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Optimal Growth under Uncertainty:

A Complete Characterization of Weakly Maximal Programs

— B KEREFR RPN — (Shin-Ichi Takekuma)

1. Introduction

The purpose of this paper is to prove the existence of price systems
for weakly maximal programs of capital accumulation under uncertainty and
to characterize the weak maximality of programs. Thé result established
in this paper is a generalization of those of Radner (1973) and Zilcha (19
76). Also it includes the results in deterministic cases by McKenzie (198
6).

In the economy considered in this paper, there is uncertainty in pro-
duction technologies and utility functions. In each period in time, the
current production technology and utility function are certain, but future
technologies and utilities thereafter are uncertain. The economic model
presented in this paper is a general reduced form which includes many
cases of economic application.

In proving the existence of price systems supporting weakly maximal
programs, there are two key arguments. One is an induction argument for
the proof of existence of prices, which has been developed by McKenzie (19
86) in deterministic models and has first applied by Zilcha (1976) to
models with uncertainty. The other is a decomposition theorem on finitely
additive measures by Yoshida & Hewitt (1952), which has been used in prov-
ing the integrability of prices, first by Bewley (1972) in general equili-
brium models, and also by Radner (1973) and Zilcha (1976) in growth models
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with uncertainty. In their growth models, uncertainty exists only in pro-
duction technologies and is assumed to be stationary. In this paper we
shall consider a general non-stationary model with uncertainty in both
production technology and utility, and prove a general support price the-
orem for weakly maximal programs of capital accumulation.

This paper is formulated in the following fashion. In section 2 we
shall construct a general reduced model of capital accumulation under
uncertainty. In section 3 an‘exsistence theorem of a price system for the
weakly maximal program will be proved. In section 4 the conditions under
which price systems are integrable functions will be shown. In section 5

the weakly maximal program will be characterized by price systems.

2. A General Reduced Model

First we shall present a general reduced model of capital accumulation

in which future utilities and production technologies are uncertain.

Let (Q,%,P) be a probability space. Each element in Q denotes a
possible state of nature, which may be interpreted as a stream of environ-
ments in all past, present, and future periods. Familiy % is the set of
all pecsible ovents and P denotes the probability distribution of states.

Let T=1{0,1,2,+--} be the space of time. The uncertainty of states

is described by a filtration {$¥.|te T}, i.e., %¥. is a o-sub-algebra
of % such that F.C%.., for all te€T. Each family ¥. is interpreted
as the information about states that will become known up to period t.

The production technology available at each period t>0 is described
by a relation D:: Q - R"XR", that is,

weQ > D:.(w)TR"XR",

where R™ denotes an m-dimensional Euclidean space. We assume that the
graph of D. defined by
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GODO={G, v, @) | &, y)€d(w)}
is B(R“‘)xB(R“’)x%t—measurable, where B(R") is the family of all Borel
subsets of R". By D.(w) we represent the possibility of transformation
of capital stocks. That is, (x, y) €D:(w) means that under state w it
is possible to transform capital stock x at time t-1 into capital stock y
at time t.

The satisfaction in the economy at each period t>0 is described by a

utility function u: : G(D:) > RU{-oo}, that is,

&, y, w)eG(D:) » u(x, vy, w)€eRU{—o0},
where R denotes the real line. We assume that u. is a BR") X BR") X
% .-measurable function, which may take value —oo. Value u.(x, y, w) is
interpreted as the maximum level of social welfare under state w attained
in period between time t-1 to time t if capital stocks at time t-1 and
time t are x and y respectively.

In order to show a program of capital accumulation, we will use a
stochastic process, i.e., a function K: T X Q>R" such that K(t, -) is .
-measurable for each t€T. To denote a stochastic process K: T X Q—R",
we also write as K={k. | te T}, where k. is a function defined by k.(w)=
K(t,w). In addition, we shall restrict ourselves only to essentially
bounded processes, and namely assume that k. €£_(%.) for all te€ T, where

L£.(F#:.) is the set of all essentially bounded <%.-measurable functions on
Q to R".

The set of all possible ways to transform capital stocks from time t-1

to time t is defined by
.= {(f, e) €L (F DIXL(F) | (f(w), glw)) ed(w) a.s.}.

