An E_{∞} Ring G-Spectrum Representing the Equivariant Algebraic K-Theory of a Bipermutative G-Category

—Summary—

京大数理研 島川和久 (Kazuhisa SHIMAKAWA)

Introduction

In [5], May showed that the algebraic K-theory of a bipermutative category C can be represented by an E_{∞} ring spectrum functorially constructed from C. In this article, we establish a G-equivariant generalization of this result for arbitrary finite group G. The precise statement of the main result is given by Theorem A below.

Recall from [8] that pairs of (simplicial) permutative G-categories (C, C') functorially give rise to G-prespectra $K_G(C, C')$. In particular, $K_GC = K_G(C, C)$ represents the equivariant algebraic K-theory of C; that is, its coefficient groups $\pi_*^H K_GC$, H < G, are naturally isomorphic, as Mackey functors, to the higher equivariant K-groups (in the sense of [2], [10]) of C. (Compare Corollary 6 of [9].) Also, if we take the pair (CAT, GL), where CAT denotes O, PL or Top, then $K_G(CAT, GL)$ gives an equivariant infinite delooping of the classifying space BCAT(G).

Theorem A. There exists a functor E_G from pairs of simplicial permutative Gcategories to G-spectra enjoying the following properties.

- (a) For any (C, C'), $E_G(C, C')$ is equivalent in the stable category to the Gspectrum associated to $K_G(C, C')$.
- (b) If (C, C') is a pair of a bipermutative G-category $C = (C, \oplus, \otimes)$ and its G-stable subcategory C' closed under the operations \oplus and \otimes , then $E_G(C, C')$ has a natural structure of an E_{∞} ring G-spectrum in the sense of May [3].

§1. External Operad Actions on G-Prespectra

We introduce the notion of external operad actions on a G-prespectrum, and describe the passage from external operad actions on a G-prespectrum to (internal) operad actions on its associated G-spectrum. In this section, G will denote an arbitrary compact Lie group.

Let V be a real inner product space on which G acts through linear isometries. We assume that V contains every irreducible representations of G and denote by A the indexing set $\{V^n \mid n \geq 0\}$ in the universe $V^{\infty} = \operatorname{Colim} V^n$. Here $V^n = V \oplus \cdots \oplus V$ is identified with the G-invariant subspace $V^n \oplus 0$ of V^{n+1} .

For each positive integer n, let Σ_n denote the symmetric group on n letters. Since Σ_n acts on V^n by permutations, there is an embedding of Σ_n into $O_n = \operatorname{Aut}^G(V^n)$; the group of self linear G-isometries of V^n . Denote by SV^n the one-point compactification of V^n equipped with the induced $(G \times O_n)$ -action.

Definition 1.1. Let D be a G-prespectrum with structure maps $\delta: DV^n \wedge SV^p \to DV^{n+p}$. D is called a Σ_* -prespectrum (indexed on A) if each DV^n admits a base-point preserving Σ_n -action subject to the following axioms.

- (1) Σ_n acts on DV^n through G-homeomorphisms. (Thus each DV^n is a based $(G \times \Sigma_n)$ -space.)
 - (2) For any $\sigma \in \Sigma_n$ and $\tau \in \Sigma_p$, the following diagram commutes:

$$\begin{array}{ccc} DV^n \wedge SV^p & \stackrel{\delta}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} & DV^{n+p} \\ & & & & & & \downarrow \sigma \oplus \tau \\ DV^n \wedge SV^p & \stackrel{\delta}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} & DV^{n+p}; \end{array}$$

here V^p is identified with the orthogonal complement of V^n in V^{n+p} and $\sigma \oplus \tau \in \Sigma_{n+p}$ acts on $V^{n+p} = V^n \oplus V^p$ as the product linear isometry.

A Σ_* -prespectrum $D=(D,\delta)$ is called a Σ_* -spectrum if the G-maps $\tilde{\delta}\colon DV^n\to \Omega^VDV^{n+1}$ adjoint to δ are homeomorphisms. A map $f\colon D\to D'$ of Σ_* -prespectra is a

map of G-prespectra such that each $f: DV^n \to D'V^n$ is compatible with Σ_n -actions.

Following [3], let $L: G\mathcal{PA} \to GSA$ denote the left adjoint to the inclusion $GSA \subset G\mathcal{PA}$ of G-spectra into G-prespectra indexed on A. It can be shown that for any G-prespectrum $D \in G\mathcal{PA}$, LD has a unique structure of Σ_* -prespectrum, and the unit $\eta: D \to LD$ of the adjunction is a map of Σ_* -prespectra with respect to any Σ_* -prespectrum structure on D.

We now introduce the notion of external G-operad actions on Σ_* -prespectra. Recall from [3] that a G-operad is a sequence of $(G \times \Sigma_j)$ -spaces C_j for $j \geq 0$, with G acting on the left and Σ_j acting on the right and with C_0 a single point, together with a G-fixed unit element $1 \in C_1^G$ and suitably associative, unital, and equivariant structure maps

$$\gamma: \mathcal{C}_k \times \mathcal{C}_{j_1} \times \cdots \times \mathcal{C}_{j_k} \to \mathcal{C}_j, \quad j = j_1 + \cdots + j_k.$$

Let C_j^+ denote the union of C_j and a disjoint basepoint.

Definition 1.2. Let $D=(D,\delta)$ be a Σ_* -prespectrum and let \mathcal{C} be a G-operad. We say that D is an external \mathcal{C} -prespectrum, or \mathcal{C} acts externally on D, if there are based G-maps

$$\xi_j \colon \mathcal{C}_j^+ \wedge DV^{n_1} \wedge \cdots \wedge DV^{n_j} \to DV^{n_1 + \cdots + n_j}$$

for $j \geq 0$ and $n_1, \dots, n_j \geq 0$ satisfying the following conditions.

