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1 Introduction

1.1 Motivation for the quantum cosmology
In cosmology we usually assume that spacetime structure is described by a
classical metric in spite of the fact that matter follows quantum mechanics.
This is because quantum fluctuations of spacetime structure caused by the
quantum nature of matter is not important in most cases. In fact from the
classical Einstein equation

$R_{\mu\nu}- \frac{1}{2}g_{\mu\nu}R=\frac{8\pi G}{c^{4}}T_{\mu v}$ , (1.1)

it is expected that the quantum fluctuations of metric become important
only on scales .rnaller than the Planck length $L_{P}$ which is defined as

$L_{P}=\sqrt{hG/c^{3}}\simeq 1.6\cross 10^{-33}cm$. (1.2)

In some cases, however, we cannot neglect the quantum nature of space-
time structure. For example, in the Big-Bang model of the Universe, the
spacetime curvature of the classical metric describing the Universe becomes
larger and larger as we go back in time and becomes divergent within a fi-
nite time. Thus in the very early stage of the Universe its curvature radius
becomes much smaller than the Planck length. Actually this situation is not
specific to special cosmological models since the Singularity Theorem asserts
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that classical spacetimes always have singularities if a couple of physically
natural conditions on matter and spacetime structure are $satisfied^{[1]}$ .

Of course the occurrence of spacetime singularities do not necessarily
imply that they play important roles in nature because they may be just
local phenomena and their influence may be hidden by some mechanism,
e.g., by horizons. However, in the case of the initial singularities of the Uni-
verse, we cannot neglect them, because the structure near the singularities
determines the initial condition for the subsequent classical evolution of the
Universe. Thus in order to understand how the present structure of the Uni-
verse is formed, we must construct a cosmological model which incorporates
the quantum nature of spacetime as well as matter. This kind of theory is
called quantum cosmology.

1.2 Difficulties in the basic theory
In studying quantum cosmology, we need a theory which determines the
quantum behavior of spacetimes, i.e., a quantum gravity theory. The most
natural approach to constructing such a theory is the canonical one which was
successful in building the nonrelativistic quantum mechanics and quantum
field theories in the flat spacetime. Actually it is an easy task to rewrite
the classical theory of general relativity in the canonical form. However, we
encounter a difficulty when we translate it to a quantum theory: in constant
to ordinary dynamical systems, there appear constraints on the canonical
variables due to the general covariance of the theory, and the Hamiltonian
itself is a linear combination of the constraints. As a result of this, not
only the time evolution is apparently lost, but also the norms of physical
state vectors diverge if we adopt the inner product which makes the original
canonical var‘ ibles hermitian. Thus the formal canonical quantization leads
to an ill-defined theory within the conventional Ramework ofquantum theory.

This failure of the canonical approach as well as the perturbative un-
renormalizability of the general relativity has driven many people to modify
the theory or seek new theories of gravity. The most promising in this line
is the superstring theories which take strings as the fundamental object in
$nature^{[2]}$ . Though superstring theories are shown to have various fascinating
features, their development is currently hampered by technical difficulties.
Furthermore no string theory is so far constructed which can describe the
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Figure l
(3+1)-decomposition of
spacetime

global dynamics of spacetimes.
Under this circumstance, some people are trying to save the canonical

approach by modifying or extending the framework of quantum mechanics
$itself^{\{3]}$ . In this talk we review the formulation of the canonical quantum
gravity, its difficulties, and attempts to overcome them with special emphasis
on their relevance to the WKB theory.

2 Quantum Gravity in the Canonical Ap-
proach

2.1 Classical Canonical Theory
The theory of general relativity is originally formulated as a field theory: the
fundamental variables are a metric tensor $g_{\mu\nu}(x)$ and a matter field $\Phi(x)$ ,
and their dynamics are determined by the action principle

as $=0$ : $S=fd^{4}x[ \sqrt{-g}\frac{R}{2\kappa^{2}}+\mathcal{L}_{m}]$ (2.1)

where $R$ is the Ricci scalar, $\mathcal{L}_{m}$ is the lagrangian density for the matter field
and $\kappa^{2}=8\pi G$ .