Definition 2.1: A stochastic process K={k. |t T} is called a pro-
gram if k. e£ (#:) and (k.- (w), ki(w))€D:(w) a.s. for each t>0,
i.e. (kt—], kt) €JfQ. for all t>0.
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In a program K={k. | teT}, for each t€T, k. is a random variable
and k«(w) denotes quantities of capital stock planned to accumulate at
time t in state w. Since D: is B(R") X B(R") X F.-measurable, produc-
tion technology D:. is perfectly known in determining capital stock k: at
time t. However, in determining k.-, at time t-1, production technology
D. is unknown. In this sense, uncertainty exists in production technolo-
gies. Similarly, utility function u. is perfectly known in determining
capital stock k. at time t, but unknown in determining k.-, at time t-1.
Thus, uncertainty also exists in utility functions.

For a program K={k.| t€ T}, we denote, by U.(K), the sum of expected
utilities that will be obtained up to time t by program K. Namely, under

some appropriate conditions which will be shown later, we can define
: ,
Ut(K)=21 Qus(ks.l(w), ki(w), w)iP(w).
s=

Since value U.(K) may become infinity as t goes to +oo, the so-called
overtaking criterion should be used to evaluate programs.

Definition 2.2: A program K={k.]teT} is said to be weakly maximal
if any other program starting from the same initial condition can not

overtake program K, i.e., there is no other program K’'={k.’ | t€ T}
with ko=k,> such that

lim inf [U.(K’)-U.(K)] > 0.

t>+c0

The above definition is a generalization of maximization in usual

problems where utility sums are bounded.

3. Price Systems Supporting Weakly Maximal Programs
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In this section we shall establish a general version of the support

price theorem. The following are basic assumptions for the model.

(&.1) (convexity) For each t and w, D:.(w) is convex and u.(x, vy, w) is
concave in (x, y).

(A.2) (boundedness) For each t, for any a >0 there exists a number S
such that (x, y)€Di(w) and | x| £a imply Iyl £8 and u(x, v, w)< 8.

Assumption (A.1) is the convexity of the model, and means that produc-
tion sets are convex and utility functions are concave. Assumption (A.2)
is the boundedness of the model in each period, and means that, if capital
stock at time t-1 is bounded, then capital stock and utility at time t are

also bounded.

Remark 3.1: Assumption (A.2) implies that given fe€£ (%¥:.-1), there
‘exists a number b, such that | gll.<by and §u.(f, g, -)dP b, for all
(f’ g) Ec@to

We do not have to take into consideration programs which are obviously
bad. Let us consider a program K*={k*. ]| te T} catisfying the following
condition.

(C.1) Suek*.-,, k*c, -)dP>—oco for each t>0.

Remark 3.2: Under assumption (A.2), condition (C.1) implies that in pro-
gram K*, §u.Ck*._;, k*¢, -)dP is finite for each t>0. Thus, value
U:(K*) is well-defined, and the definition of weak maximality can be
applied to program K*.
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Given program K*, for each t€T let us define a normalized utility

function, v.: G(D.)=>R, by |

vel(x, ¥, w)=u:(x, v,w)—u: k" (w), k* (w),w).
For each t€T and f€£_(%.), we denote by X .(f) the set of all feasible
programs beginning with capital stock f at time t, 1i.e.,

M. (f)={K={k: ] te€T} | K is a stochastic process such that k.=f

and (k<, Ke+1) €.+, for each s2>t}.

Now, by virtue of Remark 3.2, we can define a normalized value function.

For each t€T and f€£_(S%.), let us define a function V. : £.(%.)—=>R by
r
V.(f)=sup {lim inf X ‘r Ve(ke-y, ke, -)dP} for f€£ (F.).
KeXM(f) r=+o s=t+l¥ Q
Here, we should note that functions V.’s are defi_ned for a particular
program K*, and they depend on the program.

Remark 3.3: It can be shown by defintion of V. that for each t€ T,
V()= Svee ((f, g, DAP +V.. (g) for all (f, g) €L:+.

In particular, if program K*={k*. | t€ T} is weakly maximal, we can show

that program K* is agreeable, i.e.,

Vt(k*t): SVt+1(k*t, k*t-p], ‘)dp +Vt+1(k*t+1‘) for all teT.

For each +eT, we define the effective domain of function V. by
Lo={f €2(F) | Ve(f)>-0}.
Also, for each t, we define a set by
Y.={g | (f, g) €. for some f}.
Furthermore, we assume the following condition for program K-.

