
155

Deciding whether Graph G Has Page
Number One is in NC

増山 繁 (豊橋技術科学大学知識情報工学系)
Shigeru MASUYAMA

Department of Knowledge-Based Information Engineering
Toyohashi University of Technology

Toyohashi 441, Japan

内藤昭三 (NTT基礎研究所)
Shozo NAITO

Basic Research Laboratories
NTT

Musashino 180, Japan

Abstract
Based on a forbidden subgraph characterization
of a graph to have one page, we develop a polylog
time algorithm to tell if page number of given
graph G is one with polynomial number of
processors, clarifying this problem to be in NC.

1 Introduction

This paper discusses the problem of
deciding whether the given graph is
noncrossing, where graph G is non-
crossing if there exists a linear arrange-
ment of vertices so that no pair of edges

is crossing when they are drawn on the
same side of the linear arrangement of
vertices. Similar problem setting ap-
pears in the formulation of the non-
crossing constraint on word modifica-
tion to sentence generation in natural
language processing, which motivates

数理解析研究所講究録
第 790巻 1992年 155-161

156

us to study this problem.
This problem is a specialization of

the book embedding[12] in the sense
that this problem asks if the given
graph has page number one, i.e., a
graph can be embedded in a single
page. In general, the book embedding
is hard: it is NP-complete to tell if a
planar graph can be embedded in two
pages [3]. It is known[2, 3, 12] that non-
crossing graphs on a single page are ex-
actly the outerplanar graphs[6]. How-
ever, no polylog parallel decision algo-
rithm to tell if a graph is outerplanar is
known.

The problem of deciding whether
given graph G has page number one is
formally defined as follows:

Given graph $G=$ (V, E), decide
whether G has page number one, where
G has page number one if there ex-
ists a linear arrangement of vertices by
which no pair of edges $e,$ $e’\in E$ satis-
fies $s(e)<s(e’)<t(e)<t(e’))$ where
$s(e)$ ($t(e)$, respectively,) is the smaller
(the larger) end vertex of edge e in the
arrangement.

We first illustrate a characterization
of a graph to have page number one by
two forbidden subgraphs. Based on this
characterization we develop a polylog
time algorithm with polynomial num-
ber of processors, clarifying this prob-
lem to be in NC.

Graphs considered in this paper

are undirected and may have multiple
edges. We also assume that a path
denotes a simple path throughout this
paper. CREW PRAM (see e.g., [5])
is adopted as a parallel computation
model.

2 Forbidden Sub-
graph Characterization of a
Graph to have Page Num-
ber One

We first introduce a characterization
of outerplanar graphs[6].

Theorem 1.[6] Given graph G $=$

(V, E), G is outerplanar

if and only if

G has no subgraph homeomorphic to
either K_{4} or $K_{2,3}$, where K_{4} is the com-
plete graph on four vertices and $K_{2,3}$ is
the graph illustrated in Fig. 1. \square

Corollary 1. Given biconnected
graph $G=(V, E))G$ is outerplanar

if and only if

157

G has no subgraph homeomorphic to
either K_{4} or $K_{2,3}$. \square

As G has page number one if and
only if G is outerplanar[2, 3, 12] (, we
cal1 this Fact 1), and K_{4} is a forbidden
subgraph of a series parallel graph[4] we
have the following corollaries.

Corollary 2. If $G=(V, E, s, t)$ is a
series parallel graph$[4, 10]$ and has no
subgraph homeomorphic to $K_{2,3}$, then
G has a one page embedding in which
the left terminals ofG has the smallest
number. 口

Corollary 3. Given series parallel
graph $G=(V, E),$ G has page num-
ber one

if and only if

G has no subgraph homeomorphic to
$K_{2,3}$. 口

We now characterize a graph to have
page number one for general graphs.

Combining Theorem 1 to Fact 1, we
have the following Theorem.

Theorem 2. Given graph $G=(V, E)$,
G is noncrossing

if and only if

G has no subgraph homeomorphic to
either K_{4} or $K_{2,3}$. \square

No proof of Theorem 1 is provided
in [6] and we supplement a construc-
tive proof of Theorem 2, which ensures
that Steps 2, 3 of the algorithm in the
next section can be performed for each
biconnected component $B;$.

