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1. INTRODUCTION

In this paper, we consider second order quasilinear
evolution equations of the form

ity + MOA  Puce) 1 )Au(e) = fF(ult)), t > 0, (1.1)

u(0) = u,, u'’(0) = u,

in a real Hilbert space H with norm |-|. Here A is a nonnegative

1 /2
selfadjoint operator in H, f is a nonlinear operator from D(A / )

to H, M(s) is a C1~ class function satisfying

M(s)

1w

m, > 0, with m, constant,

When f(u(t)) = 0, the equation (1.1) has its origin in the

mathematical description of small amplitude vibrations of an
elastic string (see Ames [1]).

In case of M(r) := l(semi-linear type), there is a lot of

literatures (see e.g., Browder [2], Ebihara, Nakao and Nanbu [3],

Ishii [8], Otani [13], Payne and Sattinger [14], Reed [16] and
Tsutsumi [171]1).

For general M(r) 2 my > 0, when f(u)(x) := —|u(x)|au(x)



96

(e > 0), losoya and Yamada [4] obtained a local solution by a

Galerkin method., Furthermore, Ikehata [6] has got a unique local
strong solution to (1.1)-(1.2) by applying the theory of
evolution equations and also discussed the blowing-up property of
local solutions whose results contain that of Levine [12].
However, in [6], the relations between 6tani [13] and Ikehata [6]
have not been shown clearly.,

The first purpose of the present paper is to obtain a local
strong solution to (1.1)-(1.2) by applying the theory of
quasilinear hyperbolic systems which are given by Kato [11]. This

will be an improvement of the result of Ikehata [6].

The second purpose of the present paper is to discuss the

blowing-up property of local solutions to the equations:

g, (t,%) - (e + zaf91Vu(t,y)|2dy)Au(t,x> = wlult,x))’, (%)

where ¢« > 0, 8 > 0, 4 > 0 and Q C R3 is a bounded domain with

smooth boundary. The essence of our argument is in taking the

coefficient g > 0 ’sufficiently large’. Therefore, at least in

case of (*¥), we have to take care of how to choose the

coefficient , with delicacy. If in particular @« = 1, 8 = 0 and
1 = 1, then the result will become the same as that of 6tani
[137.

2. LOCAL EXISTENCE AND UNIQUENESS

Let H be a real Hilbert space with norm |-} and inner

product {( , ). Let us consider the second order quasilinear

evolution equation

Wit) + MOIAY Puce) 1P )Au(t) = Flu(t)), £ > 0, in H, (2.1)

u{0) = u_, u'(0) = u.. (2.2)

We assume that
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(I)A is a nonnegative selfadjoint operator with domain D(A).

/% 0f A is well

It follows from (I) that the square root A1
defined and also a nonnegative selfadjoint operator. Note that
V := D(A) is a real Hilbert space with the graph norm

/2

Hvué 1= Iv}2+ !AVI2 and W = D(A1 ) is a real Hilbert space with

1 /2 2

2 2
the graph norm {wi, = |w| + |A wl .

W

(II) M € ¢ [0,%) and M(s) » m

> 0 with m, constant.,

(III) f is a (possibly) nonlinear operator with domain W
and there is a nonnegative and nondecreasing function L € C[0,)
such that

ff(u) - £(v)] < L(IIUHw + HVHW)Hu - Vﬁw for u, v € W.

For a real Hilbert space X let us denote by Cm([O,T);X) the

space of all X-valued ¢™-functions on [0,T). Then we can
introduce
Definition 2.1, A function u:[0,T) - H is called a solution

te (2.1)-(2.2) on [O0,T) if

(1) w e C([0,T);V) N C ([0,T):W) N C ([0,T):H),
(2} u satisfies (2.1) on [0,T) in H,

(3) wu(0) = u. and u’(0) = u, .

5] 1
Then we can state the following

Theorem 2.2, (Local Existence) Suppose that three conditions

(I)-(I1I1) are satisfied. Then for any u, €V and u, € W, there
exists a number Tm > 0 such that the problem (2.1)-(2.2) has a

unique solution u(t) on [O,Tm) satisfying either

(i) T = 4% or
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.. " . . " it 4 ] i = oG
{(ii) . < +x and ifg {Hu(t)LV + {u (t)hw} 400,
T m

Remark 2.3. Our theorem 2.2 refines the result of Browder

[2] in case of M(:) = 1 and improves the result of Ilkehata [6].
3. PROOF OF THEOREM 2.2

The proof will be done by refining results given by Ikehata
[6]. We shall give an outline of its proof.

