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Estimates of the Transition Densities for Brownian Motion
on Nested Fractals.
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80 Introduction

Aronson type estimates of the transition densities for Brownian motion are obtained in
the case of the Sierpinski gasket by Barlow-Perkins [4] and in the case of the Sierpinski
carpet (which is not a nested fractal) by Barlow-Bass [3]. In this paper, we will generalize
them on nested fractals introduced by Lindstrgm [9], which is a class of finitely ramified
fractals and contains Sierpinski gasket as a typical example.

The analysis of the Brownian motion on nested fractals has been studied by Lindstrgm
[9] using nonstandard analysis and by Kusuoka (8] and Fukushima [5] using Dirichlet forms.
But we construct the Brownian motion as the limit of a random walk by using the theory of
multi-type branching processes. It is a generalization of the methods of Barlow-Perkins [4]
which reduced the construction to the theory of branching processes. Our main theorem
1s as follows:

Let p(t,z,y) be a continuous version of the transition densities of the Brownian motion

X with respect to the Hausdorff measure on the unbounded nested fractals F' which
satisfles Assumption 2.2 (see §2). Then there exist positive constants ¢; ~ ¢4, such that

cit™ /2 exp(—ca(lz —yl|® /8) /@ 7V) < p(t,2,y) < est™ /2 exp(—ca([z—y|* /)1 (D)

for all ¢ >0, z,y,€ F.
Here ds is a constant which expresses the asymptotic behavior of the eigenvalue of the
corresponding generator A, and d,, is related to the diffusion constant.
Le. #{\|) is a eigenvalue of — A, A <z} ~ z%/% and E(|X¢|) ~ t'/%. d;is a constant
related to the order of the shortest path in nested fractals (see §3 for details). In the case
of Sierpinski gasket and carpet, dj = d,.

We will follow the way of [3] and [4]. Technically the main key point is to study the
behavior of the probability distribution of the almost-sure limit random variable in the
multi-type branching process.

The author would like to express his sincere gratitude to Professor Kusuoka. Without
discussions with him, the author would not have solved the problems.
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§1 Nested fractals.

In this section, we will remember the definitions and geometrical properties of nested
fractals. Although all the results are obtained by Lindstrgm [9], we will follow notations
to Kusuoka {8].

DEFINITION 1.1. Let a > 1, D € N. We say that ¢ : RP — RP is an a-similitude,
if [p(z) = 9()|=a |z —y| for any z,y € RP.

Let @« > 1 and {41, - ,¥n} be an «-similitudes in RP. Then, there exits unique
compact set E which satisfies E = UY  4;(E) (cf. Hutchinson [6]). We call this E a

self-similar fractal. In the following, we normalize diamFE = 1.

DEFINITION 1.2. Let F be the set of fixed points of ;’s, 1 <1 < N. z € F is called an
essential fixed point if there exist 1,5 € {1,--- ,N},i1 # j and y € F such that 9;(z) =
¥;(y). We denote by F(©) the set of essential fixed points.

NOTATION 1.3.
1) For A C RP and 1, ,in € {1, , N}, Aij...i, denotes the set ¥; (- i, (4) ).
2) Let F() = Uﬁ\{,-n,i,,:lFi(lo.)ni,, for each n > 1. Further, let F(eo) — UneNF(")- Then, its

closure in RP corresponds to the self-similar fractal E = CI (F(*)) (c.f. Hutchinson [6]).

3) For eachn > 0, a set of the form Fz‘(lo-)..i,, is called an n-cell, and a set of the form E;,...;,
is called an n-complex.

We will impose some assumptions on the family {#1,--- ,%¥n} to define nested fractals.

(A-0): (Open set condition) {1, - ,¥n} satisfies the open set condition.
(A-1): (Connectivity) For any two 1l-cells C and C’, there is a sequence {C; : 1 =
0,---,n} (n € N) of 1-cells such that Co = C,C,, =C' and C;_1 NC; # ¢, i=1,---n.
(A-2): (Symmetry) For any z,y € R? with = # y, H,, denotes the hyperplane given by
H,y ={z € RP :|z — 2| = |z — y|}, and U,, denotes the reflection with respect to H,,.
If 2,y € F® and z # y, then Ugy maps n-cells to n-cells, and maps any n-cell which
contains elements in both sides of H,, to itself for each n > 0.
(A-3): (Nesting) ¥ n > 1 and if (i1, - ,%,) and (j1,--- ,Jn) are distinct elements of
{1,--- ,N}", then
E;, . i, 0NE; ., = Fi(lo.).-in n F(O) .