(C.2) k*o€intZ, and int(Y.NZE.)# ¢ for all t>0, where symbol
”int” means the interior in the | - |l.-topology for space Z£_(%%:).

By assumption (A.1), we can easily show that V. is concave and Z. is
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convex for each t€T. Also, for each t>0, define a map ¥ .:{Q:.—=>R by

. (f, g)=fQut(f(w), ¢(0), w)dP.

Then, map ¥ : can be shown to be concave under assumption (A.1).

For each teT, letr £.(%%.) denote the dual space of £ (¥:.), i.e.,

the set of all continuous linear functions on £.(S%.) to R. For each teT
and keZ_(%%.), we define the set of subgradints of V. at k by

VK ={zr e (F)IV.®+m-(f-k)=2V.(f) for all feZ.}.

Moreover, for each t>0 and (k, k) €Z.(F+-,) XL (.), we define the set
of subgradients of . at (k, k’) by

vk, KD)={(n, n’)e. (F- DXL *(F) |
.k, K)+z-(f-K+n’-@=k)=p.(f, g

for all (f, g) €.}.
Let us define prices of capital goods in program K*.

Definition 3.1: We call {w#.]t€T} a price system supporting pro-
gram K*, if, for all teT, w.€ 3V (k*.) and (¢, —7wc+1) €
3.+ (k™, k*eu ), i.e.,
1 V& D)—m ke 2V ()—m.-f forall feZ..
() Sueei k™, RK*eeq, DAP — 7o k* e+ meerok*eu

Z2fua (£, g DIAP—mof+meneg for all (f, g) €:+:.

Now we are ready to prove the existence of a price system supporting

the weakly maximal program. First we shall prove the so-called induction
lemma.

Lemma 3.1: Let K*={k*.|t€ T} be a weakly maximal program satisfy-

ing conditions (C.1) and (C.2). Under assumptions (A.1) and (A.2), if

1€ 3Ve-1(k*+-1), then there exists m.<€ 8V.(k*.) such that
(7zt—], —ﬂt)e awt(k*t-l, k*t).
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Proof: Assume that m..,€ QV._,(k*«-;), and define a number w. by
We= fuc(k*c-q, ke, AP +Ve(k*) —7meo1°k*c
=Veoq(k*e-) —7mmeook* e
Also, define two sets,
A={, g eRXL(F) lw>we— Suc(f, g, DdP+ 7., f
for some f with (f, g) €.},
and '

B={(w, ) eRXL(F:) | V. (g)2w}.

Clearly, (V.(k*:), k*:)€B, and (V:(k*:), k*:) €bd A. By assumption
(A.1), these sets are convex. In addition, since int Z.# ¢ by condition
(C.2), set B has non-empty interior. o

Suppose AMNB# ¢. Then there exists (f, g) €. such that

Ve(@>we— fu(f, g, AP+ x4 f.
By the definition of value function V., we have
| Ve () —me 1o £V 1 (k* o)) = weo1ok™ e,
which implies that mw..,¢ QV:-;(k*.-,), a contradiction. Hence ANB=¢.

By a separation theorem [Dunford & Schwartz (1964), Thm.V.2.8, p.418],
there exists a non-zero continuous linear function (c,—7m:) on RXZ_(*F.),
i.e., a number ¢ and a function 7 .€Z_*(%.) such that

C-W— 7 g2cw —m.+8g for all (w, g2 €A and (w’, g’)€B.
This implies that
(3.1) ciwe Sulf, g, DdP+me-1-f] —m-g2cV(g’)—m: 8
for all (f, g) €40 and g’ €Z..

Suppose ¢=0. (3.1) implies that = .-(g’—g)=0 for all (f, g) €LQ-
and g’ €X.. Therefore, by condition (C.2), m+.=0, which is a contra-
diction to (¢, 7 .)#0. Hence, since c20 by the shapes of sets A and B,
we can assume that c=1 without loss of generality.