(Proof of Theorem 2) Necessity is ob-
vious. To prove the sufficiency, we first
note that the following three observa-
tions hold when G has no subgraph
homeomorphic to K_{4} or $K_{2,3}$.

Observation 1. Each biconnected
component of G has no subgraph home-
omorphic to K_{4} and is a series parallel
graph.

Observation 2. We can obtain a
series parallel graph from each bicon-
nected component of G by choosing any
vertex as one of its termina1[7].

Observation 3. As each biconnected
component of G has no subgraph home-
omorphic to $K_{2,3)}$ it has a one page em-
bedding by which any vertex can be
arranged first (by $Observation_{1}2$ and
Corollary 1 of Theorem 1).

Based on these observations, we shall
prove the sufficiency by induction on

158

the number of biconnected components
in G .

(1) If G has exactly one biconnected
component, then the sufficiency holds
by Corollary 1 of Theorem 1.

(2) We assume that the sufficiency
holds when the number of biconnected
components is $n-1$ and consider the
case when the number of biconnected
components of G is n .

Let $S(G)$ be a graph each of whose
vertex corresponds to either a bicon-
nected component of G or an articulate
vertex of G , where (B, a) is an edge of
$S(G)$ if and only if articulate vertex a

belongs to biconnected component B .
Note that $S(G)$ is a tree.

Let B be one of the leaves of $S(G)()$

note that B must correspond to a bi-
connected component of $G,$) and let a

be an articulate vertex belonging to B .
Let $G-B$ be a graph obtained by re-
moving B , except a , from G. $G-B$ has
$n-1$ biconnected components and has
page number one. On the other hand,
B has a one page embedding where a

is arranged first. Thus by embedding
this one page embedding of B in the
one page embedding of $G-B$ between
a and the vertex next to a in the ar-
rangement, we have shown that G has
page number one. 口

3 Deciding if a Graph has
Page Number One is in NC

We now introduce a linear time al-
gorithm, by which we can decide, with
respect to the number of edges, whether
the given graph G has page number
one. In the algorithm, $a(G)$ is the num-
ber of vertex disjoint paths with length
at least two in G connecting its termi-
nals and $b(G)=1$, if G has a subgraph
homeomorphic
to G_{6} in Fig. 2. Otherwise, $b(G)=0$.

Algorithm PNO

Step 1. Decompose G into bicon-
nected components $B_{1},$ $B_{2},$

$\ldots,$
B_{k} and

construct $S(G)$ defined in the proof of
Theorem 2.

for each $B_{i)}i=1,$ $\ldots,$
k let $Garrow B$;

and do Steps 2, 3:

Step 2. Decide whether G is a series
parallel graph, and if G is a series paral-
lel graph, then construct the parse tree
of G which describes how to construct
G from the set of edges of $G[9,10]$.

Step 3. Construct G in accordance
with the parse tree in a bottom up man-
ner.

Step 3.1. $a(e)arrow 0,$ $b(e)arrow 0$, for
each edge e of G .

Step 3.2. When series connection of
$G’$ and G^{u} is performed, let G be the
resulting graph.

$a(G)arrow 1$.
If either $a(G’)=2$ or $a(G”)=2$

159

holds,
$b(G)arrow 1$.

Step 3.3. When parallel connection is
performed, let G be the resulting graph
obtained from $G’$ and $G”$. If either
$b(G’)=1$ or $b(G”)=1$ holds, then print
(

G has a page number more than one’)

and stop.

$a(G)arrow a(G’)+a(G”)$

If $a(G)\geq 3$, then print G has page
number more than one” and stop.

Step 3.4. If the root of the parse tree
is already $visite\prime^{1}$, then G has a page
number one. 口

The correctness of the algorithm im-
mediately follows Corollary 1 of Theo-
rem 1 and Theorem 2.

To implement the above algorithm in
parallel, note that:

Step 1 can be performed in $O(log^{2}n)$

time using $O(n^{2}/log^{2}n)$ processors by
[11], where n is the number of vertices
in G .