Jiedn’

DEFINITION 1.4. A self-similar fractal E associated with a-similitudes {11, -+ ,%nN}
is called a nested fractal if it satisfies the assumptions (A-0) ~ (A-3) and §F(® > 2.

The following result is by Hutchinson [6].
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THEOREM 1.5. The Hausdorff dimension dy of the nested fractal E is el g

log o °

NOTATION 1.6.

Let ly,--- I, besuch that 0 < ly < --- < l, and {l1,--- ,l,} = {|lz —y| : 2,y € FO) ¢ +
y}. For each z € F™)  let Ni (z) € F{™ be one of the F{™) -neighbors of & such that
| — Ni(2)] = a™™l; for 1 <i < r. We omit m when m = 0. We call a path from z to
N! (z) a path of type < i >, 1 <i<r.

Finally, we list up geometrical properties of nested fractals obtained by Lindstrgm [9].

PROPOSITION 1.7.

(1) If z,y,2',y' € FOO and |z —y| = |2’ — y'|, then there is a symmetry U ( i.e. reflection
in (A-2)) such that U(z) = z' and U(y) = y'.

(2) Any 1-cell contains at most one element of F(®),

(3) Let z,y € FY). Then there is a strict 1-walk s1,--- ,s, (i.e. s; and si4; are F()-
neighbors and |s; — s;41] = a™!'l;, 1 < i < n —1) such that sy = r,5, = y and s;, €
FO_FO L=2... n-1.8

§2 Construction of the Brownian motion on nested fractals.

In this section, we construct the Brownian motion on nested fractals. The proofs are
almost the same as that of [7]. Thus we only remark necessary modifications in the proofs.

We fix one of F(® and call it the origin. Define inductively F, = a"F(™ (n > 0).
(Here we denote AA = {\z : = € A}. ) Now we change the definition of F(™ as follows:

FO =y F, and F™ = a="F© for n € Z. We denote E = Cl (Upez F™). Thus E
is a nested fractal which is extended to infinity. We will construct the Brownian motion
on E.

First, we give some notations to explain our ideas exactly.

NOTATION 2.1:
1) For z € F(™) let
p(z) =4{C : C is a m-cell containing z}.
Also, for z,y € F'™ g # vy, let
p(z,y) =#{C : C is a m-cell containing both of z and y}.

2) For the E-valued process X(t), t > 0, set
T™(X) =T (X) =inf{t >0: X(t) € F™},
T, (X) = inf{t > TP(X) : X (1) € F™ — (X(T™(X)}}, i20.
In the same way, set T(A,X) =inf{t > 0: X(¢) € A} for A€ E.

Throughout this paper, we assume the following assumption on nested fractals.
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ASSUMPTION 2.2. There exists k € N satisfying the following.

If 2,y € E satisfy |t — y| < a™™, then there exist z; ,z;,, -+ ,zi, (I < k) such that
Ti, = X, =Y, iyt ,Ti_, € F(m)  and Ti;,Ti;,, join in the same m-complex for
1<j<i-1.

Let {Y;} o, be a random walk on F) starting at 0 with the following transition prob-
abilities:

(21) P(Yrp1 =ylY, =2)=p(2)" p(z,y)pi = Plz,y) ifle—yl=a'lk 1<i<r

Here, p = (p1,- -+ ,pr) is the fixed point of [8] Theorem (3.10) which satisfies p; > --- >
pr>0and 331 mipi =1. [m; = #{y: |z —y| = ;} for z € F{O N E (m; is independent
of the choice of z € F(®)] Then, this random walk satisfies the following decimation
property .

17(1) = o 'Y(T%(Y)),i > 0 has the same distribution as Y.

In the following, we fix this transition probability and call this random walk as the dec-
imation random walk . (Existence of the decimation random walk is proved by Lindstrgm
[9] and uniqueness is proved in some special cases by Barlow [2].)

NOTATION 2.3:

1) Let n; be the number of times which Y has passed paths of type < 7 > before TP(Y),
1< <r.

2) Let n > m. For a F(™-valued random walk X,,, let T*<!>(X,) be the number of times
which X, has passed < [ >-type paths before the time T;"(X,), and set

Wi<>(Xn) = T (X,) = TSP (X,) (62 1)

These random variables are well defined because of Proposition 1.7 (1).
For z € F(® define

Fllsryo oo s7) = EX(sT - s IY(TY(Y) = N'(2)).

