CONFIGURATION SPACES OF DIVISORS AND HOLOMORPHIC MAPS

MARTIN GUEST ANDRZEJ KOZLOWSKI KOHHEI YAMAGUCHI

The University of Rochester Toyama International University The University of Electro-Communications

§1. Introduction.

Spaces of holomorphic maps between complex manifolds have played a major role in such diverse branches of mathematics as analysis, differential geometry, topology and mathematical physics.

If $X \subset \mathbb{C}P^n$ is a projective variety we denote by $\operatorname{Hol}_d^*(S^2, X)$ ($\operatorname{Hol}_d(S^2, X)$) the space of all based (non-based) holomorphic maps $S^2 \to X$ of degree d, where S^2 is the Riemann sphere, $S^2 = \mathbb{C} \cup \{\infty\}$. For simplicity we shall assume that the degree d is a non-negative integer. The corresponding space of based (non-based) continuous maps of degree d is denoted by $\operatorname{Map}_d^*(S^2, X)$ ($\operatorname{Map}_d(S^2, X)$).

In [S] Segal studied the inclusion map

$$I_d: \operatorname{Hol}_d^*(S^2, \mathbb{C}P^n) \to \operatorname{Map}_d^*(S^2, \mathbb{C}P^n)$$

and showed that this inclusion map is a homotopy equivalence up to dimension d(2n-1). For any projective variety X it is natural to consider the following

Problem. When is the map $I_d: \operatorname{Hol}_d^*(S^2, X) \to \operatorname{Map}_d^*(S^2, X)$ a homotopy equivalence up to some dimension n(d), such that $n(d) \to \infty$ as $d \to \infty$?

Segal's results for $X = \mathbb{C}P^n$ have been generalized to the case when X is a Grassmanian, or more generally, a flag manifold (see [G], [Gu], [K], [M²]). In this note we consider the case where X is the complement of a union of linear subspaces in $\mathbb{C}P^n$: $X = \mathbb{C}P^n \setminus \bigcup_{\alpha \in \Lambda} H_\alpha$, where $\{H_\alpha : \alpha \in \Lambda\}$ is a family of linear subspaces of $\mathbb{C}P^n$. Our purpose is to announce the main results of [GKY], which extend Segal's results [S] to the case $X = X_n = \mathbb{C}P^n \setminus \bigcup_{0 \leq i < j \leq n} H_{i,j}$, where $H_{i,j} = \{[z_0 : z_1 : \cdots : z_n] \in \mathbb{C}P^n : z_i = z_j = 0\}$.

The precise statements of our results are as follows:

Theorem 1. The inclusion maps

$$I_d: \operatorname{Hol}_d^*(S^2, X_n) \to \operatorname{Map}_d^*(S^2, X_n)$$

and

$$J_d: \operatorname{Hol}_d(S^2, X_n) \to \operatorname{Map}_d(S^2, X_n)$$

are homology equivalences up to dimension d.

Theorem 2. If 2d > n the two maps above are homotopy equivalences up to dimension d.

Here we call an inclusion map $X \to Y$ a homotopy equivalence (homology equivalence) up to dimension m if $\pi_j(Y, X) = 0$ when $j \leq m$ (if $H_j(Y, X) = 0$ when $j \leq m$).

Remark.

- (1) For n = 1 the above results were obtained in [S].
- (2) We expect that similar methods can be used to obtain analogous results when $X = \mathbb{C}P^n \setminus \bigcup_I P(I)$, where $P(I) = \{[z_0 : \cdots : z_n] \in \mathbb{C}P^n : p_j = 0 \text{ if } j \in I\}$, and the union is over a collection of subsets I of $\{0, 1, 2, ..., n\}$.

§2. Configuration Spaces of Divisors.

Definition 2.1. For a connected pair of CW-complexes (X,Y), let $Sp^d(X,Y)$ denote the d-fold symmetric product of X/Y. Adding a base point gives rise to a natural inclusion $Sp^d(X,Y) \to Sp^{d+1}(X,Y)$ and we put $Sp^{\infty}(X,Y) = \bigcup_{d>1} Sp^d(X,Y)$. We define a space $Q_J^{(n)}(X,Y)$ by

$$Q_d^{(n)}(X,Y) = \{(\xi_0, \dots, \xi_n) \in (Sp^d(X,Y))^{n+1} : \xi_i \cap \xi_j = \emptyset \text{ if } i \neq j\}.$$

If
$$Y = \emptyset$$
, we write $Sp^d(X) = Sp^d(X, \emptyset)$ and $Q_d^{(n)}(X) = Q_d^{(n)}(X, \emptyset)$.