(1.1) For any $c \in C_j$, $x_s \in DV^{n_s}$ and $\sigma_s \in \Sigma_{n_s}$ $(1 \le s \le j)$ we have

$$\xi_j(c \wedge \sigma_1 x_1 \wedge \cdots \wedge \sigma_j x_j) = (\sigma_1 \oplus \cdots \oplus \sigma_j)\xi_j(c \wedge x_1 \wedge \cdots \wedge x_j).$$

(1.2) For given $\sigma \in \Sigma_j$, let $\sigma(n_1, \ldots, n_j) \in \Sigma_{n_1 + \cdots + n_j}$ denote the permutation of j blocks $(v_1, \ldots, v_j) \mapsto (v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(j)}), v_s \in V^{n_s}, 1 \leq s \leq j$. Then we have

$$\xi_i(c\sigma^{-1} \wedge x_{\sigma^{-1}(1)} \wedge \cdots \wedge x_{\sigma^{-1}(j)}) = \sigma(n_1, \dots, n_j) \xi_i(c \wedge x_1 \wedge \cdots \wedge x_j)$$

for all $c \in \mathcal{C}_j$ and $x_s \in DV^{n_s}$, $1 \le s \le j$.

(1.3) For
$$c \in C_j$$
, $x_s \in DV^{n_s}$ and $v_s \in SV^{p_s}$ $(1 \le s \le j)$ we have

$$\xi_{j}(c \wedge \delta(x_{1} \wedge v_{1}) \wedge \cdots \wedge \delta(x_{j} \wedge v_{j}))$$

$$= \tau(n_{1}, \dots, n_{j}; p_{1}, \dots, p_{j})\delta(\xi_{j}(c \wedge x_{1} \wedge \cdots \wedge x_{j}) \wedge (v_{1} \wedge \cdots \wedge v_{j}))$$

where $\tau(n_1, \ldots, n_j; p_1, \ldots, p_j) \in \Sigma_{n_1 + \cdots + n_j + p_1 + \cdots + p_j}$ represents the shuffle isomorphism $\begin{pmatrix} j \\ s=1 \end{pmatrix} V^{n_s} \oplus \begin{pmatrix} j \\ s=1 \end{pmatrix} V^{p_s} \cong \bigoplus_{s=1}^{j} V^{n_s + p_s}$.

(1.4) The composite $\xi_1 \iota_1 \colon DV^n \to \mathcal{C}_1^+ \wedge DV^n \to DV^n$ is the identity map, where ι_1 denotes the G-map $x \mapsto 1 \wedge x$, $x \in DV^n$.

(1.5) The diagram

$$C_{k}^{+} \wedge \left(\bigwedge_{s=1}^{k} C_{j_{s}}^{+} \wedge \left(\bigwedge_{t=1}^{j_{s}} DV^{n_{st}}\right)\right) \xrightarrow{1 \wedge \left(\bigwedge_{s=1}^{k} \xi_{j_{s}}\right)} C_{k}^{+} \wedge \left(\bigwedge_{s=1}^{k} DV^{n_{s}}\right)$$

$$\downarrow \xi_{k}$$

$$C_{j}^{+} \wedge \left(\bigwedge_{s=1}^{k} \bigwedge_{t=1}^{j_{s}} DV^{n_{st}}\right) \xrightarrow{\xi_{j}} DV^{n}$$

commutes, where $j = j_1 + \cdots + j_k$, $n_s = n_{s1} + \cdots + n_{sj_s}$, $n = n_1 + \cdots + n_k$ and ζ denotes the composite of $\gamma \wedge 1$ with the evident shuffle isomorphism.

Just as external smash products determine internal smash products, external operad actions determine (internal) operad actions in the sense of [3, Chapter VII, §2]. Precisely, we have

Theorem 1.3. Let G be a compact Lie group and let C be a G-operad. Suppose there is a morphism of G-operads $\chi \colon \mathcal{C} \to \mathcal{L}$ into the linear isometries operad of V^{∞} . Then every external C-action on a Σ_* -prespectrum D functorially determines on LD a structure of C-spectrum in the sense of May.

In particular, by taking χ to be the projection $\mathcal{L} \times \mathcal{C} \to \mathcal{L}$, we see that any external \mathcal{C} -action on D gives rise to an $(\mathcal{L} \times \mathcal{C})$ -action on LD.

Corollary 1.4. Let C be an E_{∞} G-operad. If D is an external C-prespectrum then LD is an E_{∞} ring G-spectrum.

§2. G-Prespectra Associated to Γ_G^{∞} -Spaces

We introduce the notion of operad ring Γ_G^{∞} -space and describe the passage from operad ring Γ_G^{∞} -spaces to external operad ring G-prespectra. Throughout, G-equivalence means weak G-equivalence.

Let \mathcal{T}_G be the category of non-degenerately based G-spaces and basepoint preserving maps with G acting on morphisms by conjugation, and let Γ_G denote the G-stable full subcategory of \mathcal{T}_G consisting of those based finite G-sets \mathbf{s}_ρ with underlying set $\mathbf{s} = \{0, 1, \ldots, s\}$ and with G-action given by a homomorphism $\rho \colon G \to \mathcal{E}_s$ (cf. [8]). If n is a positive integer, a G-equivariant functor from $\Gamma_G^n = \prod_{i=1}^n \Gamma_G$ to \mathcal{T}_G is called a Γ_G^n -space. We also denote by Γ_G^0 the sigleton set $\{1\}$; thus any G-space $A \in \mathcal{T}_G$ can be identified with a G-functor $\Gamma_G^0 \to \mathcal{T}_G$, called Γ_G^0 -space, which assigns A to A.

Definition 2.1. Let A be a Γ_G^n -space and let X be a (contravariant) G-functor $\Gamma_G^n \to \mathcal{T}_G^{\text{ op}}$. We put

$$E_n(A;X) = B(X,\Gamma_G^n,A)/B(*,\Gamma_G^n,A) \cup B(X,\Gamma_G^n,*),$$

where $B(X, \Gamma_G^n, A) \in \mathcal{T}_G$ denotes the geometric realization of the two-sided bar complex $B_*(X, \Gamma_G^n, A)$, and the inclusion $B(*, \Gamma_G^n, A) \cup B(X, \Gamma_G^n, *) \to B(X, \Gamma_G^n, A)$ is a G-cofibration induced by the morphisms $* \to A$ and $* \to X$ defined by the inclusions of the non-degenerate base-points of $A(S_1, \ldots, S_n)$ and $X(S_1, \ldots, S_n)$. Evidently we have $E_0(A; X) = X \wedge A$ for any G-spaces A and X.