In order to rewrite this field theory in a canonical form, we decompose the
spacetime to a family of space-like 3-surfaces on which the time coordinate
is constant as shown in Fig.1. Then the spacetime metric is written in terms
of the spatial metric $q_{J^{k}}$ on each 3-surface and the the components of the
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normal vector field $n=(1/N, -N^{j}/N)$ to them as
$ds^{2}=-N^{2}dt^{2}+q_{k}(dx^{j}+N^{j}dt)(dx^{k}+N^{k}dt)$ . (2.2)

If we take the quantities $Q(t)=(q_{k}(x, t),\Phi(x_{J}t))$ as the fundamental vari-
ables, the original field theory can be regarded as a dynamical system with
infinite degrees of freedom with an action of a structure

$S= \int dtL(Q,\dot{Q},N)$ . (2.3)

Here $N(t)=(N(x, t),N^{j}(x, t))$ are not dynamical variables because they
correspond to the freedom of specifying the coordinates.

Since it is shown that the lagrangian $L$ is quadratic in $\dot{Q}$ and $d^{2}L/d\dot{Q}^{I}d\dot{Q}^{J}$

is non-degenerate, we can introduce the momentum $P(t)=(i^{k}(x, t),$ $\Pi(x, t))$

conjugate to $Q$ . In terms of these canonical variables the original action is
shown to be equivalent to the following first-order form $action^{[4]}$ :

$S= \int dt(P\cdot\dot{Q}-H)$, (2.4)

where
$H= \int d^{3}xN^{\mu}\mathcal{H}_{\mu}(q_{f}p,\Phi, \Pi)$ (2.5)

with

$\mathcal{H}0=\mathcal{H}_{0}^{G}+\sqrt{q}T_{nn}$ ; $\mathcal{H}_{0}^{G}=\frac{2\kappa^{2}}{\sqrt{q}}[\dot{i}^{k}p_{jk}-\frac{1}{2}(\dot{d}_{j})^{2}]-\frac{\sqrt{q}}{2\kappa^{2}}3R$ , (2.6)

$\mathcal{H}_{j}=\mathcal{H}_{j^{G}}+\sqrt{q}T_{nj}$ ; $\mathcal{H}_{j^{G}}=-\mathcal{D}_{k}p_{j}^{k}$ . (2.7)

Here the spatial indices $j,k_{J}\ldots$ are raised and lowered by $q^{jk}$ and by $q_{k}$ ,
respectively, $D_{j}$ is the three-dimensional covariant derivative with respect to
$q_{k}$ , and $T_{nn}=T_{\mu\nu}n^{\mu}n^{v}$ and $T_{nj}=T_{\mu j}n^{\mu}$ are the normal components of the
energy-momentum tensor $T_{\mu v}$ for the matter field.

Variations of the action (2.5) with respect to $Q$ and $P$ yield the canonical
equation of motion

$\dot{F}=\{F,H\}$ ; $F=F(Q_{f}P)$ . (2.8)

Meanwhile variations with respect to $N$ yield non-dynamical equations

$H_{\mu}=0_{J}$ (2.9)

which are called constraints.
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2.2 Quantization
In an ordinary canonical system we can construct a quantum theory from
a classical thc ory by replacing Poisson brackets by commutation relations
among the operators corresponding to the canonical variables as

$\{F, G\}arrow(-l)[\hat{F}, \hat{G}]$. (2.10)

Then the canonical equation of motion is translated to the standard operator
equation of motion in the Heisenberg picture

$\partial_{t}\hat{F}=i[\hat{H},\hat{F}]$. (2.11)

In the present case of general relativity, however, this manipulation does
not complete the quantization procedure even in the formal level. We must
decide how to express the constraints in the quantum theory. They cannot
obviously be expressed as operator equations because $\mathcal{H}_{\mu}$ has non-vanishing
Poisson brackets with the canonical variables. So we must look for weaker
expressions.

Dirac discussed this problem many years ago, and proposed that the
constraints should be expressed as conditions on the physical state $vectors^{[5]}$ .
Following his proposal, we obtain quantum constraint equations on a physical
state $|\Psi>$ ,

$\hat{\mathcal{H}}_{\mu}(x)|\Psi>=0$ . (2.12)

This is actually an infinite sets of equations. Hence the consistency of them
yields additional equations in general. In the present case, however, we obtain
no new equations since the Poisson brackets of $\mathcal{H}_{\mu}$ close in a weak sense:

$\{H_{\mu}(x),H_{\nu}(y)\}=\int d^{3}zf_{\mu v}^{\lambda}(x,y,z)\mathcal{H}_{\lambda}(z)$ . (2.13)

This results from the fact that the generator of the infinitesimal coordinate
transformation $\chi^{\mu}arrow x^{\mu}+$ &\mbox{\boldmath $\mu$} is written as a linear combination of $\mathcal{H}_{\mu}$ :

