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Abstraction
This paper presents a framework of obtaining a natural deduction proof of a given logic formulae

based on similarity among formulas under the assumption that similar formulas have similar
solutions. A formulae to which a proof has already been given is called a guiding problem. From a
guiding problem, a schema which is applicable to a class of similar formulas is constructed by
abstraction. A schema acts as a specifcation of proofs and any object formulae having the same type
to a schema can be obtained according to the typed proof $s\alpha uctuIe$. The analogical reasoning based on
this idea is formalized using typed language in the framework of higher order logic. Finally, we show
that this analogical reasoning procedure can be realized based on higher order unification within the
computable scope.

1. Introduction
In order to realize an intelligent system on machine, one of the most important problem is to

introduce a reasoning mechanism which break through the wall of present deductive theorem proving

paradigm. The analogical reasoning is a mechanism to reason by finding certain similarity with

some already known problem, and is considered as a most essential mechanism which supports the

creative thinking of human beings. It has been proposed several kinds of models for analogical

reasoning $systems^{[6,10.13]}$ . Among them, the reasoning system based on the generalized knowledge

produced from already known formulae by abstraction is called the abstraction based
$analogy^{[.2.3.4\beta,8.14.16]}$ . In this paper,an abstraction based analogical reasoning system for LK proving
will be formalized as illustrated in Fig. 1. Where,the proof of a guiding problem is known and this

proof structure is abstracted as proof schema. Then a new formulae ? is proved using the similarity

between ? and some guiding problem. By this analogical reasoning process,we can expect to reduce
the nondeterministic aspects ffom the $pr\{\kappa essing$ and to realize certain non-deductive reasoning.

2 LK system and natural deduction proof
2.1 LK system

The LK system is alogic system which consists of the following inference rules.
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Fig.1 Proof construction by analogy

$(or- L)j$」$\}$ 沖旦$\mathbb{J}$ (or-R) $L\pm-\Delta$」沖 (and-L) $R$ $(and- R)$工�$\Delta$ 工�$\sim$

$A\vee B,\Gammaarrow\Theta$ $rarrow \mathfrak{g}A\vee B$ $A\wedge B,\Gammaarrow\Theta$ $\Gammaarrow A\wedge B$

(imp L)エ$=^{-}\Delta\Delta\Delta$ (imp-R) LE低沖 L (aU-L) N&此�\pm 沖 (all-R)工�\sim \Delta 成�沖
$\Gamma,A\supset B,\Deltaarrow\Theta,\Lambda$ $\Gammaarrow Q-A\supset B$ $\forall xA(x),\Gammaarrow\Theta$ $\Gammaarrow\Theta,\forall xA(x)$

(some-L)Afx:$=v1$ . $\Gammaarrow\Theta$ (some-R) $\Gammaarrow\Theta.Alx;=t1$ (thin-L) $\underline{\Gammaarrow\Theta}$ $(t!\dot{u}n- R)\underline{\Gammaarrow\Theta}$

$\exists xA(x)\Gammaarrow\Theta$ $\Gammaarrow\Theta,\exists xA(x)$ $A\Gammaarrow\Theta$ $\Gammaarrow Q-A$

$(not- L)\underline{\Gammaarrow\Theta.}$A (or-R) $A.\Gammaarrow\Theta$ $(Cut)\underline{\Gammaarrow\Theta.AA.\Deltaarrow\Lambda}$

$\sim A,$ $\Gammaarrow\Theta$ $\Gammaarrow\sim A,\Theta$ $\Gamma,\Deltaarrow\Theta,\Lambda$

A sequent $Aarrow A$ is trivially true and is called an axiom. A LK natural deduction proof is produced

by applying the inference rules in nondeterministic, and can be represented by a derivation tree.