Given G-functors $A: \Gamma_G^m \to \mathcal{T}_G, A': \Gamma_G^n \to \mathcal{T}_G$ and $X: \Gamma_G^m \to \mathcal{T}_G^{op}, X': \Gamma_G^n \to \mathcal{T}_G^{op}$, there is a G-map

$$\mu' \colon B(X, \Gamma_G^m, A) \times B(X', \Gamma_G^n, A') \cong B(X \times X', \Gamma_G^m \times \Gamma_G^n, A \times A')$$

$$\to B(X \wedge X', \Gamma_G^{m+n}, A \wedge A')$$

induced by the evident natural transformations $A \times A' \to A \wedge A'$ and $X \times X' \to X \wedge X'$.

It is easily checked that μ' induces a natural G-map

$$\mu \colon E_m(A;X) \wedge E_n(A';X') \to E_{m+n}(A \wedge A';X \wedge X')$$

such that

Lemma 2.2. The following diagram commutes for any A, A', A'' and X, X', X''.

$$E_{m}(A;X) \wedge E_{n}(A';X') \wedge E_{p}(A'';X'') \xrightarrow{1 \wedge \mu} E_{m}(A;X) \wedge E_{n+p}(A' \wedge A'';X' \wedge X'')$$

$$\downarrow^{\mu}$$

$$E_{m+n}(A \wedge A';X \wedge X') \wedge E_{p}(A'';X'') \xrightarrow{\mu} E_{m+n+p}(A \wedge A' \wedge A'';X \wedge X' \wedge X'').$$

$$E_{m+n}(A \wedge A'; X \wedge X') \wedge E_p(A''; X'') \xrightarrow{\mu} E_{m+n+p}(A \wedge A' \wedge A''; X \wedge X' \wedge X'')$$

Now let $\Gamma_G^{\infty} = \operatorname{Colim} \Gamma_G^n$ be the colimit of the inclusions $\Gamma_G^n \to \Gamma_G^{n+1}, (S_1, \ldots, S_n) \mapsto$ $(S_1,\ldots,S_n,1)$. Clearly, any G-functor $A\colon\Gamma_G^\infty\to\mathcal{T}_G$ determines and is determined by Γ_G^n -spaces $A^{(n)} = A|\Gamma_G^n$ together with natural isomorphisms $\varepsilon \colon A^{(n)} \cong A^{(n+1)}|\Gamma_G^n$

Definition 2.3. A (symmetric) Γ_G^{∞} -space is a G-functor $A \colon \Gamma_G^{\infty} \to \mathcal{T}_G$ together with natural isomorphisms $\theta_{\sigma} \colon A^{(n)} \to A^{(n)}\sigma$, i.e. G-homeomorphisms

$$A^{(n)}(S_1,\ldots,S_n)\to A^{(n)}\sigma(S_1,\ldots,S_n)=A^{(n)}(S_{\sigma^{-1}(1)},\ldots,S_{\sigma^{-1}(n)})$$

natural in (S_1, \ldots, S_n) , such that for any σ , $\sigma' \in \Sigma_n$, $\tau \in \Sigma_p$ and $a \in A^{(n)}(S_1, \ldots, S_n)$ we have

$$\theta_1 a = a, \quad \theta_{\sigma \sigma'} a = \theta_{\sigma} \theta_{\sigma'} a, \quad \theta_{\sigma \oplus \tau} \varepsilon^p a = \varepsilon^p \theta_{\sigma} a$$

where $\varepsilon^p \colon A^{(n)} \cong A^{(n+p)} | \Gamma_G^n$ denotes the p-fold composite of ε . A morphism of Γ_G^{∞} spaces $(A, \{\theta_{\sigma}\}) \to (A', \{\theta'_{\sigma}\})$ is a natural transformation $F: A \to A'$ such that $F\theta_{\sigma}=\theta_{\sigma}'F$ holds for every $\sigma\in \Sigma_{n}$. A Γ_{G}^{∞} -space A is called to be special if for every $(S_1,\ldots,S_n)\in\Gamma_G^n$ the Γ_G -space $S\mapsto A(S_1,\ldots,S_n,S)$ is special in the sense of [8, Definition 1.3]; that is, the canonical maps

$$A(S_1,\ldots,S_n,S) \to A(S_1,\ldots,S_n,1)^S \cong A(S_1,\ldots,S_n)^S$$

induced by the projections $\operatorname{pr}_s \colon S \to 1$, $\operatorname{pr}_s^{-1}(1) = \{s\} \ (s \neq 0)$ are G-equivalences.

We now assign to each Γ_G^{∞} -space A a G-prespectrum $T_GA \in G\mathcal{P}A$. For $n \geq 1$, let $SV^{(n)}$ denote the contravariant G-functor $(S_1, \ldots, S_n) \mapsto SV^{S_1} \wedge \cdots \wedge SV^{S_n}$, and let $SV^{(0)} = S^0$. Then we put

$$T_G A(V^n) = E_n(A^{(n)}; SV^{(n)});$$

in particular, $T_GA(0) = A^{(0)} = A(1)$. The structure map $T_GA(V^n) \wedge SV \to T_GA(V^{n+1})$ is defined to be the composite

$$E_n(A^{(n)}; SV^{(n)}) \wedge SV \xrightarrow{\mu} E_n(A^{(n)}; SV^{(n)} \wedge SV)$$

$$\cong E_n(A^{(n+1)}|\Gamma_G^n; SV^{(n+1)}|\Gamma_G^n) \xrightarrow{\Sigma} E_{n+1}(A^{(n+1)}; SV^{(n+1)}),$$

where Σ denotes the natural G-map induced by the inclusion $\Gamma_G^n \subset \Gamma_G^{n+1}$.