Remark that this f; is independent of the choice of z € F(®). Further, this f; is a fractional
function as it is the solution of a system of linear equations (c.f. [7]).

Let {X(n,z): z € F(™} be a family of decimation random walks which satisfies the
following properties:
(1) {X(n,z): n € Z} is a decimation random walk on F(™ starting at z.
(2) ¥ m <nand z € F'™, then X(m,z)(i) = X (n,z)(T{"(X(n,2))), i>0.
(3) X (n, 2)(i) = X(n, X (n,2)(TH(X(n, 2))))(i — T (X(n, )

for i > T¥(X(n,z)), —c0o<j<n, z€ F),

(4) ¥ n,j €Z and n > j, then 0{X(n,y),y € F¥} and

o{X(n,z)(- AT/ (X(n,z))),z € F™} are independent o -fields.

We have the following key lemma.
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LEMMA 2.4.

(a) If z € F™ n > m, then {(W"<™(X(n,z))),_, : ¢ € N} are 4.i.d. random vectors
whose common distribution does not depend on z. Hence, {W/*(X(n,z)) : ¢+ € N} are
t.2.d. whose distribution does not depend on z.

(b)IfmeZ,ieN, and x € F"™ are fixed, then the r-dimensional process

t—>Zt=(Zt<l>,1§l§r),

where Z5> = Wrh<™>(X(m+t,z)), 1<1<r, t€Zy (Zy =NU{0}) is a multi
r-type branching process. The < | >-type offspring distribution of the type < k > equals
to the law of n; under the conditional probability P(-|Y(T?(Y)) = N*(0)) for 1 <1,k < r.
Note that the distribution of Zt<l> does not depend on m nor 1. i

Let M be the r x r-matrix such that

M= (%(1,‘“ 1)) = (B(n;[Y (T (Y)) = N'(0))).

By Proposition 1.7 (2),(3), M is a positive matrix. Let the largest eigenvalue of M be tEg.
If we let &' = (mypy,: - ,m,p;), then (v,1) = 1. Further,

(2.2) vM = (E(nl)"" 7E(77r))

and by the optional stopping theorem, the right hand side is a constant multiple of ¢. Thus,
by the Frobenius theory, v'is an eigenvector for tg. By Proposition 1.7 (2), >_i_; E(ni) > 2.
Hence we have tg > 2.

Forn € Z and ¢ € F™ let X,(z){(j - tg™") = X(n,z)(j) and extend X,(z)(t) to
t € [0,00) by an adequate interpolation in E so that X,(z)(:) € C([0,00), E).

PROPOSITION 2.5. Let m € Z and x € F(™,
(a) For eachi € N, 1 <1 <r, W™<>(X,(z)) converges a.s. and in L% asn — oo to
mupiW™(x), where W[™(z) is a random variable which is strictly positive a.s.
(b) { W™(z): 1 € N} are i.t.d. random variables.
(c) W™(z) is equal in law to W(0) - tg~™.
If  $u(s)=E(e ™"’ 0|Zg=¢), Res>01<I<r,
where e is the unit vector whose [-th component is 1, then ¢; satisfies

(2.3) di(tes) = fl(d1(s), -, ér(s)) for Res > 0,1 <1< r.

PROOF: Just as [7], we apply the general theory of supercritical multi-type branching
processes (c.f. Athreya-Ney [1]). We remark again that tg > 2, M > 0, f; is a fractional
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function and f;(0,---,0) = 0. It is easy to check the conditions required for the general
theory if we use these facts. |l

We denote T)"(z) = {=1 W (z) for ¢ € F™. Also we use W to denote a random
variable equal in law to WP(z).

THEOREM 2.6. For each z € F(®) X, (z) converges a.s. in C([O,oo),ﬁ) asn — 0o to a
process, X (z). Moreover, for alm € Z, j € Z, and x € Fm),

(2.4) X(z)(Tj"(2)) = X(m,z)(7)- 1

Denote by LO(C([O,OO),E)) the complete metric space formed of C([O,oo),g’)—valued
random vectors with the topology of convergence in probability. Then we have the following
proposition in the same way as [7]. Remark that the Assumption 2.2 is necessary for the
proof.

PROPOSITION 2.7. The mapping
X : F©® — L°(C((0,00), E))

is uniformly continuous on bounded subsets of F(°) and hence has a unique continuous

extension to E, which we also denote by X. B

~

Let @ = C([0,00), E), P® be the law of X(z) on Q, and F be the Borel o-field on .

