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An E. Ring G-Spectrum Representing
the Equivariant Algebraic K-Theory
of a Bipefmutative G-Category

—Summary—

FABEEDF B)IIFIA (Kazuhisa SHIMAKAWA)

Introduction

In [5], May showed that the algebraic K-theory of a bipermutative category C
can be represented by an F, ring spectrum functorially constructed from C. In this
article, we establish a G-equivariant generalization of this result for arbitrary finite
group G. The precise statement of the main result is given by Theorem A below.

Recall from [8] that pairs of (simplicial) permutative G-categories (C, C') functo-
rially give rise to G-prespectra Kg(C,C'). In particular, KgC = Kg(C, C) represents
the equivariant algebraic K-theory of C; that is, its coefficient groups 1¥ KgC, H < G,
are naturally isomorphic, as Mackey functors, to the higher equivariant K-groups (in
the sense of [2], [10]) of C. (Compare Corollary 6 of [9].) Also, if we take the pair
(CAT, GL), where CAT denotes O, PL or Top, then Kg(CAT, GL) gives an equivariant
infinite delooping of the classifying space BCAT(G).

Theorem A. There exists a functbr Eg from pairs of simplicial permutative G-
categories- to G-spectra enjoying the following properties.

(a) For any (C,C'), Eg(C,C'") is equivalent in the stable category to the G-
spectrum associated to Kq(C,C").

(b) If (C, C") is a pair of a bipermutative G-category C = (C, @, ®) and its G-stable
subcategory C' closed under the operations @ and ®, then Eg(C,C') has a natural

structure of an E, ring G-spectrum in the sense of May [3].



52

§1. External Operad Actions on G-Prespectra

We introduce the notion of external operad actions on a G-prespectrum, and de-
scribe the passage from external operad actions on a G-prespectrum to (internal) op-
erad actions on its associated G-spectrum. In this section, G will denotes an arbitrary
compact Lie group.

Let V be a real inner product space on which G acts through linear isometries. We
assume that V contains every irreduciblé repreéenta.tions of G and denote by A the
indexing set {V" | n > 0} in the universe V®° = ColimV™". Here V* =V @--- @ V is
identified with the G-invariant subspace V* @ 0 of V11,

For each positive integer n, let X', denote the symmetric group on n letters. Since
X, acts on V”bby permutations, there is an embedding of X, into O, = Aut®(V"); the

group of self linear G-isometries of V™. Denote by SV™ the one-point compactification

of V™ equipped with the induced (G x Oy)-action.

Definition 1.1. Let D be a G-prespectrum with structure maps §: DV*ASVP —
DV"t?_ D is called a X,-prespectrum (indexed on A) if each DV™ admits a base-point
preserving Y,-action subject to the following axioms.

(1) X, acts on DV™ through G-homeomorphisms. (Thus each DV™ is a based
(G x Xy )-space.)

(2) For any 0 € X, and 7 € X}, the following diagram commutes:

§
DV" ASVP —— DV™P

aArl la@r

DV™ ASVP —— DV

here V? is identified with the orthogonal complement of V" in V**? and 6 &7 € Xp4,
acts on V**? = V" @ VP as the product linear isometry.
A Y,-prespectrum D = (D, §) is called a X,-spectrum if the G-maps §: DV™ —

NVDV™1! adjoint to 6 are homeomorphisms. A map f: D — D' of X,-prespectra is a
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map of G-prespectra such that each f: DV™ — D'V" is compatible with X',-actions.

Following [3], let L: GPA — GSA denote the left adjoint to the inclusion GSA C
GPA of G-spectra into G-prespectra indexed on A. It can be shown that for any
G-prespectrum D € GPA, LD haé a unique structure of Ev'*'-prespectrum‘, and the
unit 9= D — LD of the adjunction is a map of X,-prespectra with respect to dny
X «-prespectrum structure on D.