 T_GA becomes a Σ_* -prespectrum if we let Σ_n act on $T_GA(V^n)$ through the Σ_n action on the bar complex $B_*(SV^{(n)}, \Gamma_G^n, A^{(n)})$;

$$\sigma(v_1 \wedge \dots \wedge v_n, (f_1, \dots, f_n), a) = (v_{\sigma^{-1}(1)} \wedge \dots \wedge v_{\sigma^{-1}(n)}, (f_{\sigma^{-1}(1)}, \dots, f_{\sigma^{-1}(n)}), \theta_{\sigma}a)$$

for $\sigma \in \Sigma_n$, $v_i \in SV^{T_i}$, $f_i : S_i \to \cdots \to T_i \in N_*\Gamma_G$, $1 \le i \le n$, and $a \in A(S_1, \ldots, S_n)$. Clearly the assignment $A \mapsto T_G A$ is natural in A, and we get a functor T_G from Γ_G^{∞} -spaces to Σ_* -prespectra.

Recall from [8, §2] that the restriction $A^{(1)} = A|\Gamma_G$ of a Γ_G^{∞} -space A determines a G-prespectrum $S_G A^{(1)} \in G\mathcal{P}\mathcal{A}$ with

$$S_G A^{(1)}(V^n) = B((SV^n)^{(1)}, \Gamma_G, A^{(1)})/B(*, \Gamma_G, A^{(1)})$$

and with structure maps $S_GA^{(1)}(V^n) \wedge SV \to S_GA^{(1)}(V^{n+1})$ induced by the natural transformation $\alpha : (SV^n)^{(1)} \wedge SV \to (SV^{n+1})^{(1)}$ which takes each $f \wedge v \in (SV^n)^S \wedge SV$, $S \in \Gamma_G$, to $\alpha(f \wedge v) \in (SV^{n+1})^S$, $\alpha(f \wedge v)(s) = f(s) \wedge v$ for $s \in S$. Theorem B of

[8] implies that if $A^{(1)}$ is special then $S_GA^{(1)}$ is an almost Ω -G-spectrum, that is, the structure maps $S_GA^{(1)}(V^n) \to \Omega^V S_GA^{(1)}(V^{n+1})$ are G-equivalences for n > 0, and that the adjoint $A^{(1)}(1) \to \Omega^V S_GA^{(1)}(V)$ to the natural G-map $A^{(1)}(1) \wedge SV \to B(SV^{(1)}, \Gamma_G, A^{(1)})/B(*, \Gamma_G, A^{(1)})$ is a G-equivalence if $A^{(1)}(1)$ is group-like.

Theorem 2.4. Let A be a special Γ_G^{∞} -space. Then T_GA is an almost Ω -G-spectrum and there is a natural equivalence $LS_GA^{(1)} \simeq LT_GA$ defined in the stable category $\bar{h}GSA$.

Definition 2.5. Let \mathcal{C} be a G-operad. A \mathcal{C} -action on a Γ_G^{∞} -space A consists of morphisms of Γ_G^n -spaces

$$\widetilde{\xi}_j \colon \mathcal{C}_j^+ \wedge A^{(n_1)} \wedge \cdots \wedge A^{(n_j)} \to A^{(n)}, \quad n = n_1 + \cdots + n_j,$$

for $j \geq 0$ and $n_1, \dots, n_j \geq 0$ satisfying the following conditions.

(2.1) For
$$c \in \mathcal{C}_j$$
, $a_s \in A(S_{s1}, \ldots, S_{sn_s})$ and $\sigma_s \in \Sigma_{n_s}$ $(1 \leq s \leq j)$, we have

$$\widetilde{\xi}_j(c \wedge \theta_{\sigma_1} a_1 \wedge \cdots \wedge \theta_{\sigma_j} a_j) = \theta_{\sigma_1 \oplus \cdots \oplus \sigma_j} \widetilde{\xi}_j(c \wedge a_1 \wedge \cdots \wedge a_j).$$

(2.2) For $\sigma \in \Sigma_j$, we have

$$\widetilde{\xi}_j(c\sigma^{-1} \wedge a_{\sigma^{-1}(1)} \wedge \cdots \wedge a_{\sigma^{-1}(j)}) = \theta_{\sigma(n_1,\dots,n_j)}\widetilde{\xi}_j(c \wedge a_1 \wedge \cdots \wedge a_j).$$

(2.3) For $p_1, \dots, p_j \geq 0$, we have

$$\widetilde{\xi}_j(c \wedge \varepsilon^{p_1} a_1 \wedge \cdots \wedge \varepsilon^{p_j} a_j) = \theta_{\tau(n_1, \dots, n_j; p_1, \dots, p_j)} \varepsilon^{p_1 + \dots + p_j} \widetilde{\xi}_j(c \wedge a_1 \wedge \cdots \wedge a_j).$$

- (2.4) The composite $\tilde{\xi}_1 \iota_1 : A^{(n)} \to {\mathcal{C}_1}^+ \wedge A^{(n)} \to A^{(n)}$ is the identity map, where ι_1 denotes the natural transformation $A(S_1, \ldots, S_n) \to {\mathcal{C}_1}^+ \wedge A(S_1, \ldots, S_n), \ a \mapsto 1 \wedge a$.
 - (2.5) The following diagram commutes, where $j = j_1 + \cdots + j_k$, $n_s = n_{s1} + \cdots + n_{sj_s}$,

 $n = n_1 + \cdots + n_k$:

$$\begin{array}{ccc}
\mathcal{C}_{k}^{+} \wedge \left(\bigwedge_{s=1}^{k} \mathcal{C}_{j_{s}}^{+} \wedge \left(\bigwedge_{t=1}^{j_{s}} A^{(n_{st})}\right)\right) & \xrightarrow{1 \wedge \left(\bigwedge_{s=1}^{k} \widetilde{\xi}_{j_{s}}\right)} & \mathcal{C}_{k}^{+} \wedge \left(\bigwedge_{s=1}^{k} A^{(n_{s})}\right) \\
\downarrow & & \downarrow \widetilde{\xi}_{k} \\
\mathcal{C}_{j}^{+} \wedge \left(\bigwedge_{s=1}^{k} \bigwedge_{t=1}^{j_{s}} A^{(n_{st})}\right) & \xrightarrow{\widetilde{\xi}_{i}} & A^{(n)}.
\end{array}$$

