Adams operation for a positive integer
v which generates the unit group of Z/p?. Then 4" is a ring homomorphism
on E(1)*( ), and it holds that $7(v;) = v*~!v; and 9¥7(z) = (1/7)[1](z), where
z € E(1)2(CP®) is the orientation class and [y](z) means the formal group sum

of v numbers of . The following is easy to see by these properties, (5) and
Theorem 4. |

Lemma 6. Let Uf"(l) € E(1)*(CP{®) be a Thom class of k{. Then we have
the following :

1) r(UPY) = E‘”(1+z,>o(v—1)3< k, i)t (logP® )b+,
2) ¥7(log"P ) = IogE(”



Let Ad be the fiber spectrum of ¥ —1: E(1) — E(1), and j : Ad —
E(1) the inclusion. A unit ¢ € E(l)o induces a map ¢ : N1 = SQfZ) —
E(1) A SQ/Z,), and we have ¢ = j.(s') for a unique 4/ € mo(Ad;Q/[Z), since
($7 — 1)4(¢) = 0 and j, is monomorphic. By [Ra], there is an equivalence

(1) ¢: My~ AdQ[Zy with V~Cor: SQZpy = N1 — AdA SQ[Zy).

Lemma 8. There is an element uz € E(1)m+n)(CP® ACPX,,)® Q satisfying
(1) (§A1)*a(ua) = 40 (U1) in EQL)(m+m)(S2mCPR,; Q/Z(y)) and
(2) (¥ = 1)(uz) € B +)(CPY ACPY,),

where ¢ : §°™ — CP? and q : E(1) A SQ — E(1) A SQ/Z,) are the bottom

inclusion and the mod Z(p) quotient respectively.

By (2) in this lemma, we have g,(u;) = j.(u}) for some u} € Ad*(m+n)
(CPP ACPX.4;Q/Z). Since j, : AdX™+")(CP® ACPX.,; Q] Z) — E(1)Xm+n)
(CPZ A CP%,;Q/Z) is monomorphic, we have (uj)o (i A1) = (o U4) in

Ad*m+n)(32m CP, 11, Q/Z) by (1) in Lemma 8. Thus, by (7), we can take U

in Lemma 1 to be (¢)~! o u}, and thus Lemma 8 yields Lemma 1.

We put

oeE P\
gn(T) =7 ((L%—z) - 1) € (EQ1), @ QIIT]),

and consider the following element of (E(1). ® Q)|[[S, T]] by using B(k, i)’in (5):

hm,n(S,T) = Y ag1B(~m, k)B(~n,1)S™™ (log?®!) §)ym+*p=n=1(logFM) T)mH,
k>0

where a1 = (% ~1)/(v**+=1). Then go(T) = (U1)s (Ba1(T)) in mu(E(1); Q/Z)[IT]
by Lemma 3. By putting E(1)*(CP§* A CP§°) = E(1)*[[z,y]], we regard
E(1)*(CPyY ACPg,) as a free E(1)*[[z, y]]-module with UEWYED 454 base.

n+t1
Then Lemma 8 follows from the next Lemma.



Lemma 9. The element uy = UE(I)Uf_f_ll)(gn(y) + hmu(2,y)) ofE(l)Z(m+n)_

(CP ACP,) ® Q satisfies (1) and (2) of Lemma 8.

The proof of Lemma 9 is straightforward using Lemmas 3 and 6, and we

can complete the proof.
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