弧!
$\ovalbox{\tt\small REJECT} aarrowarrow\exists xx$ $1\mathfrak{d};OL$

J一 越庄�\supset \Leftarrow

$\ovalbox{\tt\small REJECT}\forall x$
$\ovalbox{\tt\small REJECT}\vee\forall xxxarrow\exists xx$

$\ovalbox{\tt\small REJECT}\vee\wedge\forall xxxarrow\exists xx$

$arrow p(a)v\phi)_{A}\forall x(- p(x)\supset q(x))\supset\exists xq(x)$

Fig.2 A natural deduction proof.

A formulae is provable if there exists a proof tree whose root and leaves are labeled with the
formulae and certain axioms respectively. In Fig.2, an example of LK proof of the following
formulae is shown: $arrow(p(a)\vee q(b))\wedge\forall x(p(x)\supset q(x))\supset\exists xq(x)$

2.2 Term representation of LK proof

Each inference rule is looked upon a function which maps ffom the assumptions given in the upper
side of the rule to the conclusion given in the lower side of the rule. For example, the or-L rule
corresponds to a function with the type [A. $\Gammaarrow\Theta$] $arrow[B,\Gammaarrow\Theta]arrow[A\vee B,\Gammaarrow\Theta]$ .

A. $\Gammaarrow\Theta$ $B\Gammaarrow\Theta$ $(\alpha_{-}L)$

$A\vee B\Gammaarrow\Theta$

This can be represented as the following term:
$[AvB,\Gammaarrow\Theta]=\infty-L([Ararrow\Theta],[B,\Gammaarrow\Theta])$

In the similar way, any LK proof is able to be represented by a tern. In the followings, we denote the
term representation of a proof for sequent $\Gammaarrow\Theta$ as $pr\omega 1\langle\Gammaarrow\Theta$), and $caU$ it as a $pr\omega ftem\iota.$ .
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The labels of any leaves of completed proof are the axioms, that is, the sequents in the form $[A$,

$\Gammaarrow\otimes A]$ or equivalently in the form $[Aarrow A]$ . Thus,the proof term of each completed proof is the form

such that $oem?(\ldots,oe1m(Aarrow A),\ldots,oeJm(Barrow B))$. A proof in which some parts are not completed is

caUed a $par\emptyset aI$proof. It is noted that the sequents at the leaves of partial proofs are not always

axioms. For example, let us consider the proof given in Fig.3,$which$ is a proof of Fig.2 in which the

subproofs for the formulas $[p(a),\forall x(p(x)\supset q(x))arrow\exists xq(x)]$ and $[q(b)arrow\exists xq(x)]$ are not complete&

$n$ =一旦 x $\sim L$ $0in_{-}L$)
$\ovalbox{\tt\small REJECT}\forall xxxarrow\exists xx\forall xx\supset xarrow\exists xx$ (v-L)
$\ovalbox{\tt\small REJECT}\vee\forall(\bigwedge_{-}L)$

$\ovalbox{\tt\small REJECT} v(\supset_{-}R)$

$arrow(p(a)vq(b))_{A}\forall x(p(x)\supset q(x))\supset\exists xq(x)$

Fig.3 A partial proof of Fig.2

A term representation of this partial proof is given as follows:

$\lambda X\lambda Y.imp- R(and- L(or- L(X,thin- L(Y))))$

,where X and $Y$ represent the partial proof for $[p(a),\forall x(p(x)\supset q(x))arrow\exists xq(x)]$ and $[q(b)arrow\exists xq(x)]$

respectively. Therefore, the partial proof given in Fig.3 implies the $pr\infty f$ having the type

$[p(a),\forall x(p(x)\supset q(x))arrow\exists xq(x)]arrow[q(b)arrow\exists xq(x)]arrow[arrow(p(a)\vee q(b))\wedge\forall x(p(x)\supset q(x))\supset\exists xq(x)]$.

We can consider that the proofs whose proof tree are different only at the leaves are similar together.

Basing on this idea, an analogical reasoning system $wiU$ be designed.