Let ¥ > 0 be an arbitrary constant satisfying

. 2______ o 42 ; ,1/2 2 1 /2 02 : 1 /2
k > [ ST i 7ay i by * Meta a1 At Fug g+ g 1}] ,
(3.1)
with My, ot= 21f(u ) [lAug |+ 4m) (f(u) ]’ (3.2)
Set
Cﬂ = | f(0Y |+ (Hucﬁw + kTe)L(i;uGEiw + kTQ)
-1 N . s
+ 2mo kL(Zuuoﬁw + ZKTO), {3.3)
§ -1 2
C, = 4m) [KL(2juyf, + 2kT )1, (3.1)
C, i= Max{(fugiy, + KTOLCjuglly + KTy),kL(2luy i, + 2kT )}, (3.5)
-1 2 o
C, := |f(Q)| + C, + 4m0 k M, {3.6)
M, := Max{M(r):0 ¢ r < k') (3.7)
and
M, = Max{[M’(r)]:0 {r ¢ k'), (3.8)
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Moreover, let T, > 0 be a constant satisfying

exp(CqTo) 2, (3.9)

uA~

(3.10)

Q
=
+
(]
=]
[N
p—

We consider the initial value problem (2.1)-(2.2) in H on

[0,T,]. Setting u’(t) = v(t), the problem can be written in the

system in X 1= W x H:

(Pi1) 5%[35:;] i [M(IA’/zgtt)l2>A _g ][3§t;] ) [f(u?t))]’

. . 0 -1 o . 0
Let g(U(t)) := [M(lAl/zu(t)lz)A- o ] and F(U(t)) := [f(u(t))]
with U(t) := [322;] and let U, := [ Ef ]. Then the problem (P.1)-

(P.2) in X can be written in the ’quasilinear’ evolution

equation:

(p.3) E%U(t) + (U(t))u(t) = F(U(t)) in X on [0,T,],

where Y = V x W. Since the problem (2.1)-(2.2) is equivalent to
(P.3), we shall simply consider the solvability of (P.3).
The norms of X = W x Hand Y = V x W are respectively
defined as follows:
2. 1/2

, " , .2
Uiy t= lludlyy + v 7,
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UGy i= Cluly + nvu;}‘/z for U := [ u ] € X or Y.

v

Let k be a constant satisfying (3.1). Set

K= (v sz [BU0]ir0,m) -y IV<0) = Uy, A sy, ¢k,
§' L), ¢ k (a.ed), V(L) - V(S)H\, < elt - s}, (3.11)
2 . 2_1/2
where & := [k + {]f(u0)| + kTOL(ZHuOHW + ZkTO) + kMo} ] .

For each V(-) := [ ] € K, we will consider the linearized

i)

problems:

d ; - -
(P.4) T2U(t) + d(V(t))Ut) = F(V(t)) in X on [0,T ],

u(o) = U, €Y.
Namely, (P.4) is nothing but (P.3) with (U(t)) and F(U(t))
replaced by}ﬁlV(t)) and F(V(t)), respectively.
' By the same argument as the proof of Ikehata [6], for each
V(+) 3= [it:;] € K, we can obtain a unique solution U(t) on
[O,To] to (P.4) satisfying
U(+) € CL[0,T,1;Y) N C ([0,T 1;%). (3.12)

We define a mapping ¢:K - X by
U = ¢V (V € K). (3.13)

In order to show that ¢ maps K into itself, we need the following

lemma 3.1 without proof.

Lemma 3.1, Let U(.) = [35;?)] be a solution to the problem
(

)

(P.4) for a given V{(:.) =‘{ .
n{-)

] € K. Then the following estimate

holds:
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s (6) i+ 2_lm3HA1/2u(t)H; (3.14)

. 2 1/2 2, 1/2 42 ; 2 )
< [hulqw + M(|A u, | lia Uy ily ¥ My + C,t + C ot J-exp(C,t)

on [O,To], where Mgo and Cj (g = 1,2,4) are the constants given

by (3.2), (3.3), (3.4) and (3.6), respectively.