We now introduce the notion of external G-operad actions on X, -prespectra. Recall
from (3] that a G-operad is a sequence of (G X X;)-spaces C; for j > 0, with G acting on
the left and X; acting on the right and with Cy a single point, together with a G-fixed

unit element 1 € CC and suitably associative, unital, and equivariant structure maps
Y:Ce xCj, x -+ xCj, = Cj, =5+ 4.
Let CJ-+ denote the union of C; and a disjoint basepoint.

Definition 1.2. Let D = (D, ) be a X,-prespectrum and let C be a G'-‘op‘e‘ra,d.
We say that D is an external C-prespectrum, or C acts externally on D, if tilére are
based G-maps

£;: C;FADV™ A--- ADV™ — DY ™t tn

for j > 0 and ny, -+, n; > 0 satisfying the following conditions.

(1.1) Forany c € Cj, 2, € DV™ and 0, € Xy, (1 < s < j) we have
§ilchorzi Ao Nojzj) = (01 @ B 0oj)i(c AziA--- Aj).

(1.2) For given 0 € X}, let o(n1,...,n;) € Tpn,4...4n; denote the permutation of j

blocks (v1,...,9;) = (Vg=1(1)s+ -+, Ve-1(j)), vs € V™, 1 < 8 < j..T‘hen- WQ haﬁe_
Q(ca"l ANZTo-1y N A .'L'a—l(j)) = 0’(721,. .. ,nj)fj(c Az /\ A :c])

forallceCjand z, € DV, 1 <s <.
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(1.3)ForceCj, z, € DV™ and v, € SVP* (1 < s < j) we have

Ei(cA8(zy Avr) A=+ AN8(xj Avj))

=7(n1,...,Nj3P1y- - Pj)O(Ei(c ATy A - Az A(vg A -+ Awj))

where 7(ni,...,n5;p1,...,0;) € Zn 4. tnj+p+-+p; represents the shuffle isomor-
J J J
hi m Vna VP ) Vna+Pa .
PHIS (séjl ) ® ( sg_-}l ) séz-?l

(1.4) The composite £;¢1: DV™ — C;Y A DV™ — DV™ is the identity map, where
t; denotes the G-map z — 1Az, z € DV".
(1.5) The diagram

Cet A (AfoiCit A (N DY) M et A (Aso,DV™)

¢| |&

Gt A (NaNmaDV™) DV

commutes, where j = ji + -+ Jr, s = ng1 + -+ ngj,, n =n; + -+ np and ¢

denotes the composite of ¥ A 1 with the evident shuffle isomorphism.

Just as external smash products determine internal smash products, external op-
erad actions determine (internal) operad actions in the sense of [3, Chapter VII, §2].

Precisely, we have

Theorem 1.3. Let G be a compact Lie group and let C be a G-operad. Suppose
there is a morphism of G-operads x: C — L into the linear isometries operad of V°.
Then every external C-action on a X.-prespectrum D functorially determines on LD

a structure of C-spectrum in the sense of May.

In particular, by taking x to be the projection £ x C — L, we see that any external

C-action on D gives rise to an (£ x C)-action on LD.

Corollary 1.4. Let C be an E, G-operad. If D is an external C-prespectrum

then LD is an E,, ring G-spectrum.
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§2. G-Prespectra Associated to I'Z°-Spaces

We introduce the notion of operad ring I'8°-space and describe the passage from op-
erad ring I'&-spaces to external operad ring G-prespectra. Throughout, G-equivalence
means weak G-equivalence.

Let 7 be the category of non-degenerately based G-spaces and basepoint preserv-
~ ing maps with G acting on mqrplﬁsms by conjugation, and let I'c denote the G-stable
full subcategory of T consisting of those based finite G-sets s, with underlying set
s ={0,1,...,s} and with G-action given by a homomorphism p: G — X, (cf. [8]). If
n is a positive integer, a G-equivariant functor from I'§ = []iL, I'c to Tg is called a
['Z-space. We also denote by Tg the sigleton set {1}; thus any G-space A € 7g can be

identified with a G-functor [ — 7, called ['3-space, which assigns A to 1.