$G=^{=} \int dx[\ 0N^{\mu} \mathcal{H}_{\mu}+\delta F\{G_{3’}F\};\delta x^{j}\mathcal{H}_{j}]$

.
$(2.15)(2.14)$
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2.3 Difficulties
Though the quantization procedure explained above gives a formal quantum
theory for gravity, one finds various defects when one inspects its content in
detail. First, since the Hamiltonian is written as a linear combination of the
constraints, it vanishes on physical states. Thus the time evolution is lost
ffom the theory:

$\hat{H}|\Psi>=0$ $arrow$ $\partial_{t}<\Psi|\hat{F}|\Psi>=0$ . (2.16)

Roughly speaking, this is a result of the general covariance of the theory: the
general coordinate transformation includes arbitrary time translations, which
makes each physical state time-translation invariant because the constraint
functions are the generators of the coordinate transformations.

Second the norm of each physical state diverges with respect to the nat-
ural inner product which makes the operators $Q$ and $P$ hermitian. Though
this is not proved generally, it is the case at least for minisuperspace models
explained in \S 4. Since the inner product provides the basis for the probability
interpretation of quantum theories, this defect is fatal to the theory.

These two difficulties both arises ffom the presence of constraints. Thus
it is expected that they may disappear if one solves the constraints in the
classical level to extract true physical degrees of ffeedom and afterward quan-
tize the theory. Due to the intricate structure of the constraint equations,
however, no one has succeeded in solving them explicitly so far except for
the asymptotically flat case where the formal nonlocal expression for the
solutions were given by Arnowitt, Deser and $Misner^{[6]}$ . Another possible
approach to overcome this difficulty is to quantize the gauge-invariant op-
erators. Actually even in the Dirac quantization explained above, not all
the hermitian operators but the gauge-invariant subset are observable be-
cause only quantities which are invariant under the general coordinate trans-
formation can be measured in the classical theory. Further we can show
that knowing all the gauge-invariant quantities, we can recover the original
classical dynamics without the equation of motion. Thus restricting to the
$gauge- invarian\uparrow$ quantities, which is equivalent to solving the constraints, is
a hopeful approach. However, no trial has been given to this approach in
the real canonical formalism so far. Only a partial progress is made in the
complex canonical $formalism^{[7,8]}$ .
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Besides these difficulties a new problem arises when one tries to apply the
quantum theory of gravity to cosmology. In the Copenhagen interpretation of
quantum mechanics a quantum state vector changes nondynamically to one
of common eigenstates of some set of commuting operators by measurement
if one tries to assign a state vector to an individual system. This is called
a wave packe reduction. In ordinary circumstances this gives rise to no
practical problem as far as one regards the quantum mechanics as describing
the dynamics of an ensemble of identical systems. However, in cosmology,
there is only one system. Thus there arises a question whether the state
of the Universe is described by a state vector, or more generally whether
the Universe has any well-defined state. Actually this problem is out of
scope of the conventional quantum mechanics because the physical meaning
of measurements or phenomena themselves is not given there. Though many
people attacked this problem under the name of measurement problem, no
essential progress has been made so far. We do not go into this problem in
this talk any more.

3 Wavefunction of the Universe and its WKB
interpretation

3.1 Wheeler-DeWitt Equation
As explained in the previous section, $\mathcal{H}_{j}$ is a generator of the spatial coor-
dinate transformation. Hence the constraint $\hat{\mathcal{H}}_{j}|\Psi>=0$, which is called the
momentum constraint, implies that the state vector $|\Psi>$ is invariant under
the spatial diffeomorphism. Further the formal time evolution equation has
no physical meaning. Thus in the canonical theory of quantum gravity with
constraints all the dynamical information is contained in the Hamiltonian
constraint $\mathcal{H}_{0}(x)|\Psi>=0$ . If we express the Hamiltonian formally as

$H= \frac{1}{2}\mathcal{G}^{IJ}(Q)P_{I}P_{J}+D^{I}(Q)P_{I}+\mathcal{U}(Q)_{2}$ (3.1)

this equation is expressed in the representation in which $Q$ is diagonal as a
system of $\sec^{\wedge}nd$-order functional differential equations with a structure

$[- \frac{1}{2}\mathcal{G}^{IJ}\partial_{I}\partial_{J}-l\mathcal{D}^{I}\partial_{I}+\mathcal{U}]\Psi[Q]=0$, (3.2)
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where $\partial_{I}=\partial/\partial_{Q^{J}}$ . This equation is called the Wheeler-DeWitt $equation^{[9]}$ ,
and a diffeomorphism invariant solution to it is called a wavefunction of the
Universe when it is regarded as describing the state of the $Universe^{[10]}$ .