“for statement” before Step 2 should
be replaced by

for each $B;,$ $i=1,$ $\ldots,$
k in parallel

do let $Garrow B$; and do Steps 2, 3:

Step 2 can be performed $O(log^{2}n+$

$logm)$ time with $O(n+m)$ processors,
where $n(m)$ is the number of vertices

(edges) in G. by applying the recogni-
tion algorithm of series parallel graphs
in [7] (note that although the first part
of the algorithm in [7] may be simplified
as G is biconnected, the overall com-
plexity is not improved),

Step 3 can be computed in $O(logl)$

time with $O(l/logl)$ processors, where
l is the number of vertices in the parse
tree, by applying tree contraction algo-
rithm in [1] (see also [7].) As l is $O(n)$,
this step can be computed in $O(logn)$

time with $O(n/logn)$ processors,
In total, this algorithm

works in $O(log^{2}n+logm)$ time with
$O(n^{2}/log^{2}n+m)$ processors on CREW
PRAM. \square

4 Concluding Remarks

An actual one page embedding of
given graph G which consists of more
than one blocks can be obtained, if it
exists, by appending the following Step
4 to Algorithm PNO.

Step 4. Merge one page embeddings
of $B_{i}’ s$, in a manner described in the
proof of Theorem 2, by visiting vertices
of $S(G)$ in preorder from some arbitrary
articulate vertex r .

Step 4 can be performed in paral-
lel by obtaining preorder numbering of
vertices of $S(G)$ and constructing lin-
eary ordered list L of vertices of $S(G)$

where vertices are arranged in ascend-

160

ing order of its preorder numbering.
This can be done by first applying Eu-
ler tour technique[ll, 5] on tree $S(G)$

and doubling technique in a manner
described in [5]. This can be done
in $O(logk)$ time by $O(k)$ processors,
where k is the number of biconnected
components of G . As $k\leq n_{)}$ this step
can be performed in $O(logn)$ time by
$O(n)$ processors.

Then we replace, in parallel, each B_{i}

by its one page embedding. To do this,
note that each B_{i} can be replaced in
the following manner as described in
the proof of Theorem 2 :

for each articulate vertex j in parallel
do

Make a one page embedding of each
B_{i} beginning at j such that j is the fa-
ther of B_{i} in the rooted tree obtained
from $S(G)$ by Euler tour technique [5].
Then substitute, in parallel, each B_{i}

with list L of vertices of the one page
embedding. Finally, remove the articu-
late vertex j from the list L .

This can be done in constant time.
Thus both the overall time complexity
and the number of processors required
coincide with those of Algorithm PNO.

References
[1] K. Abramson, N. Dadoun, D. G.

Kirkpatrick and T. Przytycka, A
simple paralel tree contraction al-

gorithm, J. of Algorithms 10; 287-
302 (1989).

[2] F. Bernhart and P. C. Kainen, The
book thickness of a graph, J. Com-
bin. Theory, Ser. $B,$ 27, pp. 320-
331 (1979).

[3] F. R. K. Chung, F. T. Leighton,
and A. L. Rosenberg, Embedding
graphs in books: A graph lay-
out problem with applications to
VLSI design, SIAM J. Algebraic
and Discrete Methods, 1986.

[4] R. J. Duffin, Topology of series-
parallel networks, J. of Mathemat-
ical Analysis and Applications 10,
303-318 (1965).

[5] A. Gibbons and W. Rytter, Ef-
ficient ParaUel Algorithms, Cam-
bridge University Press (1988).

[6] F. Harary, Graph Theory,
Addison-Wesley (1959).

[7] X. He, Efficient parallel algorithms
for series parallel graphs, J. of AI-
gorithms 12, 409-430 (1991).

[8] X. He and Y. Yesha, Parallel
recognition and decomposition of
two terminal series parallel graphs,
Information and Computation 75,
15-38 (1987).

[9] J. E. Hopcroft and R. E. Tar-
jan, Dividing a graph into tri-

161

connencted components, SIAM J .
Comput., 2, 135-158 (1973).

[10] T. Kikuno, N. Yoshida and Y.
Kakuda, A linear algorithm for
the domination number of a series-
parallel graph, Discrete Applied
Mathematics 5, 299-311 (1983).

[11] R. E. Tarjan andU. Vishkin, Find-
ing biconnected components and
computing tree functions in log-
arithmic parallel time, SIAM J .
Comput. 13, 580-599 (1985).

Fig. 1. Forbidden subgraph K

2,3

[12] M. Yannakakis, ’Embedding Pla-
nar Graphs in Four Pages, J. of
Computer and System Sciences 38;
36-67, 1989.

Fig. 2. G_{5}

