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AN EXPLICIT INTEGRAL REPRESENTATION
OF WHITTAKER FUNCTIONS
FOR THE REPRESENTATIONS OF THE DISCRETE SERIES.
- THE CASE OF Sp(2;R) -

TAKAYUKI ODA

1-st draft (o test)

Introduction. :

We shall prove an explicit integral formula for the Whittaker function associated
to the highest weight vector in the representation space of the minimal K-type of a
discrete series representation with the maximal Gelfand-Kirillov dimension for the
real symplectic group Sp(2;R) of rank 2.

Let us explain the basic idea of this paper. Consider the case G = SLy(R).
Put N = {(é f) :L'ER}, and let 7 : ((1) T) — exp(2micz) (¢ € R) be a
non-trivial unitary character of N. Let C;°(N\G) be the space of C'*°-functions ¢
satisfying ¢(ng) = n(n)e(g) (V(n,g) € N x G).

For an irreducible unitary representation (7, H,) of G, we denote by H2® the
space of smooth vectors in G. When (7, H,) is a principal series representa-
tion of SLy(R), the image of a vector in HZ® with respect to a unique continu-
ous intertwining operator from Hg° to Cp°(N\G) is represented by the modified
Bessel function, i.e. the Whittaker function, if it is restricted to the split torus

a 0
a{(5 ) [ecmaso)

However when (7, H.) is a discrete series representation of formal degree k£ — 1
of SLy(R), then the image of minimal K-type vector of H, with respect to the
intertwining operator from H:° to Cp°(N\G) (if it exists), is written by const.
aFe=2mlele® on A (of. Jacquet-Langlands [J-L]).

Thus as special functions on A, the functions realizing the Whittaker model of
the discrete series representations of SLy(R) are “degenerate” elementary functions,
much simpler than those of the principal series representations.

We hope similar phenomena occur in higher rank groups. The purpose of this
paper is to confirm this for the case G = Sp(2;R). Let us explain the contents of
this paper.

In the first place, we shall compute explicitly the partial differentail equation
for the radial part of the above Whittaker function. We follow the method of
Yamashita [Y-I] [Y-II] who discussed the case G = SU(2,2).

In §1, we recall basic notation for the structure of Sp(2;R) and associated Lie
algebras.
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§2 reviews the Harish-Chandra parametrization of the representations of discrete
series for Sp(2;R). In §3, we recall the representation of U(2), and in §4 the
characters of the maximal unipotent subgroup of Sp(2; R). In §5 - §8, we write down
explicitly the system of partial differential equations characterizing the Whittaker
functions of the minimal I-type of a dicrete series representation.

New parts different from [Y-I], [Y-II] are Proposition (8.1) and §9. §9 contains the
main result of this paper: an explicit integral expression of the Whittaker function
of the highest weight vector of the minimal K-type of a dicrete series representation
of Sp(2; R).

The author thanks to Professors T. Oshima and N. Wallach for educational con-
versations on the representation theory of real reductive groups in various occasions,
to Professor H. Matsumoto for communications on the theory of Whittaker models,
and to Professor T. Miwa for an assist to solve partial differential equations.



INTEGRAL REPRESENTATION OF WHITTAKER FUNCTION

§1 Basic Notations, and the structure of Lie groups and algebras.
In this section, we determine basic notations on the symplectic group of degree 2,
its maximal compact subgroup and associated Lie algebras.

(Lue groups)

0 1
-1, 0
where 1, is a unit matrix of size 2. The symplectic group Sp(2;R) of degree 2 is
given by

Let M,(R) be the space of real 4 x 4 matrices. Put J = > € My(R),

Sp(2:R) = {g € My(R)|'gJg = J,det(g) = 1}.

Here ‘g denotes the transpose of the matrix g, and det(g) the determinant of g. A
maximal compact group K of G = Sp(2;R) is given by

- A B
k={( % B) csrminneimm)
which is 1somorphic to the unitary group
U(2)={g € GL(2,C)|'g- g = 12}

of size 2 via a homomorphism
(_f; ﬁ) € K — A+ VZIB € U(2).

(Lie algebras)
The Lie algebra of G is given by

g=sp(2;R) = {X € My(R) | JX +'XJ =0},

and that of K is given by

The Cartan involution for ¢ is given by
6(X)=-'X for Xcg

Hence the subspace

—{XeglbX)=X}= {<g _BA> 'A=A,'B=B;ABe¢ 1W2(R)}

given a Cartan decomposition

g=tdp.