For given C-action on A, we define G-maps

$$\xi_i : \mathcal{C}_i^+ \wedge T_G A(V^{n_1}) \wedge \cdots \wedge T_G A(V^{n_i}) \rightarrow T_G A(V^n)$$

by the following composites:

$$E_{0}(C_{j}^{+}; S^{0}) \wedge E_{n_{1}}(A^{(n_{1})}; SV^{(n_{1})}) \wedge \cdots \wedge E_{n_{j}}(A^{(n_{j})}; SV^{(n_{j})})$$

$$\xrightarrow{\mu} E_{n}(C_{j}^{+} \wedge A^{(n_{1})} \wedge \cdots \wedge A^{(n_{j})}; SV^{(n)}) \xrightarrow{E_{n}(\widetilde{\xi}_{j}, 1)} E_{n}(A^{(n)}; SV^{(n)}).$$

It is now easy to see that these ξ_j define an external C-action on T_GA . Thus we have

Theorem 2.6. Let C be a E_{∞} G-operad. If C acts on a Γ_G^{∞} -space A then LT_GA is an E_{∞} ring G-spectrum (with natural $(\mathcal{L} \times C)$ -action).

§3. Proof of Theorem A

We are now ready to prove Theorem A. First recall from [8] the definition of the functor K_G .

Given a pair of permutative G-categories (C, C'), let $B_G(C, C')$ be the full subcategory of the functor category Cat(EG, C) with objects those functors $F: EG \to C$ which factor through C'. Here EG denotes the translation category of G, and $B_G(C, C')$ is regarded as a permutative G-category with respect to the G-action

$$(gF)(x) = gF(xg)$$
 for $g \in G$, $x \in obEG = G$

and the sum operation $(F, F') \mapsto F \oplus F'$;

$$(F \oplus F')(x) = F(x) \oplus F'(x)$$
 for $x \in obEG$.

For any permutative G-category M, let $M^{\hat{}}$ denote the Γ_{G} -category

$$S \mapsto M^{\hat{}}(S) = \operatorname{Moncat}(\mathcal{P}S, M),$$

where $\mathcal{P}S$ is the set of subsets of $S - \{0\}$ viewed as a partial G-monoid under disjoint union $(U, U') \mapsto U \sqcup U'$ for $U, U' \in \mathcal{P}S$ with $U \cap U' = \emptyset$, and Moncat $(\mathcal{P}S, M)$ denotes the category of monoidal functors from $\mathcal{P}S$ to M with G acting by conjugation of morphisms.

In contrast with the non-equivariant case, the associated Γ_G -space

$$|M^{\hat{}}|: S \mapsto |M^{\hat{}}(S)|$$

is not necessarily special. However, we can prove that $|B_G(C, C')^{\hat{}}|$ is special for every (C, C'), and $K_G(C, C')$ is defined to be the almost Ω -G-spectrum $S_G|B_G(C, C')^{\hat{}}|$.

Now, Theorem A is a consequence of Theorems 2.4, 2.6 and the following

Proposition 3.1. There exists a functor A from permutative G-categories to Γ_G^{∞} -spaces and an E_{∞} -operad \mathcal{D} enjoying the following properties:

- (a) For any permutative G-category M, $AM^{(1)} = |M^{\hat{}}|$.
- (b) For any pair of permutative G-categories (C, C'), $AB_G(C, C')$ is a special Γ_G^{∞} -space.
- (c) If (C, C') is a pair of bipermutative G-categories then $AB_G(C, C')$ admits a natural \mathcal{D} -action.

The remainder of this section will be devoted to the proof of the proposition above. As in [7, §2, 2.2], we assign to each permutative G-category M and $(S_1, \ldots, S_n) \in \Gamma_G^n$ a category $M^{(n)}(S_1, \ldots, S_n)$ defined as follows.

Objects of $M^{(n)}(S_1, \ldots, S_n)$ are functors $F: \mathcal{P}S_1 \times \cdots \times \mathcal{P}S_n \to M$ together with natural isomorphisms

$$\delta_i \colon F(U_1, \dots, U_{i-1}, U'_i, U_{i+1}, \dots, U_n) \oplus F(U_1, \dots, U_{i-1}, U''_i, U_{i+1}, \dots, U_n)$$

$$\xrightarrow{\cong} F(U_1, \dots, U_{i-1}, U'_i \sqcup U''_i, U_{i+1}, \dots, U_n)$$

for $1 \le i \le n$ satisfying the following two conditions.

(C1) F is monoidal in each variable, that is, if we fix objects $U_k \in \mathcal{P}S_k$ for $k \neq i$, and write $F_i(U) = F(U_1, \dots, U_{i-1}, U, U_{i+1}, \dots, U_n)$, then the following diagrams are commutative:

$$F_{i}(U) \oplus F_{i}(U') \oplus F_{i}(U'') \xrightarrow{1 \oplus \delta_{i}} F_{i}(U) \oplus F_{i}(U' \sqcup U'')$$

$$\delta_{i} \oplus 1 \downarrow \qquad \qquad \downarrow \delta_{i}$$

$$F_{i}(U' \sqcup U') \oplus F_{i}(U'') \xrightarrow{\delta_{i}} F_{i}(U \sqcup U' \sqcup U''),$$

$$F_{i}(U) \oplus 0 = F_{i}(U) \oplus F_{i}(\emptyset) \qquad F_{i}(U) \oplus F_{i}(U') \xrightarrow{\delta_{i}} F_{i}(U \sqcup U')$$

$$\parallel \qquad \qquad \downarrow \delta_{i} = \mathrm{id} \qquad c \downarrow \qquad F_{i}(c) \downarrow$$

$$F_{i}(U) = F_{i}(U \sqcup \emptyset), \qquad F_{i}(U') \oplus F_{i}(U) \xrightarrow{\delta_{i}} F_{i}(U' \sqcup U).$$

(C2) For $1 \le i < j \le n$ and $U_k \in \mathcal{P}S_k$ with $k \ne i, j$, write

$$F_{ij}(U,W) = F(U_1,\ldots,U_{i-1},U,U_{i+1},\ldots,U_{j-1},W,U_{j+1},\ldots,U_n).$$