Put g”’=k*. in (3.1). Then,

fuc(k*eo1,k*e, )dP — o ok* o1+ e k*e
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= fu(f, g, )AP—m .-+ f+m.-8
for all (f, g) €:. This implies that (w:.y, — 7)€ Q¥ (k™ c-1, k*).
Moreover, put f=k*._; and g=k*. in (3.1). Then,
Vok*)—m(k )2V (@) — 7 (g’) for all g’ €Z.,
which implies that = . 3V.(k*.). [ |

Theorem 3.1: Let K*={k*. ] t€ T} be a program satisfying conditions
(C.1) and (C.2). Under assumptions (A.1) and (A.2), if program K* is
weakly maximal, there exists a price system supporting program K*.

Proof : The theorem can be proved by an induction argument. Since k™,
eint %, by condition (C.2), by a separation argument there exists 7 o€
QVo(k™o). Thus, by induction with respect to time t, Lemma 3.1 implies
the existence of a price system {m#.] t€ T} supporting program K*. ®

For each t>0 and (k, kK’) €Z.(F:.-1) XL (%), we define the set of
partial subgradients of ». at (k, k’) by
19k, KD)={r el (F:-) | (x, n’)e 3p:(k, k)}.
Then, we have the following theorem, which is usually called “the envelope

theorem”.

Theorem 3.2: Let K*={k*.|te€ T} be a program satisfying conditions
(C.1) and (C.2). Under assumptions (A.1) and (A.2), if program K* is
weakly maximal, then aV.(kk*.)C 319 ¢+q1(k*:, k*++;) for all teT.

Proof : The theorem follows immediately from Lemma 3.1. [ ]

4. Integrable Price Systems
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For each te T, let ba($#.) denote the set of all bounded finitely
additive m-dimensional vector-valued measures on . absolutely continuous
with respect to P. Also, let £,(%%.) denote the set of all integrable
¥.-measurable functions on Q to R".

Remark 4.1: By a theorem [Dunford & Schwarts (1964), Thm.IV. 8.16, p.296],

£.7(%:) can be identified with ba(%¥.), and for each = €£_*(%.),
w.f=§fdn for all feZ (%),

where 7 is also regarded as an element of ba(%%.). In addition, if = is

countably additive, then, by the Radon-Nikodym theorem [Dunford & Schwarts

1964, Thm.III.10.7, p.181], there is a unique derivative of =, say, p€

£.(%:) such that
§fdz = § p-fdP for all fe£ (%.).
Thus, £,(%%:) can be regarded as a subset of ba(S%.), or Z.*(%.).

Remark 4.2: If m €ba(S%.) is non-negative, then, by a theorem [Yoshida
& Hewitt (1952), Thm.1.23, p.52], 7 can be uniquely decomposed into two

parts, that is, there exist unique 7 .20 and 7 .20 in ba(%¥.) such that
7t . 1s countably additive and =z . is purely finitely additive, and such
that

=M+ 7Tp.
Therefore, by the Radon-Nikodym theorem, there is a unique derivative of
7., say, p€ZL,(%.) such that

§fdn .= §p-fdP for all fef (%.).

Since £,(F)TL (), for peL,($+) we can write pe 3V.(k) if and
only if Ve(k)+ §p-(f—k)dP 2V.(f) for all feZ.. Also, for peL, ()
and p’ €£,(F..,) we can write (p, —p)€ 3¢+.+,(k, k’) if and only if
fucaqk, K7, )dP+ §p- (f—-k)dP - §p’-(g—Kk’)dP = §u..,(f, g, -)dP
for all (f, g) €fl:++;. '
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Now, we are interested in a price system {p. | t€ T} such that p. €
£, (%) for all teT.

Definition 4.1: We call {p.|t€ T} an £,-price system supporting
program K*, if, for all te T, p.€Z,(%+), pr€ V. (k":), and
(Pt, —Pt+1) € 3P r+1(k*, k*cip), i.e., ‘
() Vek*)— §pe-k*dP 2V (f)— § p.-fdP for all feZ..
2 Suesi1k*, k*evq, =)dP— §pi-k*dP + § peaqok*e1dP

2 Sue. (f, g, )dP— §pe-fdP + § pe+y-gdP for all (f, g) €L:+1,
where V. is the normalized value function for program K*.

In order to get an Z,-price system, the following lemma is useful.

Lemma 4.1: If (w, —#7’)e€e 3.+, k’), w20, and 7’ =0, then
(p, —p’) € 3¥+.1(k, k’), where peZ£,(F:) and p’ €£,(F:.,) are the
derivatives of the countably additive parts n . and n’. of 7 and
7’ respectively.