3.2 Extraction of Time-Evolution by the WKB Method
For the case $v$

’

iere a solution to the Wheeler-DeWitt equation has the WKB
form

$\Psi(Q)=\mathcal{A}(Q)\exp[iS(Q)]$ (3.3)

with $A(Q)$ a slowly changing function of $Q$ , one can extract classical solutions
Rom $it^{[11]}$ . In fact ffom the assumption, $S$ satisfies the Hamilton-Jacobi
equation

$H(Q, \partial S)=\frac{1}{2}\mathcal{G}^{IJ}\partial_{J}S\partial_{J}S+\mathcal{U}\approx O$ . (3.4)

Here if we define the momentum and the time variable by

$P_{I}=\partial_{I}S(Q)$ , (3.5)

Q$I=\mathcal{G}^{IJ}P_{J}$ , (3.6)

it is easily shown that $Q$ and $P$ satisfy the classical canonical equation of
motion. Actually this is nothing but the Hamilton-Jacobi theory.

Thus with the aid of the Hamilton-Jacobi theory, a WKB-type solution
to the Wheeler-DeWitt equation is interpreted as describing an ensemble of
classical universes.

Of course the wavefunction of the Universe is not generally expected to
be well approximated by a WKB solution. To treat such a general case, we
decompose the variables to semi-classical ones (X, $P$ ) and quantum ones, and
write the total Hamiltonian as

$H=H_{C}(X_{J}P)+H_{Q}$ . (3.7)

Then if we expand the state vector $|\Psi>by$ the eigenstates of $X$ , $|X>$ , and
express it as an integral over $X$ of tensor products of $|X>$ and some state
vectors belonging to a Hilbert space for the quantum variables as

$| \Psi>=\int dX|X>\otimes|\Psi(X)>$ , (3.8)
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the Wheeler-DeWitt equation is written as

$[- \frac{1}{2}\mathcal{G}^{IJ}\partial_{I}\partial_{J}+\mathcal{U}(X)+H_{Q}(X)]|\Psi(X)>=0$ , (3.9)

where the first two terms on the left-hand side come ffom $H_{C}$ , and $\partial_{J}=$

$\partial/\partial_{H^{i}ere}x$
.

let us assume that $|\Psi(X)>$ is written as

$|\Psi(X)>=e^{iS(X)}|\Phi(X)>$ ; (3.10)
$H_{C}(X, \partial S)=0$, (3.11)

where $|\Psi(X)>$ varies much slowly in $X$ compared with $S$ , which is an ex-
tension to general state vectors of the WKB approximation discussed above.
Then by introducing a time variable $t$ along each classical solution $X(t)$ de-
termined Rom $S$ as

$\mathcal{G}^{IJ}\partial_{I}S\partial_{J}=\dot{X}^{I}\partial_{I}$
$arrow$ $\partial_{t}$ , (3.12)

and neglecting the second-order derivative of $S$ and $|\Phi(X)>$ , the Wheeler-
DeWitt equation reduces to

$l\partial_{t}|\Phi>\simeq H_{Q}|\Phi>$ . (3.13)

Thus we can derive the Schr\"odinger equation for the quantum ffeedom
along each WKB trajectories of $X$ ffom the Wheeler-DeWitt equation.

4 Path-Integral and WKB approximation

4.1 Path-Integral Expression for the Wavefunction of
the Universe

As is well-known, each solution to the Schr\"odinger equation

$l\partial_{t}|\Phi>=\hat{H}|\Phi>$ ; $H= \frac{p^{2}}{2m}+V(x)$ (4.1)
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in the ordinary quantum mechanics can be expressed in terms of the path-
integral

$\Phi(x, t)=\int DxDp\exp[l\int_{t_{0}}^{t}dt’(\dot{x}p-H)]\Phi(x_{0_{J}}t_{0})$,

$= \int Dx\exp[i\int_{t_{0}}^{t}dt’L(t’)]\Phi(x_{0}, t_{0})$ . (4.2)

We can formally derive similar expressions for solutions to the Wheeler-
DeWitt equation. First let us consider a Schr\"odinger equation

$i\partial_{t}\Phi(q, \phi;t,N)=\hat{H}\Phi(q_{J}\phi;t,N)$; $\hat{H}=\int ffN^{\mu}\mathcal{H}_{\mu}$ . (4.3)