Then we have the following theorem.

THEOREM 2.8. (2, F, P®) is a Feller diffusion process, that is, it is a continuous strong
Markov process such that P, : Cy(E) — Cy(E). Here Cy(A) is a set of continuous bounded

functions on A. B

DEFINITION 2.9: We call this process as the Brownian motion on E.

LEMMA 2.10. Let A be an open subset of]:j such that DA is a finite subset of F(*),
( Remark that OA is a topological boundary of A by considering A C E(C RP).)

(a) T™(z) = T™(X(z)) for all m € Z and z € F(™) az.
(b) TM(z) = TM™(X(z)) forallm e Z, i eN and ¢ € F™ as.

Let u be the d¢-Hausdorff measure on E’ such that u(E) = 1. Also we define a probability
measure p, on F(™ by
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_p@) n
pa(T) = N"HF(O) for z € F™.

Then, {un} converges vaguely to p. Le. fﬁ f(z)dpn(z) — fi f(z)du(z) for any

f € Ck(E). Here Ck(A) is a set of continuous compact supported functions on A.

The next theorem is proved similarly to [4] Theorem 2.21.

THEOREM 2.11. X is p-symmetric, i.e,

/~ P.f(2)g()dp(z) = /Nf(w)Ptgu)dﬂ(w) for any f,g € Cx(E).
FE E

In the end of this section, we give relations of scaling factors and remark about the
spectral dimensions of nested fractals .

LEMMA 2.12.

1) Let Hp, = Zogrng(X(m,xo)) 1{X(m,z0)(r)=z0}- (We omit m whenm =1.)

Then, E(Hy) = {E(H)}™

2) E(H)=(1-¢)"' =, where c = P°(inf{i > 0 : X(1,0)(:) = 0} < T?(X(1,0))).
PROOF:

1) is proved in the same way as [4] Lemma 2.2 (b).
2) By the definition of H,

EH) (1-¢)= nP(H—n)(l—c)

||M8 HM8

1-¢)l=1.

Thus, E(H) = (1 -¢)”}
Let A be the infinitesimal generator of the reflecting Brownian motion on E. Using the
Dynkin formula, for f,g € D(A), we have

/Af z)g(z)du(z) = (——)" Y E(f(z) ~ f(X(n,2)(1)))g(z)p(x)¢F®) ™
zeF ()

-1

If we compare this with (4.5) of Kusuoka [8], we have (1—¢)™ = ‘&. 1

PRrRoOPOSITION 2.13. (Lindstrgm [9])
Let p(x) be defined by p(z) = §{A|A is a eigenvalue of — A\ < z}.

If we let dy = %_(égtﬁ’ we have

0 < liminf, p(:z:)/:ciz" < limsup, _, o p(m)/m%“ < +oo. §
We call this ds the spectral dimension of the nested fractal.
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§3  Estimates of the hitting times.

In this section, we will have the exponential estimates of the hitting time W.

LEMMA 3.1. Let F = {f(s1, - ,s,): f is analytic in {||z|| < 1} and the Taylor expansion
is f=3%ai ..is --sw where aj ..; >0.Further, f(1,---,1) <1}.

Then, there exist S* C {(iy, -+ ,ir) 1 t1,* ,ip € L4}, §S* < 00 and
9i, o ir € Fy9i, ... 5,(0,-++,0) > 0 such that

fi(sl’...,sr)z Z S;l'..S:‘ngl’-..)ir(817‘..’Sr)’

(ily"' yif‘)esi

PrROOF: Fix z € F( and consider all the 1-walks zo,---,z, (n € N) which satisfy
zo =, o = Ni(z), 21, - ,&n1 € FM — FO and which do not pass the same points
twice. Let (¢1,---,7,) be the number of < ¢; >-type paths (1 < j < r) for these paths.
Then S* is a set of these (i1, -+ ,7,). B

REMARK: In fact, such a partial factorization holds for all f* € F in general.

In the following, we pick the above S* and fix it. (In fact, there is a smallest S* which
satisfies Lemma 3.1, but I do not mention it here.)

PROPOSITION 3.2. If we have 0 < v < 1, and x = (z1,--- ,2,) > O which satisfy
3.1 G(x)); = min i} =tha; 1<:<r,
(3.1) (G()) (il,...,,-,mse{; jai} =1t <i<

then there exist positive constants cy; ~ c3; (1 <1 < r) such that

(3.2) exp(—clisl/d’) < éi(s) < o exp(—C3,~sl/dJ) (1<:<r),

where dj = v~ 1.