3 Schemata for Proof Analogy

3.1 Simple Schema as proof types

We call a formulae whose proofs have already been known to be a guiding formulae or guiding

problem.We assume that some guiding problems are collected as a database. A schema constructed

ffom guiding problem $g$ is defined as a formulae in which some predicates of $g$ are abstracted as
predicate variables. A $s\dot{u}$nple schema is a schema which is constructed from $g$ by simply replacing

several predicates appearing in $g$ with predicate variables. For example, let $g$ be a formulae such that

$g=[p(a)\vee q(b)]\wedge\forall x(p(x)\supset q(x))\supset\exists x.q(x)$ .
$p_{a}\ovalbox{\tt\small REJECT}_{x}^{\ovalbox{\tt\small REJECT}arrow}$

i-\Sigma h-\sim =九欧犯 v
$\ovalbox{\tt\small REJECT} PP\supset\exists xx$ 欧 K$\Sigmaarrow\ovalbox{\tt\small REJECT}\exists xx$

$\ovalbox{\tt\small REJECT}\forall\forall x$ww
$\ovalbox{\tt\small REJECT}\vee\wedge\forall xarrow$

$arrow(p(a)_{\vee}Q(b))_{A}\forall x(P(x)\supset \mathfrak{U}^{x}))\supset\exists x\alpha x)$

Fig.4 A simple shema construction

Then the following formulae is a simple schema.
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schema, $=(P(a)\vee Q(b))\wedge\forall x(P(x)\supset Q(x))\supset\exists x.Q(x)$

,where P,Q are 2nd order predicate variables. The proof tree for schema, is given by replacing the

predicates $p,$ $q$ with $P,$ $Q$ as $illus\alpha a\iota ed$ in Fig.4.
This means that the type of schema, is the following.

$[P(a)arrow P(a)]arrow[Q(a)arrow Q(a)]arrow[Q(b)arrow Q(b)]arrow[arrow(P(a)\vee Q(b))\wedge\forall x(P(x)\supset Q(x))\supset\exists xQ(x)]$

and the $pr\infty f$ term of $schema_{l}$ is given as follows:

proof$(schema_{8})=imp- R(and- L(or- L(aU- L(imp- L(P(a)arrow P(a),some- R(Q(a)arrow Q(a)))$ ,

hin-L$(some- R(Q(b)arrow Q(b)))))))$.
From this $schema_{g}$ , the proof of any formulae obtained by replacing the symbols P,Q of schema,
with any formulas can be derived. This depends on the following well-known propeny.

[Proposition 3.1:Formulae substitution rule]

If a sequent $\Gammaarrow A$ is provable, then the substituted formulae $\Gamma[P;=p(x_{1},x_{2},\ldots,x_{n})]arrow A[P:=p(x_{1},x_{2}$ ,

$x_{n})]$ is also provable, where $[P:=p(x_{1},x_{2},\ldots,x.)]$ is a substitution of the formulae in the form of

$P(t_{1},t_{2},\ldots,t_{n})$ in $\Gamma$ and A with $p(x_{11’ 2^{:b}}:=tx=,\ldots,x_{n}:=t_{n})$ .
Example 3.1 The plin$f$ of the following formulae $h$ which is obtained from $schema_{8}$ by substituting $P$ and $Q$ by $p$

$\supset r$ and $s\wedge t$ respe tively has similar proof structure to $schema_{8}$ as shown in Fig.5.
$h=[arrow(\phi(a)\supset r(b)]\vee(s(b)\wedge t(b)))\wedge\forall x(\phi(x)\supset r(x))\supset((s(x)\wedge t(x))\supset\exists x.(s(x)_{A}t(x))]$

Its $pr\infty f$ term is obtained as proof(h)$=[pr\infty f(schema_{8})]\phi\supset r\cross s\wedge t)$ .
厘 0\wedge m\pm 沖血 $\wedge n\sim$