Proof: Since w20 and =’ 20, by Remark 4.2, = and 7’ can be
decomposed uniquely into a countably additive part and a purely finitely
additive part. Namely, = is decomposed into = .€ba(%:) and 7 .€
ba(#:), and 7’ into n’.€ba(¥:.,) and m’ . €ba(¥+..,). Also, let us
denote the derivative of =z . by p and that of =’ by p’.

Moreover, by a theorem [Yoshida & Hewitt (1952), Thm.1.22, p.52], for

7, there is a sequence A.€ . such that A.CA..; and 7 .(A.)=0 for

all n, and such that lim. P(A.)=1. Since 7n’, is also a purely finitely
additive measure defined on ., there is a sequence B.€%#. such that B,C
Bnsy and 7’ .(Bn)=0 for all n, and such that lim. P(B.)=1. Define C.=

Aﬂanv Then, Cnecyt, CnCCn+], %p(Cn):”’p(Cn):O fOI' all l'l, and
lim. P(C.)=1.
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Now, let (f, g) €4+..,. For each n, define functions f. and g. by

[ (f(w), g(w)) for w eC,
(fo(@), gn(w))= L(k(w), k’(w)) otherwise,
Then, (f., g.) €40++1. And, since 77 o(Co)=m’ +(C.)=0, we have
- k—f)=mk—fr)+mok—1,)
={p-(k—f.)dP + SC k—fodx,

= {pkdP— § p:f.dP
and
(kR —g)=nmc & —g )+ (kK —gn)
=§p-k’—gndP + SC kK’ —gdm’,

=§{pkK’dP- §p’-g.dP
Thus, since (w, —m’)€ 3¥..1(k, k’), we have
Suc. (k, kK, )dP+ §p-(f.—k)dP— §p - (g.—k’)AP
2 Suee (fn, gn, ©)dP
for all n. Since lim. P(C.)=1, we have in the limit
Suceq(k, k¥, AP+ §p-(f-k)dP—-§p’-(g—k’)dP
2z Sue (£, g, -)dP.
This completes the proof of the lemma. |

In order to insure the non-negativity of prices we assume:

(A.3) (monotonicity) If (x, y) €D:(w), x<x’,and x#x’, then (x’, y) €
Di(w) and u+ (%, v,w)<u:E’, yv,w).

The above assumption is the monotonicity of utility functions with
respect to initial capital stock at each period. Now, under this assump-

tion, we are ready to prove:
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Theorem 4.1: Let K*={k*. | te€ T} be a program satisfying conditions
(C.1) and (C.2). Under assumptions (A.1), (A.2), and (A.3), if pro-
gram K* is weakly maximal, then there exists an £,-price system

{p. | teT} such that (p:, —pr+1) € 3¥++1(k*:, k*e.) for all teT.

Proof: Theorem 3.1 implies the existence of a price system {m.]te
T} supporting program K*. Assumption (A.3) implies that .20 for all t
€T. Therefore, this theorem follows from Lemma 4.1. [

In order to prove the existence of an £,-price system supporting a

program K*, we need to assume the interiority of the program. For each fe€
im(cyt—l) s define '

Y. (f)={gel(F) | {, g €:}. :
At time t, given k*._,, we choose k*t from set, %.(k*.-;). The
following condition means that k*. is chosen in the interior of %.(k*.-:).

(C.3) (interiority) k*.<int®.(k*.-,) for all t>0.

For a weakly maximal program satisfying the above interiority condi-

tion, we can prove the existence of an £,-price system supporting it.

Theorem 4.2: Let K*={k*. | t€ T} be a program satisfying conditions
(C.1), (C.2), and (C.3). Under assumptions (A.1), (4.2), and (A.3),

if program K* is weakly maximal, then there exists an £,-price system
supporting program K*. '

Proof: By Theorem 3.1 we have a price system {mz.| t€ T} supporting
program K*, i.e., w.€ QVe(k*:) and (w:, —7c+1) € 3¥We+1(k*c, K ¢s1)
for all t=0. Assumption (A.3) implies that 7= .=0 for all t€T. There-
fore, by Lemma 4.1, we have {p. | t€ T}, where p. is the derivative of the
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countably additive part of m. for each t, such that (p:, —Pt+1) € 3¥t1
(k*+, k*¢+;) for all t=0. Therefore, it suffices only to prove that p:. €
aVe(k*.) for all t=0.

