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§1. Introduction.

Spaces of holomorphic maps between complex manifolds have played a major role in
such diverse branches of mathematics as analysis, differential geometry, topology and
mathematical physics.

If X C CP™ is a projective variety we denote by Hol}(S?, X) (Holz(S?, X)) the space
of all based (non-based) holomorphic maps S — X of degree d, where S? is the Riemann
sphere, S2 = CU{oo}. For simplicity we shall assume that the degree d is a non-negative
integer. The corresponding space of based (non-based) continuous maps of degree d is
denoted by Map3(S?, X) (Map,(S?, X)).

In [S] Segal studied the inclusion map

I, : Hol3(S%, CP™) — Map}(S?,CP™)

and showed that this inclusion map is a homotopy equivalence up to dimension d(2n—1).
For any projective variety X it is natural to consider the following

Problem. When is the map I, : Hol}(S?, X) — Map}(S?, X) a homotopy equivalence
up to some dimension n(d), such that n(d) — oo as d — 00?

Segal’s results for X = CP™ have been generalized to the case when X is a Grass-
manian, or more generally, a flag manifold (see [G], [Gu], [K], [M2]). In this note we
consider the case where X is the complement of a union of linear subspaces in CP™:
X = CP"*\U,eca Ho, where {H, : a € A} is a family of linear subspaces of CP™. Our
purpose is to announce the main results of [GKY], which extend Segal’s results [S] to
the case X = X,, = CP"\Uygicj<n Hij, Where Hy j={[z0:21: -+ : 2, ] ECP™ 1 2, =

The precise statements of our results are as follows:
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Theorem 1. The inclusion maps

I, : Hol3(S?, X,,) — Map}(S?, X,,)
and '
Ja : Holy(S?, X,.) — Map,(S?, X,,)
are homology equivalences up to dimension d.

Theorem 2. If2d > n the two maps above are homotopy equivalences up to dimension
d.

Here we call an inclusion map X — Y a homotopy equivalence (homology equivalence)
up to dimension m if 7;(Y, X) = 0 when j < m (if H;(Y, X) = 0 when j < m).
Remark.

(1) For n =1 the above results were obtained in [S]. _

(2) We expect that similar methods can be used to obtain analogous results when
X =CP*\Ur P(I), where P(I) ={[z0: -+ : 2,] ECP™ : p; =0if j € I}, and
the union is over a collection of subsets I of {0 1,2,...,n}.

§2. Configuration Spaces of Divisors.

‘Definition 2.1. For a connected pair of CW-complexes (X,Y), let Sp?(X,Y) denote

the d-fold symmetric product of X/Y. Adding a base point gives rise to a natural
inclusion Sp%(X,Y) — Sp**(X,Y) and we put Sp™(X,Y) = Uz>15p*(X,Y). We
define a space Qf{’) (X,Y) by

n : n+1 ep s .
QX Y) = {(6o,---,&) € (SPU(X,Y))" 1&g =0 if i # 5},
IfY = 0, we write Sp*(X) = Sp*(X,0) and Qg") (X)= (”) (X,0).

If M is a connected open manifold, adding (n+1) dlStlnCt points “from infinity” (c. f.
[Mc]) gives a natural stabilization map ig : Qf,") (M) — 511)1 (M) and we define Q™ (M)
to be the “identity component” of dlim in") (M). Let F(X,m) be the configuration
space of m-tuples of distinct points in X. In particular, Q&") (X)=F(X,n+1), and it

is well-known that 71 (F(C,m)) = I(m), where I(m) denotes the group of pure braids
of m strings. Then we have

Proposition 2.2.

(1) Hol3(S2, X,) = Q{(C).
In+1) ifd=1
*(Q2 —
(2) m(Holy(S% X,.)) = { gn(nt1)/2 ifd> 2.

(Part (2) is proved in [E].)



48

83 The Stabilization Theorem.

Theorem 3.1. ([GKY],[Ko]). Thestabilization map i4 : Hol3(S?, X,,) — Hol},(S?, X,)
is a homology equivalence up to dimension d. :

Using the McDuff-Segal transfer ([Mc},[S]) we obtain

. Proposition 3.2. For any commutative ring R, the induced homomorphism
igs : H, (Hold(S2 n), R) — H,(Holy,(S* Xn), R) is a split monomorphism. More
precisely, there is a family of graded R-modules {R., :' m > 0} such that

2
(a) H. (HOld(s 1 Xn), R) = 05254

(b) The above isomorphism is compatible with the splitting monomorphism.

These results lead us to expect
Conjecture 3.3. There is a stable spb'tting

HOI;(S2 n)— <<d 1()

such that
Dj(n) = Hol; (SQ,Xn)/Hol;f_l(S2,Xn).

Remark 3.4. ([C?M?)) This is true forn=1.

§84. The Scanning Map.

Definition 4.1. Let € > 0 be any positive real number, and let D,(¢) denote the open
disk of radius € with centre at z € C. Define the map Sy : QE,") (C) x C — Q™(S2, 00)
by
((€oy---+1€n),2) = (Eo N D4 (E),. .., €n N D,(€)) €Q™ (D, (€), D, (¢))
| - = Q(s% ).

Since lim Su(E,2) = (9,9,...,0) forany € € Q" (C), we define Sa(, 00) = (8,0, ...,0)
and obtain a map '

Sa: Q(C) x §? — Q™ (82, 00).

Taking the adjoint we obtain a map

Sa: Q{?(C) — Mapj (S%, Q™ (S?, o0)).
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Its homotopy class is independent of the choice of e. We call Sq the scanning map.

n+1
It can be shown that Q(™(S2,00) =~ vV CPe. 1t is also easy to see that there is

n+1
a homotopy equivalence aq : Q3( VvV CP") ~ Q2 +1( v CP") such that the followmg
diagram is commutative up to homotopy

Sa

QM) —— 03(V'cp)

lid 2104
n , n+1 0o
¢(1+)1(C) —" 0 +1( V CP>)

Consider the mapping telescope of the maps
Q" (©) = @7 (©) = Q§”(©) = Q(C) —

It is easy to see that this mapping telescope is homotopy equivalent to Q("). Hence we
obtain a stabilized scanning map

$:0m - 2™ v CP°°)
By arguing exactly as in [S], we obtain

Proposition 4.3. The scanning map Sisa homotopy equivalence.

Sketch proofs of Theorems 1 and 2. Let G = (C*)™ and define a G-action on X,, by
((t1,--5tn),[po s+ 1 pal) > [po: tapr i« : tapal.

Then there is a fibre sequence
T — X, - "V CP>.

n+1
(This follows from the fact that EG x¢ X, ~ \J; CP>). There is a homotopy commu-
tative diagram:

.
Hol’(S2, X,,) ——— Map(S2, X,) = 03X,

:zl zlmq

S
Q) ——  ojviep)

It follows that dlim I; is a homotopy equivalence. Hence Theorem 1 follows from the
—+ 00

stabilization theorem.

Finally, an argument analogous to the one given by Segal in [S] shows that the space
Qc(l") (C) is nilpotent up to dimension d if 2d > n. Theorem 2 follows from the Whitehead
Theorem [HR] 0O
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