$\ovalbox{\tt\small REJECT}\supset rarrow\supset r\wedgearrow\exists XXA$ 山$\ovalbox{\tt\small REJECT}$\wedge $arrow$ $\wedge$

$\ovalbox{\tt\small REJECT}$ $\ovalbox{\tt\small REJECT} A$

$\ovalbox{\tt\small REJECT} XAA\forall A\wedge$
$\ovalbox{\tt\small REJECT}\supset\vee A\forall xx\supset x\supset XAxarrow\exists XXAX$

$\ovalbox{\tt\small REJECT}\supset\vee AA\forall xx\supset x\supset XAXarrow\exists XXAX$

$arrow$ [ $(p(a)\supset r(a))v(s(b)_{A}$ゆ))]A\forall X $(p(x)\supset r(x))\supset(s(x)_{A}t(x)))\supset\exists x.(s(x)_{A}t(x))$

Fig.5 The proof of $h$ by analogy.

3.2 Schema with constraints
In this section,we shall discuss the $Iela\dot{u}on$ between the proof terms of schemata with $cons\alpha aints$ and
their instances. Let $foIm(g(\dot{A}))$ be a formula whose proof has already been derived as $p_{l}rwf(g(\dot{A}))$ ,

and let folm$(g(\dot{X}))$ and $pr\omega f(g(\dot{X}))$ be the formula and proof term obtained from foml$(g(\dot{A}))$ and
prooRg$(\dot{A}))$ by replacing some of the symbols in $\dot{A}$ wi出出$e$ symbols in $\dot{X}$ respectively, where $\dot{A}$ and
$\dot{x}$ are the list of predicates in fonn$(g(\dot{A}))$ and $f_{ol}m(g(\dot{X}))$. It is noted that proof(g(X)) is not always
completed. We denote a completed proof of $plDof(g(\dot{x}))$ by $proot^{*}(g(\dot{X}))$ . In the followings, we take
folm$(g(\dot{x}))$ as a schema constructed from $g$ , and sometimes denote fonn$(g(\dot{X}))$ as schema.For
example, let $foIm(g(P\triangleleft))=[p(a)\vee q(b)]\wedge\forall x(p(x)\supset q(x))\supset\exists x.q(x)$. Then we have $schema_{g}=$

$foml(g(\Phi, --,\Psi, \Theta))=(\Phi(a)\vee\Psi(b))\wedge\forall x(--(x)\supset Q(x))\supset\exists x.\Theta(x)$ as one of the schemata. The

proof term of this schema plrnf$(g(\Phi, \Xi,\Psi,\Theta))$ is obtained as follows.
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$\ovalbox{\tt\small REJECT}$

$\Phi(a)arrow\Xi(a)$

$\Psi(b)arrow\alpha- b)$

$\alpha a)arrow\Theta(a)$

It is noted that each leaf of $pr\infty\Phi(\dot{A}))$ is of the form $A,.rarrow A\Delta$ , and the corresponding sequents
of proof$(g(\dot{x}))$ may be partial proof. That is,the sequents at the leaves of the proof tree are the
subproofs which should be proved further. They are called the constraints. In the example of Fig.6,
we have to prove the constraints and combine with $pr\infty\Phi(\Phi^{-}-,\Psi,\Theta))$ to obtain the complete proof
$pr\omega I^{*}(g(\Phi,--,\Psi,\Theta))$ from $pr\omega Rg(\Phi,--,\Psi,\Theta))$ .
Let $cons\alpha(g(\dot{x};A))$ be the set of constraints between folm$(g(\dot{A}))$ and $fom1(g(\dot{x}))$ . For example, the

formulae $f_{ol}m(g(p,q,r,s))=(p(a)\vee q(a))\wedge\forall x(r(x)\supset s(x))\supset\exists x.t(x)$ is provable if the constraints
$p(a)arrow s(a),$ $r(b)arrow t(b),$ $r(a)arrow t(b)$ are all provable.This intuitive meaning is given in the following
inference rule.