Suppose that 7. were not countably additive, there would exist a
sequence of sets A.€%. such that A.CA.r; and 7. (A) S 7w (Uk A —w
for all n, where weR", and w#0. Let B.=A4,U(Q\ U« Ax). Then,

U. Bi=Q and

(4.1) 7 (B) S .(Q)—w.
for all n. Define fe£ (%¥..,) by
(4.2) flw)=k*+_1(w)+ 5w,

where & is a positive number. Also, for each n, define g.<€Z_(S%.) by

W*t(w) for w €B,

4.3 (@)= | |
(4.3) gn(w) k" (@) + 6 m.-1(Q) otherwise.

Here, by conditien (C.3), we can choose a sufficently small & such that

-~ (k*<_1, g€-) €L.. Therefore, by assumption (A.3), (f, g.) €M.. Moreover,
by assumption (A.4), §u:(Kue-1, kKue, *)dP < §u.(f, ku:, -)dP. There-
fore, since lim., P(B.) =1,
| fueKue-1, kuor )< Julf, ga, )P
for all sufficiently large n. Since (mw:.-;, —7m:) € ue k™1, k™), we
have, by (4.1), (4.2), and (4.3),
0> fue(k*eoy, k*:, )dP — §u.(f, g., )dP
Zﬂt-l‘(k*t—l_f)_ﬂt'(k*t_gn)
=S e (Q)w+ S 1 (Q) . (Q\Bn)
— 8 ( QW+ S 1 (Q) (e (Q)— 7+ (Br))
2 =871 (Q)w+Sm 1 (Q)-w=0,
a contradiction. This proves the countable 'additivity of #+. Thus, p:=
7+ for all t>0. Therefore, p. € 3V:(k*:) for all t>0.
In particular, we have shown that p, < @V,(k*,) and (p,, —p,) €
3y 1k o, k*1). Let (f, g)€L;. Then,

vV
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Vitk* D+ §pi(g—k")dP 2V, (g)
and
fuitk o, k*y, )dP+ § po- (f—k*o)dP — §pi-(g—k*dP
2 fu,(f, g, -)dP
Hence, by the above two inequalities,
SuiCk s, ki, AP +V (k") + § po- (f—k*o)dP
2 fu.(f, g, HDdP +V.(g).
Thus, by definition of the value function Vo, we can conclude that
Vo(k™o) + § por (f—k*o)dP 2V, (f).
This proves that poe aV,(k*y). |

5. Complete Characterization of Weakly Maximal Programs

First we shall prove a fundamental theorem which shows a necessary and

sufficient condition for weak maximality.

Theorem 5.1: Let K*={k*. | t€ T} be a program satisfying conditions
(C.1) and (C.2). Then, under assumptions (A4.1) and (A.2), program K~
is weakly maximal if and only if lim. V.(k*.) =0 and there exists a
price system {z .| t€ T} supporting program K*.

Proof: (Necessity) Assume that program K* is weakly maximal. Then,
by Theorem 3.1 we have a price system {7z .| t€ T} supporting program K-.
Also, since program K* is weakly maximal, by definition of V., V.(k*:)=0
for all t€T. Therefore, lim. V.(k*:)=0.

(Sufficiency) Assume that K* is a program satisfying conditions (C.1)
and (C.2), and that lim. V.(k*.)=0 and there exists a price system {m: |

te T} supporting program K*. First we shall show that program K* is
agreeable, 1i.e.,
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i
(5.1) Vo(k“o)=21 VS(k*s-], k*s, ')dP + Vt(k*t) for all t>0,
A 5=

where v.’s are the normalized utility functions for program K*.
Suppose that (5.1) were not true. Then, by definition of V,, there is
t’>0 such that

t’
Vo(k*o)>21 Vs(k*g_], k*s, ‘)dP + Vt'(k*t’).
S=

Therefore, again by definition of V,, there exists KeXk*,), & >0, and
t”>1t’ such that

t
(5.2) 21 VS(ks—], ks, ‘)dP +Vt(kt)
§=

>SZI ve(k*<_q, k*., )dP +V.(k*)+ & for all t>t”.
On the other hand, since {m# .| teT} is a price system supporting

program K™,

Vek*e) —me-k*e2Ve(ke) — 7w o ke
and

Suc(ke-1, k*:, )AdP —m e k™1t werk*e 2

Suc(ke-q, ke, )dP —m -1 *KReo 1+ 7 o ke

for all t>0. Since ky=k*,, These inequalities imply that

t t
Z vs(k*s-l, k*s, ')dP +Vt(k*t);zl vs(ks—], ks, ')dP +Vt(kt)
- S=

for all t>0. This contradicts (5.2). Thus, (5.1) hase been proved.