Definition 2.1. Let A be a I'&-space and let X be a (contravariant) G-functor

& — T5°P. We put
E.(A4;X)=B(X,T¢,A)/B(x,T&,A) U B(X,I[§, %),

where B(X,T%, A) € Tg denotes the geometric realization of the two-sided bar com-
plex B,(X,I'&, A), and the inclusion B(%,I&,A) U B(X,I&,%x) —» B(X,T&, A) is a
G-cofibration induced by the morphisms * — A and * — X defined by the inclusions
of the non-degenerate base-points of A(Si,...,S,) and X(S1,...,5,). Evidently we
have Eo(A; X) = X A A for any G-spaces A and X.

Given'G-functors A: TF — 7g, A": T& — Tgand X: TE — 76°P, X': TE — T6°P,

there is a G-map

u': B(X, T3, A)x B(X' T& A) 2 B(X x X', TZ xT2, Ax A')

- B(XAX'TEtT" AN A"

induced by the evident natural transformations Ax A' - AAA"and X x X' —- XA X',
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It is easily checked that u' induces a natural G-map
p: Eqn(A; X)ANER (A X') = Eppyn(ANAG X A XY
such that

Lemma 2.2. The following diagram commutes for any A, A', A" and X, X', X".

. |
Em(A; X) A Eo(A; X') A Ep(A"; X") 225 E(A; X) A Ensp(A' A A" X' A X"

u/\ll ' 1#

Emin(AAA X AX)AE(AX") —— Eminsp(ANA'A A X AX A X",
: ©

Now let I'8° = ColimI'g be the colimit of the inclusions TE —Ta (S1,...,5) —
(S1,...,8n,1). Clearly, any G-functor A: & — T determines and is determined by

I'&-spaces A(™ = A|T& together with natural isomorphisms e: A(™ = A("+D|1g,

Definition 2.3. A (symmetric) I'@-space is a G-functor A: I — T¢ together

with natural isomorphisms 8,: A(™ — A(™g, i.e. G-homeomorphisms
A(n)(Sl, vy Sp) & A(“)a(Sl, ceeySp) = A(n)(S”—l(l), cey Sa—l(n))

natural in (Sy,...,S,), such that for any 0, o' € X, 7 € Xy and a € A™(Sy,...,S,)

we have

bia =a, 0Ospa=0,0,0a, 6,9-c%a=cP0,a

where e?: A(") = A("+1’)|I‘g denotes the p-fold composite of e. A morphism of I'g-
spaces (4,{6,}) — (4',{6,}) is a natural transformation F: A — A’ such that
F6, = 6,F holds for every 0 € ¥,. A I'&-space A is called to be special if for
every (S1,...,5,) € T the I'g-space S — A(Si,...,S,,S) is special in the sense of

[8, Definition 1.3]; that is, the canonical maps

A(S1y.-.ySnyS) = A(S1,. .., S0, 1) 2 A(Sy,...,5,)°
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induced by the projections pr,: S — 1, pr;1(1) = {s} (s # 0) are G-equivalences.

We now assign to each I'&°-space A a G-prespectrum TgA € GPA. For n > 1, let
SV(" denote the contravariant G-functor (Sy,...,S,) — SVS1 A ... A SV and let
SV(® = §° Then we put

TGA(V™) = E,(A™; SV,

in particular, T¢ A(0) = A® = A(1). The structure map TgA(V*)ASV — TgA(V"™1)

is defined to be the composite

Eo(A™; SVMYA SV 55 Bl (A™; SV A V)

& En(A(n+1)|I‘g;Sv(n+1)|P3) i En+1(A("+1); SV(n+1)),

where X' denotes the natural G-map induced by the inclusion I'% C I‘g“.
TG A becomes a Y, -prespectrum if we let X, act on TgA(V™) through the X,-
action on the bar complex B,(SV(™,T& A(™);

0'('01 ARERRA vn)(flﬁ- . '7fn)7a) = (Uo‘l(l) AREN Ava“(n)a(fa"l(l)’- . -7fa"1(n)),oo'a)

foroce X, v;e SV f;:S8; - .- = T; € NJJg,1<i<n, and a € A(Sy,...,Sn).
Clearly the assignment A +— TgA is natural in A, and we get a functor Tg from
I'&°-spaces to X,-prespectra.