Then the following diagram commutes, where $U \cap U' = \emptyset$ and $W \cap W' = \emptyset$:

$$F_{ij}(U,W) \oplus F_{ij}(U,W') \oplus F_{ij}(U',W) \oplus F_{ij}(U',W') \xrightarrow{\delta_{j} \oplus \delta_{j}} F_{ij}(U,W \sqcup W') \oplus F_{ij}(U',W \sqcup W')$$

$$\downarrow^{\delta_{i}} \qquad \qquad \downarrow^{\delta_{i}}$$

$$F_{ij}(U \sqcup U',W) \oplus F_{ij}(U \sqcup U',W') \xrightarrow{\delta_{j}} \qquad \qquad F_{ij}(U \sqcup U',W \sqcup W').$$

Equivalently, the assignment $W \mapsto (U \mapsto F_{ij}(U, W))$ defines a monoidal functor from $\mathcal{P}S_j$ to $\mathrm{Moncat}(\mathcal{P}S_i, M)$.

Given objects $F = (F; \delta_1, \ldots, \delta_n)$ and $F' = (F'; \delta'_1, \ldots, \delta'_n)$ in $M^{(n)}(S_1, \ldots, S_n)$, morphisms from F to F' are natural transformations $\alpha \colon F \to F'$ such that the following diagrams commute for $1 \le i \le n$:

The $M^{(n)}(S_1,\ldots,S_n)$ becomes a permutative G-category under the G-action

$$(gF)(U_1, \dots, U_n) = gF(g^{-1}U_1, \dots, g^{-1}U_n)$$
 for $g \in G$,

and the sum operation $(F, F') \mapsto F \oplus F'$;

$$(F \oplus F')(U_1, \ldots, U_n) = F(U_1, \ldots, U_n) \oplus F'(U_1, \ldots, U_n).$$

Moreover, any morphism $f = (f_1, \ldots, f_n) : (S_1, \ldots, S_n) \to (T_1, \ldots, T_n)$ in Γ_G^n induces a morphism of permutative G-categories

$$M^{(n)}(S_1,\ldots,S_n)\to M^{(n)}(T_1,\ldots,T_n), \quad F\mapsto F(\mathcal{P}f_1\times\cdots\times\mathcal{P}f_n),$$

where $\mathcal{P}f_i$ denotes the G-map $\mathcal{P}T_i \to \mathcal{P}S_i$, $W \mapsto f_i^{-1}(W)$ for $1 \leq i \leq n$. Thus we get a G-equivariant functor $M^{(n)}$ from Γ_G^n to the category of permutative G-categories and (non-equivariant) morphisms with G acting by conjugation of morphisms.

One easily observes that the adjuction

$$\operatorname{Cat}(\mathcal{P}S_1\times\cdots\times\mathcal{P}S_n\times\mathcal{P}S_{n+1},M)\cong\operatorname{Cat}(\mathcal{P}S_{n+1},\operatorname{Cat}(\mathcal{P}S_1\times\cdots\times\mathcal{P}S_n,M))$$

induces an isomorphism

$$M^{(n+1)}(S_1, \ldots, S_n, S_{n+1}) \cong Moncat(\mathcal{P}S_{n+1}, M^{(n)}(S_1, \ldots, S_n))$$

natural in S_1, \dots, S_{n+1} . Thus we have

Lemma 3.2. For any permutative G-category M, $M^{(1)} = M^{\hat{}}$ and there are isomorphisms of permutative G-categories

$$M^{(n+1)}(S_1,\ldots,S_n,S_{n+1})\cong M^{(n)}(S_1,\ldots,S_n)\hat{\ }(S_{n+1})$$

natural in S_1, \dots, S_{n+1} and M.

In particular, $M^{(n+1)}(S_1,\ldots,S_n,\mathbf{1})$ can be identified with $M^{(n)}(S_1,\ldots,S_n)$ via the natural isomorphism

$$M^{(n)}(S_1,\ldots,S_n)^{\hat{}}(1) \cong M^{(n)}(S_1,\ldots,S_n).$$

Definition 3.3. For given permutative G-category M, we denote by AM the Γ_G^{∞} -space with

$$AM(S_1,...,S_n) = |M^{(n)}(S_1,...,S_n)|,$$

and with $\theta_{\sigma} \colon AM(S_1, \ldots, S_n) \to AM(S_{\sigma^{-1}(1)}, \ldots, S_{\sigma^{-1}(n)})$ induced by the permutation $\mathcal{P}S_{\sigma^{-1}(1)} \times \cdots \times \mathcal{P}S_{\sigma^{-1}(n)} \to \mathcal{P}S_1 \times \cdots \times \mathcal{P}S_n$.

We will show that the A enjoys the properties stated in Proposition 3.1. It is clear, by the definition, that (a) holds. The property (b) follows from [8, Proposition 2.2] and the fact that there are evidently defined natural isomorphisms

$$\psi \colon B_G(C,C')^{(n)}(S_1,\ldots,S_n) \cong B_G(C^{(n)}(S_1,\ldots,S_n),C'^{(n)}(S_1,\ldots,S_n)).$$

To see that (c) holds, let us take an E_{∞} G-operad $\mathcal D$ with

$$\mathcal{D}_{j} = |\operatorname{Cat}(EG, E\Sigma_{j})| \text{ for } j \geq 0,$$

and with structure maps $\gamma \colon \mathcal{D}_k \times \mathcal{D}_{j_1} \times \cdots \times \mathcal{D}_{j_k} \to \mathcal{D}_{j_1 + \cdots + j_k}$ induced by the evident maps $\tilde{\gamma} \colon \mathcal{L}_k \times \mathcal{L}_{j_1} \times \cdots \times \mathcal{L}_{j_k} \to \mathcal{L}_{j_1 + \cdots + j_k}$ (cf. [8, §2, Remark]). We need show that any pair of bipermutative G-categories (C, C') functorially determines morphisms of Γ_G^n -spaces

$$\tilde{\xi}_j \colon \mathcal{D}_j^+ \wedge AB_G(C, C')^{(n_1)} \wedge \cdots \wedge AB_G(C, C')^{(n_j)} \to AB_G(C, C')^{(n_1+\cdots+n_j)}$$

satisfying the conditions of Definition 2.5.