Then we get the following
Lemma 3.2. Let ¢ be the mapping defined by (3.13). Then ¢
maps K into itself.

uf -
!

Proof. Let U(.) := { ({)] be a solution to the problem

m

{(P.4) for each V(-) := [;E:;} K. We have to show that U(.:) € K.

We see from lemma 3.1 and (3.9)-(3.10) that

I/Qu(t)H'Z

-1 2
M 4 2 ) i ’ i

]

2 2 2 2
< 2[fu, by + Mefat’/ u | yia'/?u 12 4 M+ 1] on [0,T, 7.

Therefore, it follows from (3.1) that

. ’ l2 " 1/2 2 2
qu (t)['w + '!A u(t)Hw é k
and hence
. 1 /2 ) N
hua (t)Hw é k and JA u(t)iiw é k. (3.15)

On the other hand, since U(-.) := [Esif)] is a solution to

the problem (P.4) for V(-) := [iz:;] € K, u(t) satisfies

ut) + M(1AY Pe(t) 1P)au(t) = F(E(t)), (3.16)



102

u(0) = u,, u’(0) = u, .

Therefore, by (3.7), (3.11), (3.15) and (3.16) we have

T v 2 N ] ‘2 ” 2
UM )iy = hw (o) iy + ju"(t) |
C KD+ - MOA =) 1 auit) + Flee) )

K+ M lau(t) ] o+ [fesen D’

HA

+ 2kT )} = €”.

"~
.
-+

Mgk + [f(ug)| + KT L(2]ugyll,

Here we have used the fact that
IEC8(E)) ] ¢ If(ug) | + KT L(20u,ll, + 2KT,).

Therefore, it holds that

[UCE) - Us)iy = LU (e)driy

$ lj;ﬂU’(r)HXdrl < elt - sf. (3.17)

{3.15), (3.17) and the fact that U(0) = U0 and U{.) € C([O,TO];Y)

imply U(-) € K, i.e., ® maps K into itself. ' Q.E.D.

Furthermore, we get the following

Lemma 3.3. Let U (:) and U2(~) be solutions to the problem

(P.4) for given V (-) := t[S(')»§1(°)] € K and

V,(-) = Y[n(-),£,(-)] € K, respectively. Then

3. 1/2
da(uv,,u,) < Ce (T, + T,) / exp(CsTo)d(V‘,Vz), (3.18)

2

where d(V,W) :=z sup{jV(t) - w(t)ﬁX: 0 ¢t < T, ),

n
o
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, 2 -1
C5 T = % L(Zﬁucﬂw + 2kT_ ) + k Mlmax{m0 y 1}

C

and

[V

-1

C + 2kT ) }[min{l,m }] .

2 X )
[2k M, + L(Zduoﬂw

Finally we assume that TC > 0 satisfies

c (1, + To)'Pexplc,T,) < 1. (3.19)

Then lemma 3.3 with (3.19) implies that ¢:K - K defined in (3.13)

becomes a_strict contraction. Though it is not expected that K is

complete with respect to the metric d(U,V), we can show by
iteration that there is a function U € K such that U is a unique
fixed point of ¢:K - K,i.e.,dU = U and is a unique strong

solution to (P.3) on [O,TO], or equivalently to (2.1)-(2.2) on

[O,TO](for details, see Ikehata [6]). This completes the proof of

theorem 2.2.
4, BLOWING-UP OF SOLUTIONS

In this section we consider the blowing-up property to the

Problem 4.1. Consider the mixed problems:
utt(t,x) - {a + ZBfQ!Vu(t,y)lzdy)Au(t,k) = M(u(t,x))3 {4.1)
for x € Q, t > 0,
u(0,x) = u, (x), ut(O,x) = ul(x), X € Q, {(4.2)
u(t,x)l‘?Q = 0, t > 0. . (4.3)

3
Here Q C R 1s a bounded domain with smooth boundary, « > 0,

B 3 0 and 4 € R. On the 'local’ solvability to the problems

(4.1)-(4.3), we can apply our theorem 2.2.
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Let 11 be the real LZ(Q), and let H-Hp be the usual real

LP(Q)—norms {1l < p ¢ ), We define a positive definite
selfadjoint operator A in H as follows:
1
Au iz -Au for u € D(A) = H (@) n H,(Q).