Recall from [8, §2] that the restriction A1) = A|Ts of a [&-space A determines a

G—prespe(;tmm ScAM € GPA with
SGA(I)(Vn) - B((svn)(l)’ FG’ A(l))/B(*a FG'a A(l))

and with structure maps SgAM(V*) A SV — SgAM (V1) induced by the natural
transformation a: (SV*)MASV — (SV™H1)(1) which takes each fAv € (SV™)SASV,
S € Tg, to a(f Av) € (SV™HS a(f Av)(s) = f(s)Av for s € S. Theorem B of
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(8] implies that if A() is special then SGA(M) is an almost £2-G-spectrum, that is,
the structure maps SgAM (V") — 2VSgAM(V"+1) are G-equivalences for n > 0,
and that the adjoint AW(1) — 2VSAM (V) to the natural G-map AD(1)A SV —
B(SVW T, AM)/B(*,Tg, AM) is a G-equivalence if A()(1) is group-like.

Theorem 2.4. Let A be a special I&-space. Then TgA is an almost 2-G-
spectrum and there is a natural equivalence LSgA®M) ~ LT;A defined in the stable
category hGSA.

Definition 2.5. Let C be a G-operad. A C-action on a I'&-space A consists of

morphisms of I['&-spaces
Eji CJ,+AA(n1)/\.../\A(nj) - AM™  np=n, + -+ nj,

for j > 0 and n;, ---, n; > 0 satisfying the following conditions.

(2.1) For c € Cj, as € A(Ss1,...,5sn,) and 05 € Xy, (1 < s < j), we have
Ei(cAboyar A=+ Ny, a;) = b5, 0.-00;E5(c Aas A+ A aj).
(2.2) For 0 € X;, we have
gj(co_1 ANag-1y A+ N ag-13j)) = GU(nl,...,nj)Ej(c Aay A---Aaj).
(2.3) For py, ---, p; > 0, we have
Ej(c ANePlay A---ANePiagj) = Or(ny,....n; ;pl’_”,pj)ap1+~~+p,. Ej(c ANay A--- Aaj).

(2.4) The composite é'm: A 0t AAM 5 AM is the identity map, where ¢y
denotes the natural transformation A(Sy,...,Sn) = Cit A A(S1,...,Sn), a—1Aa.

(2.5) The following diagram commutes, where j = j1+- - -+ ji, Ry = ng +- - ~+nyj,,
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no=mng 4 -+ ng

Crt A (/\§=1st+ A (/\{’:114(""))) I_A(M Gt A (A’;=1A(n.))

| &

¢ A (Ao Nim A) — A,
For given C-action on A, we define G-maps
& “Cj+ NTGA(V™) A - ATgA(V™) — TeA(V™)
by the following composites:

Eo(Ci%;8%) A Eq (A1), SVMY AL A By (A9, SV

En(&;,1
5 En(cj+ AAPD) AL A A(nj);sv(n)) ﬁ, En(A(n);SV(”)).

It is now easy to see that these {; define an external C-action on TgA. Thus we have

Theorem 2.6. Let C be a Eo, G-operad. If C acts on a I'§-space A then LTgA

is an E ring G-spectrum (with natural (£ x C)-action).

§3. Proof of Theorem A

We are now ready to prove Theorem A. First recall from [8] the definition of the
functor Kg.