REMARK: This proposition, which is the reduction of the problem to some eigenvalue
problem, is suggested by Kusuoka.

PROOF:
1) Proof of the upper estimates:  Take sufficiently small M € (0,1) such that
Z(il’._,’ir)esi Muttir < M. (We can take such M because constant term and linear

terms are zero in the Taylor expansion of f'.)
Next, take sufficiently small § > 0 such that

(3.3) ¢i(s) < M exp(—bz;s™) for s € [1,tg].
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Then, .
¢i(tes) = f'(d1(s), -+, ¢r(s))

= Z 45;1 T ¢f~rgzil,-~- ,i,(¢1(3)v e 3¢T(5))
S

<Y M exp(—8() ijzi)s”)
Si J

<M —6 mi ;)87
< M exp( rr;l,.n(zj:h%)s )
= M exp(—6tLzis”)
= M exp(=ézi(tps)”).
Thus, (3.3) holds for s € [tg,t%], too. Inductively, we know (3.3) holds for s € [1,00). As
#i(s) <1, retaking M sufficiently large, we have the upper estimates.
2) Proof of the lower estimates:  Let (19,---,7%) € S* be the one which attains the
minimum in (G(x));. Take sufficiently large M € [1,00) such that
gfo o 0(0ye e, O)Mi(1)+"'+ig > M. Next, for fixed a > 0, take sufficiently large L, > 0 such
10" b
that

(3.4) $i(s) > M exp(—Lgz;s”) for s € [a, atg].

Then, '
¢i(tes) = f(¢1(s), -, ¢r(s))

= Z ¢;1 T ¢irgzz:1,-«~ ,i,(¢1(3)’ T 7¢7‘(3))
Si

1‘0 -0 i
Z ¢11 (‘5) e (ﬁ?(S)gi?’"_’ig(O, e 30)

> g:‘l’, ,i0 (Ov e aO)Mi‘l)+...+ig exp(—'La( E i2$j)37)
J
> Mexp(—L,zi(tgs)?).

Thus, (3.4) holds for s € [atg, at%], too. Inductively, we know (3.4) holds for s € [a, o0).
On the other hand, if we let fy(s) = ¢i(s) — e, we easily see fo(s) > 0for 0 < s < cp
where ¢, > 0 increases when b increases. From these facts, we obtain the lower estimates. I

By now, our problem reduces to find v and x which satisfy (3.1). We will find it by
searching the properties of G(x).

LEMMA 3.3. Let B={x€R"|0<z; <---<z,}. Then, G(B) C B.

Proorf: Fix p € F(O, ¢ € Ni(p), ¢' € Ni=!(p). Let U,y be the reflection map which
maps ¢ to ¢'. Define V = {z € RP : |z ~¢'| < |z —g¢|}. Also we define a map T : RP — RP
by
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Tz:{z fzeV

Uggz otherwise.
Forxe B, 12> 2,let
(G(x))i = arz1 + - + arzy, (a1, ,a,) €S".
Then we know that there exists at least one 1-walk from p to ¢ which has < k >-type
paths ai times (1 <k <7). (29, " , Ty, is called a n-walk if z; € F™ and z;, z,4, join in
the same n-complex.) Express the 1-walk by ¢, 2y, -+ , s, where zg = p,2,, = gandm =

> a;. If we let type(zi, zit1) be the type of the path Z;z;17 (and let type(z;, z;41) = 0 if

T; = Tit1), we know type(Tzi, Tzit1) < type(zi,zit1) because |Tz;—Tzip1| < |zi—zig1].

Denote a; = ${(zi,xiy1) : type(Tz;, Tzig1) =7}, 0 <j <m—1. Then we have
(G(x))i-1 < Y diz; <Y aizi = (G(x))i because z € B. §

PROPOSITION 3.4.
Let K = {A: A is ar x r-matrix such that for all the I, (I-th low of A) € S'.}, and

A = min e {largest eigenvalue of A}. Then, there exists x > 0 such that G(x) = Ax.

REMARK: The original proof of this by the author was not so elegant. The following is a
shorter proof by Kusuoka.
PRroOF: If x € B, then (G(x)); > z; and (G(x)); < ¢izy for some ¢; > 0 (1 <7 < r)

because (c;,0,--+,0) € S from Proposition 1.7 (3). Thus, if z € B and z; > 0, we know
(G > o ;

Zi(G(x))i - Zcmﬁ - ZC:‘ =€
Let Be={zx€B:) z;=1,z1 > ¢} and

Al — 1
G(X) = WG(X) for x € Be~

Then, by definition, (&(x))l > e. Combining this with Lemma 3.3, we know a(BE) C B..