Here $N=(N,N^{j})$ is not considered as variables but is assumed to be some
fixed functions. This is the reason why the argument of $\Phi$ contains $N$ . Now
we define $\Psi$ as a functional integration of $\Phi$ over $N$ :

$\Psi(q, \phi;t)=\int DN\Phi(q, \phi;t_{y}N)$ . (4.4)

Then $\Psi$ becomes time-independent because $\int dN(t)N^{\mu}=0$ , and expressed
by the path-integral

$\Psi(q_{J}\phi)$ $= \int DNDqDp\cdots\exp[i\int_{0^{t}}dt’(\dot{\wp}+\dot{\phi}\pi-H)]\Phi_{0}(q_{0:}\phi_{0})$

$= \int DqDp\cdots\prod\delta(\mathcal{H}_{\mu})\exp[\cdots]\cdots$

$= \int Dg_{\mu v}D\phi\exp[l\int_{\Sigma_{0}}^{\Sigma}d^{4}x\mathcal{L}]\Phi_{0}(q_{0}, \phi_{0};\Sigma_{0})$. (4.5)

Since the second line of this equation contains $\alpha H_{\mu}$ ) in the integrand, $\Psi$ is
shown to satisfy the Wheeler-DeWitt equation (in the formal sense). This
shows that at least some solutions to the Wheeler-DeWitt equation an be
expressed by the path-integral.

4.2 Hartle-Hawking Proposal
Motivated by the result in the previous subsection, Hartle and Hawking pro-
posed an Ansatz that the wavefunction of Our Universe is given by the path-
integral whose integration paths correspond to spacetimes which have no
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boundary other than the one on which the observation is $made^{[10,12]}$ . To be
precise, the path-integral here is the Euclidean one which is obtained by the
analytic continuation of the original expression to the imaginary time(Wick
rotation). Thus the spacetimes corresponding to the integration paths are ac-
tually not Lorentzian manifolds but Riemannian manifolds. The motivation
of this Euclideanization is two-fold. First in the quantum field theories in
the Minkowski spacetime the path-integral becomes a mathematically well-
defined objects only by the Wick rotation. Second a Lorentzian spacetime
with a single boundary has time-like closed curves violating the causality or
singularities.

Though the Hartle-Hawking proposal is a natural one in the path-integral
approach and it is shown that we can derive some interesting consequences
from it in some simple models, it was plagued ffom the start by a serious
defect of the Euclidean path-integral expression: the integrand does not have
a lower bound in contrast to the usual field theories.

To see this, let us consider a quantum theory of spatially homogeneous
and isotropic spacetime with a positive spatial curvature and a spatially
homogeneous scalar field $\phi$ on it. Since the metric of a spatially homogeneous
and isotropic spacetime is expressed for the choice $N^{j}=0$ as

$ds^{2}=-N^{2}dt^{2}+a^{2}d\Omega_{3}^{2}$ , (4.6)

where $d\Omega_{3}^{2}$ is the metric of the unit Euclidean 3-sphere, this system has only
two degrees of ffeedom: the scale factor $a$ and the scalar field $\phi$ . This type
of systems with finite degrees of Reedom obtained from the general system
by imposing some symmetries are called minisuperspace models.

The action is written for the present minisuperspace model as

S
$S_{G}= \frac{1}{2}\int dtN[-a\frac{\dot{a}^{2}}{N^{2}}+a-\frac{1}{3}\lambda a^{3}]=\int d^{4}x\mathcal{L}=S_{G}+S_{m}$

;
$(4.8)(4.7)$

$S_{m}= \frac{1}{2}\int dtNa^{3}[\frac{1}{N^{2}}\dot{\phi}^{2}-2V(\phi)]$ , (4.9)

where $\lambda$ is the cosmological constant. As is expected ffom the form of the
metric, the Euclidean action $I$ corresponding to this system is obtained by
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replacing $Nby-tN$ :

$I$ $=-iS=I_{G}+I_{m}$ ; (4.10)

$I_{G}= \frac{1}{2}\int dtN[-a\frac{\dot{a}^{2}}{N^{2}}-a+\frac{1}{3}\lambda a^{3}]$ , (4.11)

$I_{m}= \frac{1}{2}\int dtNa^{3}[\frac{1}{N^{2}}\dot{\phi}^{2}+2V(\phi)]$ . (4.12)

From these equations one easily see that the Euclidean action for matter $I_{m}$

is positive definite but that for gravity $I_{G}$ has no definite sign. Since the
Euclidean action appears in the path-integral as $e^{-I}$ , this means that the
integrand of tl 3 Euclidean path-integral has no lower bound.