Given a pair of permutative G-categories (C, C'), let Bg(C, C') be the full subcate-
gory of the functor category Cat( EG, C) with objects those functors F': EG — C which
factor through C'. Here EG denotes the translation category of G, and Bg(C,C’) is

regarded as a permutative G-category with respect to the G-action
(9F)(z) =gF(zg) for g€ G, z€o0bEG=G
and the sum operation (F, F') — F @ F";

(FOF')z)=F(z)® F'(z) for z € obEG.
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For any permutative G-category M, let M~ denote the I'g-category
S +— M"(S) = Moncat(PS, M),

where PS is the set of subsets of S — {0} viewed as a partial G-monoid under disjoint
union (U,U") — U UU' for U, U' € PS with UNU' = 0, and Moncat(PS, M) denotes
the category of monoidal functors from PS to M with G acting by conjugation of
morphisms. |

In contrast with the non-equivariant case, the associated I'c-space
|M"|: S [M"(S)]

is not necessarily special. However, we can prove that |Bg(C,C’)"| is special for every
(C,C"), and K(C,C") is defined to be the almost £2-G-spectrum Sg|Ba(C, C")"|.

Now, Theorem A is a consequence of Theorems 2.4, 2.6 and the following

Proposition 3.1. There exists a functor A from permutative G-categories to I‘§°.-
spaces and an E-operad D enjoying the following properties: |

(a) For any permutative G-category M, AM®) = |M"|.

(b) For any pair of permutative G-categories (C,C"), ABg(C, C') is a special T'g°-
space.

(c¢) If (C,C") is a pair of bipermutative G-categories then ABg(C,C') admits a

natural D-action.

The remainder of this section will be devoted to the proof of the proposition above.
Asin [7, §2, 2.2], we assign to each permutative G-category M and (Sy,...,S,) € T&
a category M(™(Sy,...,S,) defined as follows. '

Objects of M(")(Sl, ...,Sy) are functors F: PS; X -+ X PS, — M together with

natural isomorphisms

61': F(Ulw-'7Ui—-17U¢{7Ui+la-'"Un)@F(UI,“"Ui—-l’Ug(,) i+17-'-,Un)

S F(Us,.. Uiy UL WU Ui, .., U)
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for 1 < < n satisfying the following two conditions.
(C1) F is monoidal in each variable, that is, if we fix objects Ux € PSi for k # 1,
and write F;(U) = F(Us,...,Ui~1,U,Uity,...,U,), then the following diagrams are

commutative:

F(U) @ Fy(U") @ F(U") — F(U)e FU'uU")

501 g |

FU'uU)eFRU") — FRUUU'UTY),

F(U)80 == F(U)®F(¥) FU)eF(U") — FUUUY
“ l&;:id cl F;(c)l
F(U) == FR@UUY),  FU)eFRU) — FKU'UU).

(C2) For 1 <¢ < j <nand Uy € PSi with k # 1, j, write

Fij(UW)=F(U,...,Ui—1,U,Uiy1...,Uj—1,W,Ujq1,...,Uy).
Then the following diagram commutes, where UNU’' =@ and WN W' = §:

F;(UW)e F,;(UW) e F;(U' ,W)e F; [U', W) RASN Fi;(UWuw’)e F;;(U',Wuw')
(5:@8)(1@:01) | &

Fi;(UuU' ,W)e F,;(UuU', W' - F;(UuU, W uw’),
Equivalently, the assignment W - (U ~— F;;(U, W)) defines a monoidal functor from
PS; to Moncat(PS;, M).

Given objects F = (F;61,...,6,) and F' = (F';8},...,6%) in M(™(Sy,...,S,),
morphisms from F to F' are natural transformations a: F — F' such that the following

diagrams commute for 1 < < n:

F(0) =—=0 F{U)eFU') —— FUUU

S I R -

F{($) —= 0, F/(U)e F/(U") — F({Uuu").
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The M(™(Sy,...,S,) becomes a permutative G-category under the G-action
(¢gF)Uy,...,Us) =gF(¢"'Us,...,g7'U,) for g€G,
and the sum operation (F, F') — F @ F';
(F o F'YUy,...,Uy) = F(Uy,...,Uy) & F'(Un,...,U,).