Now, by (5.1) and by definition of functions vt’s,_Vo(k*o)zvt(k*t)
for all t>0. Therefore, since lim. V.(k*.)=0, we can conclude that
Vo(k*o) =0. Hence, by definition of v.’s,

vo(k*o):il vo(k*oos, k*., )dP.
S:

By definition of Vo, this implies the weak maximality of program K*. W
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Now we can prove a useful theorem in the case where the sum of

expected utilitis is finite. we assume in addition the following:

(A.4) For each t, (x, y)€D:(w) implies x=0.
(A.5) For each t and w, (0, 0)€D:(w) and u.(0, 0, w)=0.

Assumption (A.4) means that capital stock must be non-negative. 4nd,

Assumption (A.5) means possibility of inaction, namely that capital stock
can be zero.

Theorem 5.2: Let K*={k*.|t€ T} be a program satisfying conditions
+0 '
(C.1) and (C.2), and assume that ;231 u:(k*+-7, k*¢, -)dP exists and
is finite. Then, under assumptions (A.1), (A.2), (A.3), (A.4), and
(A.5), program K* is weakly maximal if and only if there exists a
price system {7 .| te T} satisfying the following conditions:
(1) For each t>0,
Sut(k*t—], k*t, ')dp_ﬂt-l'k*t-1+ﬂt'k*t

2 fu(f, g, DdP—m .- f+m.-g for all (f, g) €L-.

(2) %im Te-k*e=0.

> +00

Proof: (Necessity) Assume that program K* is weakly maximal. Then, by
Theorem 3.1 we have a price system {m .| t€ T} supporting program K*.
Therefore, for each teT, Vi(k*)— 7w k*. 2V. (f)— 7 +-f for all fe
£.(¥#:), where V. is the normalized value function for program K*. Hence,
by putting f=0, we have

Ve(k*:) =V (0)Z 7+ -k™ for all t.
In addition, by definition of V. and assumption (A.6),
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Vt(o)gz+ IVS(O’ 0, ')dP;*’Z J‘US(k*S——l’ k*57 ')dP
s=1+1 s=t+1

for all t>0, where v.’s are the normalized utility functions for program
K*. Thus, by the above two inequlities, we have

Vt(k*t)+2+m fus(k*s-], k*., )dP =z .-k*. for all t>0.

s=t+1
+00 )
By Theorem 5.1, lim V.(k*.)=0. Also, since 1.:21 ue(k*eq, k*«, -)dP is
t-—->+m =

+00

finite, lim X ‘J’.us(k*s_l, k*., -)dP =0. Hence, the above inequality
{—>+o0 S:t+1

implies that %1_21 sup 7+*k*«<0. On the other hand, '(A.4) implies that
+00

k*+20, and (A.3) implies that m.=0. Hence, m.-k*.=0 for all t>0.

Therefore, we can conclude that lim m.-k*.=0.
1—=>+00

(Sufficiency): Let K*={k*. | t€ T} be a program satisfying conditions
(C.1) and (C.2), and assume that there exists a price system {z .| teT}
satisfying conditions (1) and (2) of this theorem.

Now, let K=1{k.] teT} be a program such that ko=k*,. Since {m. |t
€T} satisfies condition (1) of this theorem,

SucCk™e-q, k™, AP+ 7@y (ke —K*e-1) —mer (RKe—k*o)
2 fucCke-q, ke, ©)dP
for all t>0. Since ko=k"y, by summing up we have
nt-k*»rnt-ktg}]t us(ks-1, ko, -)dP—Et us(k*s-1, k™e, +)dP
s=1 s=1
for all t>0. -(A.3) and-(4.4) imply that m.-k.20. Hence, The above in-
equality and condition (2) of this theorem imply that program K does not

overtake program K*. Namely, program K* is weakly maximal. |
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