If M is a connected open manifold, adding (n+1) distinct points "from infinity" (c. f. [Mc]) gives a natural stabilization map $i_d: Q_d^{(n)}(M) \to Q_{d+1}^{(n)}(M)$ and we define $\hat{Q}^{(n)}(M)$ to be the "identity component" of $\lim_{d\to\infty}Q_d^{(n)}(M)$. Let F(X,m) be the configuration space of m-tuples of distinct points in X. In particular, $Q_1^{(n)}(X) = F(X, n+1)$, and it is well-known that $\pi_1(F(\mathbb{C},m))=I(m)$, where I(m) denotes the group of pure braids of m strings. Then we have

Proposition 2.2.

(1)
$$\operatorname{Hol}_d^*(S^2, X_n) = Q_d^{(n)}(\mathbb{C}).$$

(1)
$$\operatorname{Hol}_{d}^{*}(S^{2}, X_{n}) = Q_{d}^{*, \gamma}(\mathbb{C}).$$

(2) $\pi_{1}(\operatorname{Hol}_{d}^{*}(S^{2}, X_{n})) = \begin{cases} I(n+1) & \text{if } d = 1\\ \mathbb{Z}^{n(n+1)/2} & \text{if } d \geq 2. \end{cases}$

(Part (2) is proved in [E].)

§3 The Stabilization Theorem.

Theorem 3.1. ([GKY],[Ko]). The stabilization map $i_d : \operatorname{Hol}_d^*(S^2, X_n) \to \operatorname{Hol}_{d+1}^*(S^2, X_n)$ is a homology equivalence up to dimension d.

Using the McDuff-Segal transfer ([Mc],[S]) we obtain

Proposition 3.2. For any commutative ring R, the induced homomorphism $i_{d*}: H_*(\operatorname{Hol}_d^*(S^2, X_n), R) \to H_*(\operatorname{Hol}_{d+1}^*(S^2, X_n), R)$ is a split monomorphism. More precisely, there is a family of graded R-modules $\{R_m : m \geq 0\}$ such that

(a)
$$H_*(\operatorname{Hol}_d^*(S^2, X_n), R) = \bigoplus_{0 \le m \le d} R_m$$
.

(b) The above isomorphism is compatible with the splitting monomorphism.

These results lead us to expect

Conjecture 3.3. There is a stable splitting

$$\operatorname{Hol}_d^*(S^2, X_n) \underset{\overline{S}}{\simeq} \underset{1 \le j \le d}{\vee} D_j(n)$$

such that

$$D_j(n) \simeq \operatorname{Hol}_j^*(S^2, X_n) / \operatorname{Hol}_{j-1}^*(S^2, X_n).$$

Remark 3.4. ([C²M²]) This is true for n = 1.

§4. The Scanning Map.

Definition 4.1. Let $\varepsilon > 0$ be any positive real number, and let $D_z(\varepsilon)$ denote the open disk of radius ε with centre at $z \in \mathbb{C}$. Define the map $S_d : Q_d^{(n)}(\mathbb{C}) \times \mathbb{C} \to Q^{(n)}(\mathbb{S}^2, \infty)$ by

$$((\xi_0,\ldots,\xi_n),z)\mapsto (\xi_0\cap D_z(\varepsilon),\ldots,\xi_n\cap D_z(\varepsilon))\in Q^{(n)}(\bar{D}_z(\varepsilon),\partial\bar{D}_z(\varepsilon))$$
$$\simeq Q^{(n)}(S^2,\infty).$$

Since $\lim_{z\to\infty} S_d(\Xi,z) = (\emptyset,\emptyset,\ldots,\emptyset)$ for any $\Xi\in Q_d^{(n)}(\mathbb{C})$, we define $S_d(\Xi,\infty) = (\emptyset,\emptyset,\ldots,\emptyset)$ and obtain a map

$$S_d: Q_d^{(n)}(\mathbb{C}) \times \mathbb{S}^2 \to Q^{(n)}(\mathbb{S}^2, \infty).$$

Taking the adjoint we obtain a map

$$S_d: Q_d^{(n)}(\mathbb{C}) \to \operatorname{Map}_d^*(S^2, Q^{(n)}(S^2, \infty)).$$

Its homotopy class is independent of the choice of ε . We call S_d the scanning map.