Moreover, any morphism f = (f1,...,fn): (S1,..-,Sa) = (T1,...,Ty) in I'G induces

a morphism of permutative G-categories
M®)(S,,...,5,) = M(Ty,...,T,), F s F(Pfx - x Pf,),

where Pf; denotes the G-map PT; — PS;, W — f (W) for 1 < i < n. Thus we get a
G-equivariant functor M(™ from TS to the category of permutative G-categories and
(non-equivariant) morphisms with G acting by conjugation of morphisms.

One easily observes that the adjuction
Cat(PSy X -+ X PSp X PSp41, M) = Cat(PSp+1, Cat(PS; X -+ X PS,, M))
induces an isomorphism
M™H(8 .. S, Snt1) = Moncat(PSni1, M™M(Sy,...,5,))

natural in Sy, ---, Sp41. Thus we have

Lemma 3.2. For any permutative G-category M, M) = M" and there are

isomorphisms of permutative G-categories
MO (S 8, Sni1) =2 MM™(S,. .., 5,) (Snt1)

natural in Sy, --+, Spy1 and M.
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In particular, M("+1)(51,...,Sn,1) can be identified with M(™(Sy,...,S,) via

the natural isomorphism
M™(Sy,...,8,)° (1) = M™(Sy,...,5,).

Definition 3.3. For given permutative G-category M, we denote by AM the
[&°-space with

AM(Sy,...,S,) = |[M®™(Sy, ..., S,
and with 6,: AM(S1,...,S52) = AM(Sg-1(1),...,So-1(n)) induced by the permuta-

tion PS,,—1(1) X oo X ’PSa-l(n) — PS; X --- X PS,.

We will show that the A enjoys the properties stated in Proposition 3.1. It is clear,
by the definition, that (a) holds. The property (b) follows from [8, Proposition 2.2]

and the fact that there are evidently defined natural isomorphisms
%: Ba(C,C")™(Sy,...,Ss) 2 Ba(C™(Sy,...,Sn), "™ (S, ..., 50).
To see that (c) holds, let us take an E,, G-operad D with
D; =|Cat(EG,EX})| for j >0,

and with structure maps v: Dg X Dj, X -+ X Dj, — Dj, +...4;, induced by the evident
maps ¥: Up x X, x - x T, = X 4.4, (cf. [8, §2, Remark]). We need show that
any pair of bipermutative G-categories (C,C") functorially determines morphisms of

I'G-spaces

gji 'D].+ /\ABG(C, Cl)(m) Ao /\ABG(C, Cl)(n_,') N ABG(C, C,)(n1+...+nj)

satisfying the conditions of Definition 2.5.

First let

£l ESy x €M) 5o x €M) — €™ n=ny 4ty
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be a morphism of I'Z-categories defined on objects by
& (v, Fi,..., F)) =y(ny,n)-1(Frm1) © - ® Fim1(jy)

for v € Ij = obEZ; and F, € C(")(S,q,...,S8,), 1 < s < j. That &(v, Fy,...,Fj)
defines an object of C(")(Sn,...,Slnl,...,Sjl,...,Sjn’.) follows from the fact that
the j-fold multiplication C? — C, (z1,...,2;) = 21 ® --+ ® z;, together with the

isomorphisms

(21® @21 Q7. ®2;41Q - ®z;)D(z1® - Qzi_1 Q2 ®Ti11 ® - Qxj)

Y210 Qz2i1Q(z;0z])®zi41Q - ®z;

induced by the distributive laws satisfy the conditions similar to (C1) and (C2) vﬁth
PS; % -+ xPS, and U replaced by C? and @ respectively. (Here we need not assume
that the right or left distributive law holds strictly; cf. [5].) Because Bg(C,C')(™ is
naturally isomorphic to Bg(C(™,C' (m)) under 9, E;’ induces

£:: Cat(EG, EX;) x Bo(C,C")™) x - x Bg(C,C")™) = Bg(C,C")(™.