Thus, by the fixed point theorem, there exists x € B, such that G(x) = x. If we define
A= Y (G(x))i, we have G(x) = A'x. By the Frobenius theorem, it is easy to deduce
A=A 1

DEFINITION 3.5. Forz,y € F'"W N E, let
dn(z,y) = { The shortest length of n-walk which moves from z to y.}.

If there exists p > 0 such that
0 <min, yepO)nE, sy IMinf, %
3 dn 3
< MaX, yeFO)NE, 1y HMSUP, %l < 00,

then we call p : "growth rate of the length of the shortest path ”.
PROPOSITION 3.6. The above p exists in nested fractals. In fact, p = %

h
PROOF: Lety = | : | and take a,b € F(9 N E such that |a — b| = I;. Then it is easy
L
to prove di(a,b) = (ej, G°*(%)), where G° is the i-th composition of G and (,) is a inner
product. For x in Proposition 3.4, take r > 1 such that %x <y < rx. Then
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(e, G*'(757)) < (€, G*'(%)) < (5, G7(GH))-

Thus, we have 12;(2)' < di(a,b) < rej(2)

As z; > 0 we know that p exists and p = -3 |
REMARK: We have 1 < p < tg/a. The first inequality is trivial and the second comes
from A < N and tg = NE(H) (cf. Lemma 2.12).

From the above remark, if we define v = 12622 then we know 0 < v < 1. Thus we have

log tg?’
~ and x which satisfy (3.1).
Let ¢(s) = E(e™*") = S.I_, m;p;#i(s). Then, the next theorem is proved in the same
way as Barlow-Perkins [4] Corollary 3.3 and Theorem 4.3.

THEOREM 3.7. There exist positive constants ¢z ~ c3.9 such that

(35) exp(_CB.lsl/dJ) < ¢(3> < ec32 eXp(—03_381/d"),
(3.6) c3.4 exp(—cz.58~ /@ =DY < P(W < 5) < ¢35 exp(—cy 75~/ @ =1)),
(37) P’J(sup LX‘9 — XOI > 6) < c3g exp(_c&g(édwt_l)1/(d.1—1))’

s<t

_logtg
where dj = —g—log vl |

§4 Estimates of the Resolvent Densities.

In this section, we will estimate the resolvent densities. As the proofs are essentially the
same as [3],[4], we omit them.

Let D, (z) = E(2)N{C : C is a m-complex which is connected to E,,(z).}. Here E,,(z)
is the m-complex which contains & . (If there are more than one m-complexes which contain
z, then choose one arbitrarily and fix it.)

Also, let Ry be an independent exponential random variable with mean A~!.

In the following, we fix n € Z, and let = € E, A = ntDy(z).
We denote
R"(A) =inf{t >0: X™ € 4°},
R(A)=mnf{t >0: X, € A°}.

Also, we define
R(A)
Ukf@) = B[ A )ds)
0

R,\/\R(A) ~
= EI(/ f(Xs)ds) for A >0, f € bB(F)
0

(bB(A) is a set of bounded Borel measurable functions on A),
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Urf(z) = E’(/Oooe“’\’f(Xs)ds).

Then, in the same way as Barlow-Perkins [4] §5, we know the existence of symmetric
continuous resolvent densities u%(z,y), u*(z,y) which satisfy

U2 f(z) = / uX (2, 1) (9)duly),
U f() = / w2, y) F(0)dp(y).

Now the following theorem can be proved in the same way as Barlow-Bass [3].

THEOREM 4.1. _ N )
(a) For A >0, z,2',y € E, and f € L'(E,du) NL*(E, du), we have
lui‘;(:r,y) - uj}l(ml,y)’ <eqalr — :r']d‘"‘d! ,

UAf(z) = Upf(e")] < canlz —2'|™ 7| fLal.
(b) For A >0, z,z' € E,f € ll_oo(E,dp),
UAf(z) = UAf(2")] € caad™ 3% |z — 2'|% =% || f]| oo,

—1y3d, -1 A 1d,-1
cg3A?T T Sut(z,x) SegzA?t T

(c) (a),(b) hold for v*, U* if A > 0. 1

§5 Eigenvalue expansions and estimates of the transition densities.