$r$$\ovalbox{\tt\small REJECT}_{n}XA$

$P^{l(nI^{*}(g(\dot{X}))}$

[Theorem 3.2] If $fom1(g(\dot{A}))$ is provable, then the proof of schema folm$(g(\dot{x}))$ is provable. The proof
$pr\omega f^{*}(g(\dot{x}))$ is given by patching the proof(g(x)) with the proof of constraints $pr\omega i\uparrow constr(g(x;\dot{A})))$

which are introduced according to the used inference rules.

4. Schema Construction by Abstraction
A schema is a meta representation for formulas which are syntacticaUy similar, and its proof term

represents the proof type. We can consider the proof term of each schema as the specification of
proofs. The proofs of the instances of the schema have the similar structure. This means that each

instance formulae of a schema is a realization of the specification corresponding to the schema and its
proof is an instance of the proof schema. As we have observed in the previous section, the

generalization for g,h is performed by transforming them to proof term representations $pr\omega f(g)$ ,

proof$(h)$ using higher order unification algorithm. Concerning to the higher order unification
algorithm, the other articles should be referred $17.9.12.15l$ . We observe this by an example.

Let $h$ be a formula such that

$h=((p(a)\wedge r(a))\vee(q(a)\wedge r(a))\wedge\forall x(p(x)\supset q(x))\supset\exists x.q(x)$ .
Here, we assume that we want to solve this by the analogy with $g$ .

$g=[p(a)\vee q(b)]\wedge\forall x(p(x)\supset q(x))\supset\exists x.q(x)$ .

Their proof terms are given in the following forms, where axiom parts of $pr\omega f(h)$ are arranged

according to the $pr\infty f$ structure.
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$g====>pr\omega f\langle g)=imp- R(and- L(or- L(all- L(imp- L(p(a)arrow p(a),some- R(q(a)arrow q(a))))$,

thin-L$(some- R(q(b)arrow q(b)))))))$.
$\Uparrow gene1ahza\Downarrow$

tion

$h====>proof(h)=imp- R(and- L(or- L(all- L$ (($imp- L((p(a)\wedge r(a))arrow p(a)$ ,some-R$(q(a)arrow q(a)))$),

thin-L$(some- R((q(a)\wedge r(a))arrow q(a)))))))$ .
By th$e$ generalization, we get the following proof schema.

imp-R$(and- L(or- L(aU- L((imp- L(\Phi(a)arrow P(a),some- R(Q(a)arrow Q(a))))$,

thin-L$(some- R(\Psi(a)arrow Q(a)))))))$ .
Then we get the followin$g$ schema $schems_{8}$

$schema_{g^{=}}(\Phi(a)\vee\Psi(b))\wedge\forall x(P(x)\supset Q(x))\supset\exists x.Q(x)$

consffaints: $\Phi(a)arrow P(a),$ $\Psi(b)arrow Q(b)$

, where $\Phi$ and $\Psi$ are predicate variables. The $pr\omega f(schema_{g})$ and $pr\infty f(cons\alpha(\Phi(a)arrow P(a),\Psi(b)$

$arrow Q(b))$ are obtained as in Fig.7(a),(b).
$\ovalbox{\tt\small REJECT}arrow$ $p(a)arrow p(a)$

$\ovalbox{\tt\small REJECT}$ \sim 黒庄\rightarrow g0L \Omega m$\ovalbox{\tt\small REJECT}$忠沖 よ� $O$ h紅
$\ovalbox{\tt\small REJECT}\Phi\exists xx$ $\ovalbox{\tt\small REJECT}$ $\Phi(a)arrow P(a)$ $P(a)_{A}R(a)arrow P(a)$

$\Phi$ a Vx x) $xarrow\exists x$ x) $\Psi$ $\forall x$ (] x): $xarrow\exists x$ x) $\Psi(b)arrow Q(b)$