This signature structure is reflected into the structure of the Wheeler-
DeWitt equation. For example, in the present model, the Wheeler-DeWitt
equation is written as

$[- \frac{1}{2}\frac{\partial^{2}}{\partial a^{2}}+\frac{1}{2a^{2}}\frac{\partial^{2}}{\partial\phi^{2}}+(-\frac{1}{6}\lambda a^{4}+\frac{1}{2}a^{4}-a^{4}V(\phi))]\Psi(a, \phi)=0$ , (4.13)

which has the hyperbolic structure. This hyperbolic structure ofthe Wheeler-
DeWitt equation is generic.

4.3 Complex-Contour Path-Integral and WKB ap-
proximation

Some people tried to eliminate this defect and make the Ansatz well-posed by
extending the path-integral to complex $paths^{[13,14]}$ . To see its basic idea, let
us consider the minisuperspace model described in the previous subsection.
For this simple system, it is exactly shown that the path-integral expression
for the wavefunction $\Psi(a, \phi)$ is reduced to the following two-dimensional
$integra1^{[15]}$

$\Psi(a, \phi)=\int_{\Gamma}dT\int d\phi_{0}G(a_{J}\phi, T;0, \phi_{0_{J}}0)_{l}$ (4.14)

where $\Gamma$ is some path in a complex plane, and $G$ is the Green function of the
Schr\"odinger equation for the $a-\phi$ system

$l\partial_{t}G=\hat{H}$ G. (4.15)
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Figure2
Convergent contours in
$T- plane:a^{2}\lambda\ll 1$

The problem [1OW is to find paths $\Gamma$ for which the integration converges.
Unfortunately we cannot discuss this problem with generality even for this

simple system. So let us omit the ffeedom of the scalar field and consider a
system with one degree of $ffeedom^{[13]}$ . Then by rewriting the metric as

$ds^{2}=- \frac{N^{2}}{q}dt^{2}+qd\Omega_{3}^{2}$ $(q=a^{2})$ . (4.16)

the wavefunction $\Psi(q)$ is expressed as

$\Psi(q)=\int_{\Gamma}\frac{dT}{T^{1/2}}\exp[lS_{0}(q, T)]$, (4.17)

where
$S_{0}= \frac{\lambda^{2}}{24}T^{3}-(\frac{\lambda}{4}q-\frac{1}{2})T-\frac{q^{2}}{8T}$ . (4.18)

The contours in the complex T-plane for which the integration converges
are shown in Fig.2 for $a^{2}\lambda\ll 1$ and in Fig.3 for $a^{2}\lambda\gg 1$ . The saddle points
of $\exp(lS_{0})$ are depicted by filled circles. $\exp(lS_{0})$ grows exponentially in the
shaded regions as $T$ approaches infinity.

From these figures one sees that there are two classes of convergent paths.
The first is the paths which run along the real axis, and the second is those
which start $ffom-i\infty$ , go up along the imaginary axis, and then approaches
infinity along the real axis.



186

Figure3
Convergent contours in
$T- plane:a^{2}\lambda\gg 1$

The integral along the first paths is dominated by the contribution ffom
the saddle point(s) HH’ and approximately given by

$\Psi_{HH}\sim\{exp[\frac{1}{(\lambda 3\lambda}(1-\lambda a_{3^{2}})_{2^{3/2}}]_{\frac{\pi}{4}}cos[\frac{-1}{3\lambda}a^{2}-1)-]$
$;a^{2}\lambda\gg 1;a_{2}\lambda\ll 1$

,
(4.19)

Actually this corresponds to the wavefunction specified by the Hawking-
Hartle Ansatz. On the other hand the integral along the second paths are
approximately given by

$\Psi_{V}\sim\{exp[i\frac{l}{3}\lambda a^{2}-1)^{3,2}]exp[+\frac{1}{\lambda 3\lambda(}(1-\lambda a^{2})^{3/2}]$ $;a^{2}\lambda\gg 1;a_{2}\lambda\ll 1$