In this section, we will have the estimates of transition densities. We will follow the way
of Barlow-Bass {3]. We omit most of proofs because they are the same as Barlow-Bass [3].

~

We fix 29 € E and r € Z. By the Mercer expansion theorem, we have a nonincreasing
sequence of reals v; > 0 and an orthonormal sequence ¢; in L?(D,(zg),du) such that

(5.1) uD, (208 ¥) = D 1525(2)95(v),
(5.2) Up.(zoyf(2) =D _7i(fr0)ei(z),  f€LX(Do(20),dp).
j=1

The sum in (5.1) and (5.2) converges uniformly as well as in L2. Set \; = 7]71 -\
Define
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(5.3) PD.(z) (12, y) = Y e N0i(2)pi(y), =,y € Do(wo).
1=1

Then, we can prove that (5.3) converges absolutely and uniformly on D, (zo),
PD.(z0)(t, T,y) is a version of the transition densities for (P*, X;) killed on exiting D,(zo),

and is jointly continuous in (¢,z,y) on (0,00) x E x E. Clearly pp_(,,)(t, z,y) increases as
r decreases. Let us define

p(tvl"y): lim pDr(zo)(tsxvy)'
r——00

Then we have

THEOREM 5.1.
(a) p(t,z,y) is a version of the transition density of (P*,X,) with respect to u.
(b) p(t,z,y) is symmetric in z and y.

(c) p(t,,y) < 5.1t~

(d) p(t, z,y) is jointly continuous in (t,z,y) and
lp(t, z,y) — p(t, 2", y)| < c5.2t7! lz — $,|dw_d" .

e) p(t,z,y) is C= int and 8*p(t,z,y)/0t* is Holder continuous of order d,, — ds in each
P, T,y p y ;

space variable. §i

THEOREM 5.2. (Upper bounds ) There exist positive constants cs 3, ¢5.4 such that

~

p(t,z,y) < cs5.at /2 exp(—cs.4(]z — y|dw/t)1/(dJ—1)), z,y € E. 1

LEMMA 5.3.
1) There exists ¢s 5 > 0 such that

p(t, z, .’L‘) > C5.5t—d’/2.

2) There exist positive constants cs g, cs.7 such that

p(t,z,y) > et~ 472 for |z — y| < cs 1t/ 1

LEMMA 5.4. There exists c5.g > 0 which satisfies the following for all the x,y € E, mel
and k € N:
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"If |t —y| < @™, then there exist o, 21, ,Tn (n < C5.8(ap)k) such that o = z,z, =
Y, 1, ,Tn_1 € FO and z; 2,4, join in the same (m+k)-complex for 0 <i < n—1."

PROOF: First, we prove limsup,,_,,, maX,¢ p(n)ng MaXyc F(O)NE (a_(,SnL) < 00, where

gn(ac, y) = { Number of the step for the shortest n-walk leading = to y.}.

Let A; = max, ,cpong di(z,y) and ¢ = maX,cra)ng MaXyer©ng d1(z,y). Then, we

. 5 -1
easily see max,¢p(n)ng MaXyep(O)nE dn(z,y) < qz;f:l Ak +4q.

By Proposition 3.6, we know that there exists ¢ > 1 such that 4, < c¢(ap)”. Thus, we
have

~ 1

da(z,y) _ N~ _Ak q
X max < +
reFInE yeFONE (ap)” —q,;(ap)n (ap)"

< qcz (ap

(ap)
<
“ap—-1
Now, if |z — y| < ™™, then by Assumption 2.2, we have z¢,z1, -,z such that z¢ =
T,T] = Y,T1, " ,Ti_1 € F(m) and T;, Ti+1 join in the same m-complex for 0 <z <7 —1.

Take 2'¢ € F(™*%) which joins in the same (m + k)-complex as z¢ and z'; in the same
way. Then, by the fact we proved above, we know that we can make a sequence of F(m+k)
points which connects z; and z;4; for 0 < ¢ <! —1 with at most c(ap)k points for some
large c. 1

THEOREM 5.5. (Lower bounds ) There exist positive constants cs g, ¢5.10 such that

p(t,z,y) > cs.9t™ % ? exp(—cs.10(|z — y| /1) /(4 =D), T,y € E.

PROOF: The idea of the proof is just the same as Barlow-Bass [3], but we need some
modifications.