First let

$$\widetilde{\xi}_i'': E\Sigma_i \times C^{(n_1)} \times \cdots \times C^{(n_j)} \to C^{(n)}, \quad n = n_1 + \cdots + n_j$$

be a morphism of Γ_G^n -categories defined on objects by

$$\tilde{\xi}_{j}''(\nu, F_{1}, \dots, F_{j}) = \theta_{\nu(n_{1}, \dots, n_{j})^{-1}}(F_{\nu^{-1}(1)} \otimes \dots \otimes F_{\nu^{-1}(j)})$$

for $\nu \in \Sigma_j = \text{ob} E\Sigma_j$ and $F_s \in C^{(n_s)}(S_{s1}, \ldots, S_{sn_s})$, $1 \leq s \leq j$. That $\tilde{\xi}_j''(\nu, F_1, \ldots, F_j)$ defines an object of $C^{(n)}(S_{11}, \ldots, S_{1n_1}, \ldots, S_{j1}, \ldots, S_{jn_j})$ follows from the fact that the j-fold multiplication $C^j \to C$, $(x_1, \ldots, x_j) \mapsto x_1 \otimes \cdots \otimes x_j$, together with the isomorphisms

$$(x_1 \otimes \cdots \otimes x_{i-1} \otimes x_i' \otimes x_{i+1} \otimes \cdots \otimes x_j) \oplus (x_1 \otimes \cdots \otimes x_{i-1} \otimes x_i'' \otimes x_{i+1} \otimes \cdots \otimes x_j)$$

$$\cong x_1 \otimes \cdots \otimes x_{i-1} \otimes (x_i' \oplus x_i'') \otimes x_{i+1} \otimes \cdots \otimes x_j$$

induced by the distributive laws satisfy the conditions similar to (C1) and (C2) with $\mathcal{P}S_1 \times \cdots \times \mathcal{P}S_n$ and \sqcup replaced by C^j and \oplus respectively. (Here we need not assume that the right or left distributive law holds strictly; cf. [5].) Because $B_G(C, C')^{(m)}$ is naturally isomorphic to $B_G(C^{(m)}, C'^{(m)})$ under ψ , $\tilde{\xi}''_j$ induces

$$\tilde{\xi}'_j \colon \operatorname{Cat}(EG, E\Sigma_j) \times B_G(C, C')^{(n_1)} \times \cdots \times B_G(C, C')^{(n_j)} \to B_G(C, C')^{(n)}.$$

It is evident that $\tilde{\xi}_{j}''(\sigma; F_{1}, \dots, F_{j}) = 0$ if some $F_{s} = 0$; hence its realization $|\tilde{\xi}_{j}'|$ induces a morphism of Γ_{G}^{n} -spaces

$$\widetilde{\xi}_j \colon \mathcal{D}_j^+ \wedge AB_G(C, C')^{(n_1)} \wedge \cdots \wedge AB_G(C, C')^{(n_j)} \to AB_G(C, C')^{(n)}$$

The next lemma implies that the morphisms $\tilde{\xi}_j$ define a \mathcal{D} -action on $AB_G(C, C')$, and completes the proof of Proposition 3.1.

Lemma 3.4. The morphisms $\tilde{\xi}_{i}^{"}$ enjoy the following properties.

(3.1) For
$$\nu \in E\Sigma_j$$
, $F_s \in C^{(n_s)}(S_{s1}, \ldots, S_{sn_s})$ and $\sigma_s \in \Sigma_{n_s}$ $(1 \le s \le j)$,

$$\tilde{\xi}_{i}^{"}(\nu, \theta_{\sigma_{i}}, F_{1}, \dots, \theta_{\sigma_{i}}, F_{i}) = \theta_{\sigma_{1} \oplus \dots \oplus \sigma_{i}} \tilde{\xi}_{i}^{"}(\nu, F_{1}, \dots, F_{i}).$$

(3.2) For
$$\sigma \in \Sigma_j$$
, $\tilde{\xi}''_j(\nu \sigma^{-1}, F_{\sigma^{-1}(1)}, \dots, F_{\sigma^{-1}(j)}) = \theta_{\sigma(n_1, \dots, n_j)} \tilde{\xi}''_j(\nu, F_1, \dots, F_j)$.

$$(3.3) \ \widetilde{\xi}_{j}^{\prime\prime}(\nu,\varepsilon^{p_{1}}F_{1},\ldots,\varepsilon^{p_{j}}F_{j}) = \theta_{\tau(n_{1},\ldots,n_{j};p_{1},\ldots,p_{j})}\varepsilon^{p_{1}+\cdots+p_{j}}\widetilde{\xi}_{j}^{\prime\prime}(\nu,F_{1},\ldots,F_{j}).$$

- (3.4) The composite $\tilde{\xi}_1''\iota_1\colon C^{(n)}\to E\Sigma_1\times C^{(n)}\to C^{(n)}$ is the identity map, where $\iota_1\colon C^{(n)}(S_1,\ldots,S_n)\to \{1\}\times C^{(n)}(S_1,\ldots,S_n),\, F\mapsto 1\times F.$
- (3.5) The following diagram commutes, where $j = j_1 + \cdots + j_k$, $n_s = n_{s1} + \cdots + n_{sj_s}$, $n = n_1 + \cdots + n_k$.

$$E\Sigma_{j} \times \left(\prod_{s=1}^{k} E\Sigma_{j_{s}} \times \left(\prod_{t=1}^{j_{s}} C^{(n_{st})}\right)\right) \xrightarrow{1 \times \left(\prod_{s=1}^{k} \widetilde{\xi}_{j_{s}}^{"}\right)} E\Sigma_{k} \times \left(\prod_{s=1}^{k} C^{(n_{s})}\right)$$

$$\downarrow \zeta \downarrow \qquad \qquad \downarrow \widetilde{\xi}_{k}^{"}$$

$$E\Sigma_{j} \times \left(\prod_{s=1}^{k} \prod_{t=1}^{j_{s}} C^{(n_{st})}\right) \xrightarrow{\widetilde{\xi}_{j}^{"}} C^{(n)}.$$