2 2 1
Then ﬁAl/zuﬁz = IVuil, for u € D(Al/ ) = H (Q). Moreover, a

nonlinear operator f in H can be defined as follows (g € R):

i

f(u)(x) := wlulx)) for u € H,(Q). (4.4)

Note that (4.4) is well defined by means of the well known
Soboclev inequality (note N = 3):

Lemma 4.2, (Sobolev) If 1 < r < 6, then

luil, ¢ Clvujl, for u e H, (Q)

with some constant C > 0.

Furthermore, if we set

Clr,Q) := SUP[HUHP/IIVUH2:U € H;(Q)’ u 'rl 0}, (SC)

then the best constant C(r,Q) > 0 is finite by means of lemma
4.2, |
Next we can easily make sure that a nonlinear operator f
defined by (4.4) satisfies the condition (III) in Section 2 and
also, in problem 4.1, we have only to consider»the case of
M(r) := a + 28r.
So the problem 4.1 with « > 0, 8 2 0 and 4 € R has a unique local

strong solution u(t,:) belonging to the class
2 . 1 1 1 2 2
C([O,Tm);H (Q) N H(Q)) nC ([O;Tm),HO(Q)) nec ([O,Tm),L (Q))
for some Tm > 0 by applying our theorem 2.2.
The purpose in this Section 4 is to discuss the "blowing-up"”
property of a local solution u(t,x) to the problem (4.1)-(4.3).

In the following paragraph, we further assume that g € R in

(4.1) satisfies

w > 28C(4,0) 4, (4.5)
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where C(4,Q2) is a constant defined in (SC).

Let
Jtw = € yvuyl + B ogvug] - 1 ouduly for u e Hy(@)  (4.6)

and let
d := inf{supJ(Au):u € H_(Q),u # O). (4.7)

AER

Lemma 4.3, Let g and # in (4.1) satisfy (4.5). Then

-1

d 4 ld e, - 207" > o,

|
o
o+
=

>
"

(u € HL(Q):J(u) < d, allvull, + 28Vul, < wlui,},

[, I, + a@lVugl; + BIVu i1 and Fluy) := 4 fugl}.

D =

By using lemma 4.3, we get the main theorem of this section.
Theorem 4.4. Let g and 8 in (4.1) satisfy (4.5). Let u(t,x)
be a local solution to (4.1)-(4.3) on [O,Tm) with initial data

X }
u, € W N H (Q) and u, € H,(Q) satisfying E(0) - F(u,) < d. Then
Tm < +w0 (i.e., u(t,x) can not be continued to [0,+x) as a

solution to (4.1)-(4.3)).

Remark 4.5, When « = 1, 82 =0 and 4 = 1, our result
coincides with that of 6tani [131.

In order to prove Theorem 4.4, we prepare some lemmas.
Lemma 4.6. Let g and 8 in (4.1) satisfy (4.5). Let u(t,x) be
a local solution on [O,Tm) to (4.1)—(4;3) with initial data

X
u, € W on Hz(Q) and u € H;{Q) satisfying E(0) - F(u,) < d. Then

b 4
u(t,+) € W on [O,Tm).
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Lemma 4.7. Let u(t,x) be a local solution to (4.1)-(4.3)

satisfying (4.5). Then aHVu(t,-)H2 > 4d whenever u(t,-) € W*.

2

Remark 4.8. In lemma 4.7, we can take # = 0 in (4.1) which

N
result coincides with that of Otani [13](i.e., the case of semi-
linear wave equations). However, we cannot take ¢ = 0 which are

cssential in this paper.

Proof of Theorem 4.4. Suppose Tm = 4+ and let u(t) := u(t,-)

be a 'global’ solution to (4.1)-(4.3) with (4.5).
First note that the identityf

2

1 .d

2 4t

TuCe) s = fu' (el + (u"(t),ult)). (4.8)

Here (f,g) means usual LZ(Q)-inner products., Multiplying (4.1) by

u(t) = u(t,-) and integrating it over , we have
e ) . . .4 2 2
(W' (t),ult)) = whult)l, - MOITuCt) ) IVut)i,, (4.9)

where M(r) = ¢ + 28r. (4.8) and (4.9) give

2

1 4 . L2 l 2 : q i L2 2
o ;z; fult)i, = du’ (), + giult)ll, - MUIVult) ) ivul(t)j, . (4.10)

It follows from the definition of W*, lemma 4.6 and (4.10) that

d2

dt

2 2
fu(t)ll, 2

v

u’ (e) )2 2 0

1
2

. . . 2
which means the convexity of a function t - Hu(t)Hz.