$\lrcorner\Phi v\Psi\wedge\forall x\ovalbox{\tt\small REJECT} x\supset xarrow\exists xx$

$-\ovalbox{\tt\small REJECT}\Phi$a $\vee$ $\forall x$
$x$ $xarrow\exists xx$

$\ovalbox{\tt\small REJECT} aa\ovalbox{\tt\small REJECT}^{arrow}arrow Q(a)\wedge R(a)arrow Q(a)$

$arrow(\Phi(a)v\Psi(b))\wedge\forall x(P(x)X(x))\supset\exists xQ(x)$

(a) Proofs for $xhema_{g}$ (b) Proofs for constraints.
Fig.7 Schema with constraints for proving $h$ .

5.Proving by Analogy
The rough sketch of this procedure is given as follows. We assume that standard schema have
already been obtained as schema database, and let its elements be $S_{1},S_{2},\ldots,S_{n}.Firstly$ , a given target
problem $w$ is checked if some similar guiding problem exists or not. There are two cases for this
step. One is to construct a schema ffom $g$ and $w$ by generalzation. The other is to search a schema on
th$e$ schema database which is unifiable both with $g$ and $w$. We are intending to develop a system
$wh$ich combine $\tau$

ie both cases. This similarity check is examined using 2nd order matching
algorithm. If there exists a schema $S$ which match to $w$, then a unifier is produced. The proof of $w$ is
derived by $\sigma(pr\infty f(S))+pr\infty f(cons\alpha aints)$ .

Procedure
input; $w(fo-ulae);ou\Phi^{u\prime}$ proof(w);

bcgin
Find a schema $S$ which match with $w$

(1) ifthere is no such schema then stop and output ‘’prove byyourself‘
(2) else choose (in nondetermistic) a schema $S$ ;

$(2- 1)\omega mpuoe$ unifier such that $\sigma(S)=w$

(2-2) check if it satisfies the consoeaints
ifit satisfies then output $\sigma[pr\infty f(S)]+pr\infty f(cons\alpha aint)$

else ”prove by yourself‘
end
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It is noted that the procedure uses only 2nd order matching, it is realized in the computable scope.
[Theorem 4.1] The analogical $pr\infty f$ reasoning procedure proposed here for LK is computable.

In the previous example in Section 4, we get a substitution $\sigma=\{\Phi;=p\wedge r, \Psi:=q\wedge r,P:=p,Q:-\triangleleft\}$ by the
matching of $h$ with schema, as typed terms, Then the $pr\infty f(h)$ is derived as
$pl\infty\eta_{1})=[\lambda\Phi\lambda\Psi\lambda P\lambda Q.pmI(xh\alpha na_{g})]\phi\wedge r\cross q_{A}r\cross p)(r\triangleright[\lambda\Phi\lambda\Psi\lambda P\lambda Qp\iota w1\langle cons\alpha(\Phiarrow P,\Psiarrow Q))1Co\wedge r\cross q\wedge r\cross p)(r)$

6.Discussions
We proposed an analogical reasoning for LK proof system based on higher-order abstraction. By

this approach, a kind of proof system by analogy can be realized in natural way. Especially, it holds a
similar interpretation of the analogy to th$e$ formulae as type concept such that the schemata
corresponds to specifications and object proofs to their realizations. The procedure proposed here
can be redized using the higher order unification algorithm for typed terms in the computable scope.

However, there exist several important problems to be solved. The most essential one is to design
an efficient unification algorithm.Th$e$ other problem is that the schema expressed by second order
variables are too general for many cases. Hence undesirable unifiers will be output sometimes. In
order to specify the schema more precisely, some additional axioms should be attached to such
schema. Further,the obtained proof by this method is not always good. To $\alpha anslate$ the obtained
proof to a better proof form is one of the interesting problems concerning to thuis topic.
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