It can be shown that $Q^{(n)}(S^2, \infty) \simeq {\overset{n+1}{\vee}} \mathbb{C} P^{\infty}$. It is also easy to see that there is a homotopy equivalence $\alpha_d: \Omega_d^2({\overset{n+1}{\vee}} \mathbb{C} P^n) \simeq \Omega_{d+1}^2({\overset{n+1}{\vee}} \mathbb{C} P^n)$ such that the following diagram is commutative up to homotopy

Consider the mapping telescope of the maps

$$Q_1^{(n)}(\mathbb{C}) \xrightarrow{i_1} Q_2^{(n)}(\mathbb{C}) \xrightarrow{i_2} Q_3^{(n)}(\mathbb{C}) \xrightarrow{i_3} Q_4^{(n)}(\mathbb{C}) \to \dots$$

It is easy to see that this mapping telescope is homotopy equivalent to $\hat{Q}^{(n)}$. Hence we obtain a stabilized scanning map

$$\hat{S}: \hat{Q}^{(n)} \to \Omega_0^2(\overset{n+1}{\vee} \mathbb{C}P^{\infty}).$$

By arguing exactly as in [S], we obtain

Proposition 4.3. The scanning map \hat{S} is a homotopy equivalence.

Sketch proofs of Theorems 1 and 2. Let $G = (\mathbb{C}^*)^n$ and define a G-action on X_n by

$$((t_1,\ldots,t_n),[p_0:\ldots:p_n])\mapsto [p_0:t_1p_1:\ldots:t_np_n].$$

Then there is a fibre sequence

$$T^n \to X_n \stackrel{q}{\to} \overset{n+1}{\vee} \mathbb{C}P^{\infty}.$$

(This follows from the fact that $EG \times_G X_n \simeq {}^{n+1}\mathbb{C}P^{\infty}$). There is a homotopy commutative diagram:

$$\operatorname{Hol}_{d}^{*}(S^{2}, X_{n}) \xrightarrow{I_{d}} \operatorname{Map}_{d}^{*}(S^{2}, X_{n}) = \Omega_{d}^{2} X_{n}$$

$$\simeq \downarrow \qquad \qquad \simeq \downarrow \Omega^{2} q$$

$$Q_{d}^{(n)}(\mathbb{C}) \xrightarrow{S_{d}} \qquad \Omega_{d}^{2}(\vee^{n+1} \mathbb{C} P^{\infty})$$

It follows that $\lim_{d\to\infty}I_d$ is a homotopy equivalence. Hence Theorem 1 follows from the stabilization theorem.

Finally, an argument analogous to the one given by Segal in [S] shows that the space $Q_d^{(n)}(\mathbb{C})$ is nilpotent up to dimension d if 2d > n. Theorem 2 follows from the Whitehead Theorem [HR] \square

REFERENCES

- [C²M²] Cohen, F. R., Cohen, R. L., Mann, B. M. and Milgram, R. J., The topology of rational functions and divisors of surfaces, Acta Math. 166 (1991), 161-221.
- [CLM] F R Cohen, Lada, T. Y., May, J. P., The homology of iterated loop spaces, vol. 533, Springer Lecture Notes In Math., 1976.
- [C-S] R L Cohen and D H Shimamoto, Rational functions, labelled configurations and Hilbert schemes, J. London Math. Soc. 43 (1991), 505-528.
- [E] Epshtein, S. I., Fundamental groups of spaces of coprime polynomials, Functional Analysis and Its Applications 7 (1973), 82-83.
- [G] Gravesen, J., On the topology of spaces of holomorphic maps, Acta Math. 162 (1989), 247-286.
- [Gu] Guest, M. A., Topology of the space of absolute minima of the enery functional, Amer. Jour. Math. 106 (1984), 21-42.
- [GKY] Guest, M. A., Kozlowski, A. and Yamaguchi, K., The topology of spaces of coprime polynomials, Preprint.
- [HR] Hilton, P. and Roitberg, J., On the Zeeman comparison theorem for the homology of quasi-nilpotent fibrations, Quarterly J. Math. 27 (1976), 433-444.
- [K] Kirwan, F., On spaces of maps from Riemann sphares to Grassmanians and applications to the cohomology of moduli of vector bundles, Ark. M. 24 (1986), 221-275.
- [Ko] Kozlowski, A., Stabilization of homology groups of spaces of mutually disjoint divisors, In these Proceedings.
- [M²] Mann, B. M. and Milgram, R. J., Some spaces of holomorphic maps to complex Grassman manifolds, J. Differential Geometry 33 (1991), 301-324.
- [Mc] McDuff, D., Configuration spaces of positive and negative particles, Topology 14 (1975), 91-107.
- [S] Segal, G. B., The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72.