It is evident that E;' (o0; F1,...,Fj) = 0if some F, = 0; hence its realization lE.’,( induces

a morphism of I'&-spaces
£;: D;* A ABG(C,C")™ A --- A ABg(C,C")™) — ABG(C,C")™.

The next lemma implies that the morphisms ¢, ; define a D-action on ABg(C,C"), and

completes the proof of Proposition 3.1.

Lemma 3.4. The morphisms {2’ enjoy the following properties.

(3.1) Forv € EX;, F, € C(")(8,1,...,54n,) and 0, € Ty, (1 < 5 < §),

g}'(v, GUIFI, o ,9,,j FJ) = 901®-~-€Ba,' g}'(l/, Fl, ey FJ)
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(3.2) Foro € 5;, &' (v, Fpm1(), - . -, Fo-1(3)) = bo(ny,...n)E (W, F1, ..., Fy).

(3:3) &1, eP Py, €% Fj) = Ornrmsionps) P H PN (0, L ),

(3.4) The composite E{' ;: C™ 5 EXy x ¢™ C(”).is the identity map, where
01 CON(Sy, ..., 8,) = {1} x C)(S,,...,8,), F o 1x F.

(3.5) The following d;agram commutes, where j =‘ Jit ik, ns = ng+--+ngj,,
n=n+- - +n. |

EZ; x (5., B, x ([, ) M EZy x ([I5,c™))

I - &
ES; x (11T, C7) — )

Proof. 1t is evident that (3.4) holds. The property (3.1) follows from the equality

~ ’ J
{;"(14 001 Fl’ AR 06,' F]) = 9u(n1,..'.,nj)"1 ( s§1 96,_1(.)Fu"‘1(s))

i .

= ou(nl,...,n,-)"l00',,—1(1)®"'@0',—‘1(,-) ( 8§1 FV_I("))
J

= 0516--®9;u(n1,....n;)-1 ( a§1 F"'l(’))

= b0,0--00; & (1, F1, ..., Fj).
Here we used the identity
v(ng,.. .', nj)_l(a,,_l(l) O Do,-1(j)) = (1@ Boj)v(ng,... ;)7L
Similarly, Wé can prove (3.2) and (3;5) by using the respective identities

(Vo) (Mg-11), - -y Ro-1(j)) "} = 0 (015, 2j)W(N1, .y 1)

Lk -
V(nl,...,nj) 1(3621 O'V—l(s)(n,,—l(s)l,...,n,,-1(3)jy_1(‘)) 1)

= (( sél 0',,_1(3)(77,,,-1(3)1, ‘e ,n,,—1(;)jy_l(‘))_l)l/(’n1, aee ,nj))_l

= E3(v;01,...,0%)(n11,. ..,nljl,...,nkl,...,nkjk)—l
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where E5 denotes the functor EXy x EXj, X -+ x EXj, — EX; 4.4, induced by 7.
Finally, (3.3) follows from the equality

~ . J
S;I(V’ SPIFI’ tr ’EPJ F]) = 0”("’1"‘?1 ,---:nj+Pj)_1 ( 3@1 spv—l(‘)Fu—l(s))

=60

V(ﬂ-l+P1;---snj‘*‘Pj)-loT(ny—l(l):---;n,,-l(J-)§P,,-1(1);---apy—1(j))

J
6?v-1(1)+ +Py—1(5)( ® Fu'l(s))
. s=1 /o

= 61‘(1‘!1,...,1’&,‘ ;Pl:""PJ')epr{- - +p, _eu(nla'_"’nj)-l ( sgl Fy—l("))

_ | | +”-'+ P S
- ar(nl,...,n,' ;pl,...,p‘,-)&‘p1 Pi 6)' (Vv Fl, se 7FJ)'A .
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