Proof. It is evident that (3.4) holds. The property (3.1) follows from the equality

$$\begin{split} \widetilde{\xi}_{j}''(\nu,\theta_{\sigma_{1}}F_{1},\ldots,\theta_{\sigma_{j}}F_{j}) &= \theta_{\nu(n_{1},\ldots,n_{j})^{-1}} \Big(\bigotimes_{s=1}^{j} \theta_{\sigma_{\nu^{-1}(s)}} F_{\nu^{-1}(s)} \Big) \\ &= \theta_{\nu(n_{1},\ldots,n_{j})^{-1}} \theta_{\sigma_{\nu^{-1}(1)} \oplus \cdots \oplus \sigma_{\nu^{-1}(j)}} \Big(\bigotimes_{s=1}^{j} F_{\nu^{-1}(s)} \Big) \\ &= \theta_{\sigma_{1} \oplus \cdots \oplus \sigma_{j}} \theta_{\nu(n_{1},\ldots,n_{j})^{-1}} \Big(\bigotimes_{s=1}^{j} F_{\nu^{-1}(s)} \Big) \\ &= \theta_{\sigma_{1} \oplus \cdots \oplus \sigma_{j}} \widetilde{\xi}_{j}''(\nu,F_{1},\ldots,F_{j}). \end{split}$$

Here we used the identity

$$\nu(n_1,\ldots,n_j)^{-1}(\sigma_{\nu^{-1}(1)}\oplus\cdots\oplus\sigma_{\nu^{-1}(j)})=(\sigma_1\oplus\cdots\oplus\sigma_j)\nu(n_1,\ldots,n_j)^{-1}.$$

Similarly, we can prove (3.2) and (3.5) by using the respective identities

$$(\nu\sigma^{-1})(n_{\sigma^{-1}(1)},\ldots,n_{\sigma^{-1}(j)})^{-1} = \sigma(n_1,\ldots,n_j)\nu(n_1,\ldots,n_j)^{-1}$$

and

$$\nu(n_{1},...,n_{j})^{-1} \left(\bigoplus_{s=1}^{k} \sigma_{\nu^{-1}(s)} (n_{\nu^{-1}(s)1},...,n_{\nu^{-1}(s)j_{\nu^{-1}(s)}})^{-1} \right)$$

$$= \left(\left(\bigoplus_{s=1}^{k} \sigma_{\nu^{-1}(s)} (n_{\nu^{-1}(s)1},...,n_{\nu^{-1}(s)j_{\nu^{-1}(s)}})^{-1} \right) \nu(n_{1},...,n_{j}) \right)^{-1}$$

$$= E \tilde{\gamma}(\nu;\sigma_{1},...,\sigma_{k}) (n_{11},...,n_{1j_{1}},...,n_{k1},...,n_{kj_{k}})^{-1}$$

where $E\tilde{\gamma}$ denotes the functor $E\Sigma_k \times E\Sigma_{j_1} \times \cdots \times E\Sigma_{j_k} \to E\Sigma_{j_1+\cdots+j_k}$ induced by $\tilde{\gamma}$. Finally, (3.3) follows from the equality

$$\begin{split} \widetilde{\xi}_{j}''(\nu, \varepsilon^{p_{1}} F_{1}, \dots, \varepsilon^{p_{j}} F_{j}) &= \theta_{\nu(n_{1} + p_{1}, \dots, n_{j} + p_{j})^{-1}} \Big(\bigotimes_{s=1}^{j} \varepsilon^{p_{\nu-1}(s)} F_{\nu^{-1}(s)} \Big) \\ &= \theta_{\nu(n_{1} + p_{1}, \dots, n_{j} + p_{j})^{-1}} \theta_{\tau(n_{\nu-1}(1), \dots, n_{\nu-1}(j); p_{\nu-1}(1), \dots, p_{\nu-1}(j))} \\ &\varepsilon^{p_{\nu-1}(1)^{+\dots+p_{\nu-1}(j)}} \Big(\bigotimes_{s=1}^{j} F_{\nu^{-1}(s)} \Big) \\ &= \theta_{\tau(n_{1}, \dots, n_{j}; p_{1}, \dots, p_{j})} \varepsilon^{p_{1}^{+\dots+p_{j}}} \theta_{\nu(n_{1}, \dots, n_{j})^{-1}} \Big(\bigotimes_{s=1}^{j} F_{\nu^{-1}(s)} \Big) \\ &= \theta_{\tau(n_{1}, \dots, n_{j}; p_{1}, \dots, p_{j})} \varepsilon^{p_{1}^{+\dots+p_{j}}} \widetilde{\xi}_{j}''(\nu, F_{1}, \dots, F_{j}). \end{split}$$

References

- [1] Dress, A. and Kuku, A. O., A convenient setting for equivariant higher algebraic K-theory, Lecture Notes in Math. 966 (1982), 59-68.
- [2] Frölich, A. and Wall, C. T. C., Foundations of equivariant algebraic K-theory, Lecture Notes in Math. 108 (1969), 12-27.
- [3] Lewis, L. G., May, J. P. and Steinberger, M., Equivariant Stable Homotopy Theory, Lecture Notes in Math. 1213 (1986).
- [4] May, J. P., E_{∞} ring spaces and E_{∞} ring spectra, Lecture Notes in Math. 577 (1977).
- [5] _____, Multiplicative infinite loop space theory, J. Pure and Appl. Algebra 26 (1982), 1-69.
- [6] Shimada, N. and Shimakawa, K., Delooping symmetric monoidal categories, Hiroshima Math. J. 9 (1979), 627-645.
- [7] Shimakawa, K., Uniqueness of products in higher algebraic K-theory, Publ. RIMS, Kyoto Univ. 24 (1988), 99-120.
- [8] _____, Infinite loop G-spaces associated to monoidal G-graded categories, Publ. RIMS, Kyoto Univ. 25 (1989), 239-262.
- [9] ______, Mackey structures on equivariant algebraic K-theory, RIMS Preprint 662.
- [10] Wall, C. T. C., Equivariant algebraic K-theory, in "New Developments in Topology," Cambridge University Press, 1974, pp. 111-118.