Let D = |z — y|. By Lemma 5.3, the theorem is already proved if D < cs.7t1/% . Thus
we assume D > cs7t/% . We may find c¢5.1; depending only on «a, ¢s57 and d,, which
satisfies the following:

” If we take k such that

(te/(ap))* > cs11t™' D% > (tg/(ap))* ™!, then 2D/a**t < s 7(t/(ap)*)/®w. ”

Now take m such that a™™~! < D < a™™. By Lemma 5.4, we can pick the sequence
To, 5Ty (N < c5'g(ap)k) such that zo = z,2, =y, 71, ,Zn_1 € F™%) and z;, i1
join in the same (m + k)-complex for 0 < i < n —1. Let e = D/(2a**!) and B; =

B(zi,e)N E. Note that if z € Bi_1, 2' € B;,

|z — 2'| < 2+ D/a**t = 2D /a**? < c5.2(t/(ap) )l/d
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so that p(t/(ap)¥, zi—1,2) > cs.6(t/(ap)*¥)~%/2. Then,

p(t,x,y)Z/B /B p(t/(ap)*,z,y1) - p(t/(ap)¥, yn-1,y)du(y1) - - - dp(yn—1)

> (I (Bi))eg o(t/(ap)*t)~%en/?
2 c5.12(D/(2a* )BTt/ (ap)®) =4,
Since d,/2 = ds/d, and by our choice of k, (D/(2a**1))/(t/(ap)*)'/? is bounded

above and below by positive constants which are independent of D and t. Thus, we have
> cg

> 3505t H/?

>

Substituting our choice in the last term completes the proof. B

Combining Theorem 5.1, Theorem 5.2 and Theorem 5.5, we obtain the estimates of the
transition densities.

§6 Some remarks

As Barlow-Bass [3] has written in Section 8, various estimates holds for the Brownian
motion on nested fractals and proofs are essentially the same. Here we will introduce
properties about sample path, local time and domain of the generator. The readers can
prove them in the same way as [3],{4].

THEOREM 6.1.
a) There are positive constants ce.1, c¢.2 such that

cstP/dv < E*|X, — 2P < coqt?/ %,

b) X has a modulus of continuity given by

¢6.3 < lim Sup 1/d X; — %) dyj-1)/d < ¢6.4.
5=00<o<i<T, s—t<6 |5 — t[//4v(log1/|s — t])(ds=1)/dw

¢) f T} =inf{t > 0: X, = z}, then P*(T;} = 0) =1, so that for all z € E, T is regular
for {z}.

d) For each z,y € E, P*(Ty < o0) = 1.
e) {t: X; = z} is PY-a.s. perfect and unbounded, so that X is point recurrent. §

REMARK. It is easy to obtain tg > a®. Thus we have d,, > 2.
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THEOREM 6.2. There exists a jointly continuous version L] of the local time of X which
satisfies the density of occupation formula:

/0 F(X.)ds = /E fw)Ildu(y)  for f € Cx(E),

and has modulus of continuity given by :

LZ —
lim sup I—————, < cs. 5(sup L )
8—00<y<t, |s—t|<s P(l2 —yl) ~ ceB

where p(u) = u2@w=4)(log1/u)t. §

REMARK. Barlow suggested me that the above modulus of continuity holds on nested
fractals.

THEOREM 6.3. Let CO(E) be the set of continuous functions on E vanishing at oo. Let
(A, D(A)) be the mﬁmtesunal generator of {P;}. Then, we have the fo]]owmg

a) Py: CO(E) — Co(E ) and {P,} is a strong Feller semigroup on CO(E)
b) Every function in D(A) is Hélder continuous of order d,, — dy.

¢) For yo € E the function p(:,-,yo) is a solution of the heat equation on E:

a ~
Ep(t7z’y0) = Al‘p(tymayo)v t>0,zeE. 1
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§7 Examples

In this section we give some examples of the nested fractals.
Example 7.1 (Sierpinski gasket)
a=2, N=§F® =3 r=1p =1/2, tg=5, p=1.

Example 7.2
a=5 N=12, {F®O =3 r=1,p; =1/2, p=6/5.
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Example 7.3 (Pentakun)
a=(3+V5)/2, N=4F® =5 r=2 p; = (V161 = 7)/16, p2 = (15 — V/161)/186,
tg = (V161 4+9)/2, p= (V3 +1)/c.

Example 7.4 (Lindstrgm’s Snowflake)
a=3 N=T7{F® =6 r=3, p=1, p; = 0.29737,
p2 = 0.14390, p3 = 0.11746,tg = 12.89027 (these are computed numerically, see [10]).
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