On the other hand, multiplying (4.1)

integrating it over , we have

+ M(Tut) o) ] =

[N

—
. -

where F(u(t)) ~1u;§u(t)il: and ﬁ(r)

the both sides of (4.11) on [0,t], we have
Lowrcon® « 2 Hogoue)n? F(u(t))=
5 hu DRI 5 MUiVu yi, ) = Flud )=

Thus we get

znu’(t)nz + 2 E(Hvu(t)uZ) - 4F(u(t))

(4.10) and (4.12) give
2
=L uinin = 3w oL+ 2Mvuce) i)
dt

107

by u’(t) := ut(t,-) and
e )
dt F(u(t)), (4.11)

2 3
ar + fAr . Integrating

E(0) - Flu,).

4(E(0) F(u_ )).(4.12)

, .2 , .2
- MO§Vu(t)j, ) iivu(t)

- 4(E(0) - F(u,)).

Noting that

2M(r) - M(r)r = 2ar + 28r° - (a
we have
2 p;
%;‘;—‘—2 ()i = 3w (0)1) + alVu(t)): -

It follows from lemma 4.7 and (4.13) that

d2

2

dt

lu(t)ll. > 4d - 4(E(0) - F(uy))

1
2

Integrating this inequality on [0,t],

4(E(O0) - F(u,)). (4.13)

o}

40d - (E(0) - Flug))].

we get
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a% Ju(t)ﬁé 2 2(ug,u, ) + 8[d - (E(0) - F(uy))lt.
Since d - (E(0) - F(u,)) > 0 by assumption, there exists a

constant t > 0 such that a% Hu(tl)ﬂz > 0. With the aid of the

N

2 R
convexity of t - Hu(t)HQ, we find that the function t -= Hu(t)hz

is monotone increasing on [tl,w).

Furthermore, it follows from (4.13) and the poincare

inequality that

2

L el o shurco)il + 2ax, fule) )

2 ., - 8(E(0) - F(ug)),(4.14)
dt -

where Al is the first eigen value of -A (with Dirichlet null

conditions). Since the function t - ZaAIHu(t)HZ - 8(E(0) - F(u,))
is monotone increasing on [tl,w), there is a constant t2 >t

1

such that

2aA, fult) i)

2

- 8(E(0) - F(uo)) > 0 on [tz,m). (4.15)

By (4.14) and (4.15), we have

5 95 ol 2 6ju' ()] on [t,,x). (4.16)

Set P(t) := ju(t)|.. Then by (4.16), we obtain

P(L)P"(t) -

[SCR IV

P y Blult) g - (2) ) - SI2(ult),ul ()]

= 6 (jult) i, -fu’ (), - [(ult),u’(t))17) on [t,,c0).

So the Schwarz inequality gives
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P(t)P"(t) -

B joo

'(P’(t))2 2 0 on [t,,®).

Therefore, it follows from the standard ’'concavity argument’ (see

Levine [12]) that there is a constant To > tz such that

lim Jlu(t)l, = +ow
1T, '

which contradicts to Tm = +oo, Q.E.D.

In theorem 4.4, the condition (4.5) plays an essential role
to get a ’blowing-up’ property. Indeed, we get the following

Proposition 4.9. Let u(t,x) be a local solution on [O,Tm) to

the problem (4.1)-(4.3) with u satisfying

0 < < 28C(4,0) ", (4.17)

If the initial data u, € Hz(Q) N H;(Q) and u, € H;(Q) satisfies

F(ue) < E(0), then there is a constant C > 0 such that

2

iVult,-)i, ¢ C and iiut(t,°)|!2

é C on [O,Tm).

Remark 4.10, Of course, we have to consider the cases of

J, = E(0) - F(uc) ¢ 0. However, when JO < 0, (4.1)-(4.3) has no

solutions and also when J0 = 0, it follows that u{(t,x) = 0 is a

unique solution to (4.1)-(4.3) with (4.17). So we have only to

treat the case of J_, > 0 in the argument of proposition 4.9.
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