,
(4.20)

which corresponds to the solution proposed by $Vilenhn^{[16,17]}$ .
Thus the convergence condition of the path-integral is not sufficient to

pick up the solution proposed by Hartle-Hawking. Furthermore, though the
integration along the HH-path for the case $a^{2}\lambda\ll 1$ is dominated by the
saddle point on the imaginary axis which corresponds to the Euclidean path-
integral, it is different ffom the saddle point adopted by Hartle-Hawking: the
latter is the point HH. Deviation ffom the original Hartle-Hawking proposal
becomes large for the case $a^{2}\lambda\gg 1$ : the real parts of the saddle points get
larger and larger as $a$ increases.
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5 Wigner Function of the Universe
The WKB interpretation explained in \S 3 has various defects. First it is gen-
erally difficult to find the semi-classical variables. Second the wavefunction
is in general a superposition of many WKB-type solutions as was shown in
the example in the previous section. It is difficult to separate each WKB
solution. One natural method to eliminate these defects is to use Wigner
function.

5.1 Definition and Fundamental Properties
First we briefly review the definition of the Wigner function and its funda-
mental $properties^{[18]}$ .

The original motivation for the introduction of the Wigner function is
find a formulation of quantum mechanics which has a similar structure to the
classical mechanics. In quantum mechanics a state of a system is described
by a density operator $\hat{\rho}$, and the expectation value of an observable $\hat{A}$ is given
by $Tr\hat{\rho}\hat{A}$ . If we define functions on the classical phase space $(Q, P)$ ffom $\hat{\rho}$

and $A$ by

$W(Q,P)= \int d^{n}q<Q-q/2|\hat{\rho}|Q+q/2>e^{ip\cdot q}$ , (5.1)

$A(Q,P)= \int ffq<Q-q/2|\hat{A}|Q+q/2>e^{ip\cdot q}$ , (5.2)

(5.3)

this expectation value is expressed as

$Tr\hat{\rho}\hat{A}=f\frac{d^{n}Qd^{n}P}{(2\pi)^{n}}W(Q, P)A(Q,P)$ . (5.4)

Thus quantum mechanics apparently gets a formulation similar to the clas-
sical statistical mechanics. $W$ is called the Wigner function. Of course the
Wigner function cannot be regarded as the classical distribution function
because it is not positive definite and behaves oscillatorily in general.

In terms of the Wigner function the evolution equation for $\hat{\rho}$

$i\partial_{t}\hat{\rho}=[\hat{H},\hat{\rho}]$ ; $H=P^{2}/2m+V(Q)$ (5.5)



188

is written in a form similar to the classical Liouville equation:

$\partial_{t}W+\frac{P}{m}\frac{\partial W}{\partial Q}-V’(Q)\frac{\partial W}{\partial P}=\sum_{n=1}\frac{(-1)^{n}}{2^{2n}(2n+1)!}V^{(2n+1)}(Q)\frac{\partial^{2n+1}W}{\partial P^{2n+1}}$ . (5.6)

In particular for the harmonic oscillator the right-hand side of this equa-
tion vanishes. Thus the right-hand side represents the higher-order quantum
fluctuations.

5.2 Relation to the WKB Approximation
In the case where the wavefunction has the WKB form

$\hat{\rho}=|\Phi><\Phi|$ ; $\Phi(Q)=A(Q)e_{J}^{iS(Q)}$ (5.7)

the Wigner function is estimated in the lowest order as
$W(Q,P)= \int dqA(Q-q/2)\overline{A}(Q+q/2)\exp[t(S(Q-q/2)-S(Q+q/2)+P\cdot q)]$

$= \int\phi|A(Q)|^{2}\exp[i(P-S’(Q))\cdot q+\cdots]$

$\sim\alpha P-S’(Q))$ . (5.8)

Thus it is sharply peaked around the WKB trajectories $P=S’(Q)$ .
To be precise, the behavior of the Wigner function around the peak is

much more $intricate^{[19]}$ . For example, if the WKB approximation of a solu-
tion to the energy eigenvalue problem

$\hat{H}\Phi(Q,E)=E\Phi(Q,E)$ (5.9)

is good, its Wigner function is approximated around the peak as
$W(Q,P)\simeq\sigma Ai(\sigma(H(Q_{J}P)-E))$, (5.10)

where

$\sigma(Q,E)=2^{5/3}(\frac{3S}{2h}I^{2/3}/(\frac{hk}{m})^{2}$ , (5.11)

$S(Q_{2}E)/h= \int_{Q^{Q_{t}(E)}}k(x_{y}E)dx$ , (5.12)

$k(Q,E)= \frac{1}{h}\sqrt{2m(E-V(Q))}$, (5.13)

$k(Q_{t\prime}E)\equiv 0$. (5.14)



189

By inspecting these expression, one sees that the Wigner function falls off
exponentially in the side $H>E$ while it damps oscillatorily in the side
$H<E$ .

5.3 Relation to the Husimi Function
Though the Wigner function is not positive definite as noted above, it be-
comes positive definite if it is averaged over a volume larger than the mini-
mum quantum volume in the phase space. The easiest as well as physically
meaningful way to see this is to utilize the coherent state expansion.

The coherent states are a set of states parametrized by the phase-space
coordinate $(Q,P)$ and expressed in the q-representation as

$<q|Q_{J}P>=(\pi 0^{2})^{-n/4}\exp[iP\cdot(q-Q/2)-(Q-q)^{2}/(20^{2})]$ , (5.15)

where $\sigma$ is a complex constant expressed in terms of the dispersions the state
in $Q$ and $P,$ $\sigma_{Q}$ and $\sigma_{P}$ , as

$o^{2}=(1+l\sqrt{\sigma_{Q}^{2}0_{P}^{2}-1})/\sigma_{P}^{2}$ . (5.16)

The coherent states $|Q,P>$ form a non-orthogonal overcomplete basis.
The unit operator is expanded by them as

$1= \int\frac{d^{n}Qd^{n}P}{(2\pi)^{n}}|Q,P><Q,P|$ . (5.17)

Hence if we define the amplitude of a state vector $|\Phi>with$ respect to these
coherent states by

$\Phi(Q,P)=<Q,P|\Phi>$ , (5.18)

$|\Phi>is$ expanded as

$| \Phi>=\int\frac{d^{n}Qd^{n}P}{(2\pi)^{n}}\Phi(Q_{J}P)|Q,P>$ . (5.19)

In terms of the coherent amplitude we define the Husimi function of the
state $|\Phi>by$

$F(Q,P)=|\Phi(Q,P)|^{2}$ . (5.20)
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Then after a short calculation we find that it is expressed in terms of the
Wigner function as

$F(Q_{J}P)$ $=(4 \pi\sigma_{Q}\sigma_{P})^{n/2}\int d^{n}qd^{n}pW(Q+q_{J}P+p)$

$\cross\exp[-(o_{P}^{2}q^{2}+o_{Q}^{2}p^{2}+2\sqrt{o_{Q}^{2}di-1}\wp)]$ . (5.21)

Thus the Husimi function is obtained ffom the Wigner function by averaging
it over a region of size $|\sigma|$ around each point in the phase space. Since the
Husimi function is non-negative definite ffom its definition, this prove the
statement at the beginning of this subsection.

5.4 Application to Quantum Cosmology
The result in the previous subsection and the behavior of the Wigner function
for WKB solutions suggest that the Husimi function can be used as a good
tool to judge for which variables the WKB approximation is good as well as to
give a probabilistic interpretation to deviation from the WKB approximation.

Historicallv the Wigner function is introduced into the study of quantum
cosmology in order to understand the transition of the Universe in a quantum
era to that in a classical $one^{[20,21]}$ . Here we consider the simple system taken
up in the previous section to illustrate how the Wigner function and Husimi
function is used to analyze such problem.

The Wheeler-DeWitt equation for this system

$(4 \frac{\mathscr{J}}{dq^{2}}-1+\lambda q)\Psi(q)=0$ (5.22)

is exactly soluble, and the Hartle-Hawking wavefunction is explicitly ex-
pressed in terms of the Airy function as

$\Psi_{HH}(q)=Ai[(1-\lambda q)/(2\lambda)^{2/3}]$ . (5.23)

The Wigner function of this wavefunction is also exactly calculable and given
$by^{[22]}$

$W(q,p)= \frac{1}{\pi(2\lambda)^{2/3}}Ai[-2H(q_{J}p)/(2\lambda)^{2/3}]$ ; (5.24)

$H(q,p)=(-4p^{2}+\lambda q-1)/2$ . (5.25)
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This is a special case where the approximate formula in the previous sub-
section becomes exact. The behavior of the Husimi function is obtained by
smoothing the oscillatory part on the one side of the WKB peak.

From this expression one finds that, though the peak of the Wigner func-
tion or the Husimi function has a broad with of order $\lambda^{1/3}$ along $p$ direction,
it becomes narrower and narrower as $q=a^{2}$ increases. This behavior can be
interpreted that the classical approximation of the Universe becomes better
and better as the universe expands. Actually the classical approximation be-
comes good much faster since the cosmic expansion rate $\dot{a}/a$ is proportional
to $p/a^{2}$ .
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