The linear map

(_‘% i) €t A+ V1B € u(2)
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defines an isomorphism of Lie algebras from k to the unitary Lie algebras
u(2) = {C € My(C) |'C+ C =0}

of degree 2.
An R-basis of u(2) is given by

A Dva(e L) = (G o)r=v(To)

Let u(2)c = u(2) ®g C be the complexification of u(2). Then a basis of u(2)c is
given by

(1 0 , (1 0
=(o1) 70 2)

et =3 ), T dor-an- (2 9).

Then {H', X, X} is a sly-triple, i.e.
', X] = 2X; [H',X] = —2X; [X,X] = H'.
Via the isomorphism ¢ = ug, the preimage of the above basis of uc is given by
‘ 1
~1

1
Z=(~v) | l L B = (-

-1
-1

! |
1

-1 0 -1

From now on we use the convention that unwritten components of a matrix are
zero. Now we fix a compact Cartan subalgebra ) of g by

h=R(V=1Z) +R(V=1H).
Write Ty = /=17 and T =+/—1H', and set
1 1
Tl = §(T+ + T_) and Tg = §(T+ — T_)

Put . )
H = J(Z+H), H=2(Z-H)

Then Ty = +/—1H], T, =+/-1H;, and
1
0

le
o |

-1
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(Root system)
We consider a root space decomposition of g with respect to fj. For a linear form
B:h — C, we write f(T;) = ; € C. For each § € h* = Hom(h,C), set
gs={X€gc=g@rC|[H X]=BH)X, "H € h}.
Then the roots of (g,h) is given by

S = {8=(81,5) | gs # 0,8 # 0}
= V=T{£(2,0), £(0,2), £(1,1), £(1, ~1)}.

We determine a root vector Xz in gg, i.e. a generator of gg by the following table.

VI8 (2,0) (1,1) (0,2) (1,-1)
Xp
X_p
Then
tc =hc +CX(q,-1) +CX (1),
and set
p+ = (CX(‘Z,()) + CX(],]) + CX(O’Z)
. s X] in
- {A - <iX1 —X1> ‘ X € MZ(C)},
and
p_ = (CX~(2,0) + CX—(I,]) + CX-—(Uy?)
_ o Xl —ZX1 r
~{x= (5, T8 xem©).
Then

gc=tcDp+ Bp-.
For each root 3 = (f, f2), we put

181 = V18:1% + 1B21*.
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Then ||3]|? = 4 or = 2.
Then set

{c-1BI(Xs + X-p),c- V=TIBI(Xs - X_p) (BeEH))

forms an orthonormal basis of p = pr with respect to the Killing form for some
points constant ¢. Here &} = {(2,0),(1,1),(0,2)} is the set of non-compact positive
roots. £} = {(1,—1)} is the set of compact positive roots. £, = £} U (=Z7) and
L, =37 U(=ZF) are the set of compact roots and the set of non-compact roots,
respectively.

( Iwasawa decomposition )
We choose a maximal abelian subalgebra a of p given by

a={<‘3 _0A>|A:diag(t1,t2) (tl,tgeR)}.

Here diag(t;,?2) is a diagonal matrix with (1,1)-entry t; and (2,2)-entry t5. Set
1 0

4
‘0

o |
‘-—1

Hy, = and Hp =
0
Then {H;, H,} forms a basis of a.

(Root system of (g,a) )
Let {e; =(1,0),e2 = (0,1)} be a standard basis of the 2-dimensional Euclidean
plane R2. Then the root system W of (g, a) is given by

¥ = {ﬂ:2€1, :E2€2, :tel =+ 62}
A positive root system ¥, is fixed by

-1

U, = {2e1,2¢e2,e1 + €3,€1 — ez}

= 3 g

CYE\I’+

Put

Then it 1s a nilradical of a minimal parabolic subalgebra. We choose generators E,
of go (a0 € ¥4) as follows.

1 0 0 1
' 0 0 1 0
E261 = ) E61+e2 = ;
0 0 0 1
0 1 0 0
EZCQ = ; E€1—62 = 0 0
-1 0

The Iwasawa decomposition associated to (a,n) is given by
g=tPhadn.

In gc, the Iwasawa decomposition of the root vectors {Xg;8 € £} are given as
follows.
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Lemma (1.1).

X0y = H) + Hi + 2V=1Ese,; X(—2,0) = —H| + Hi — 2V/=1E,,,;
Xay =2 X+2 Eeme, + 2V-1Ec 4ey;

X1y =-2-X+2 B _e, —2V=1E. 10,5

Xay = Hy + Hy + 2V/=1Ey.,; X(0,—2) = —H} + Hy — 2V/~1Es,.

Proof) A direct computation.
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§2 Parametrization of the representation of the discrete series.
Consider a compact Cartan subgroup of G

cos l sin 6,

cos @
exp(h) = { —siné, ;

sin 92

91a92 € R}

cos 6,
—5in 0y cos 6,
corresponding to . Then the characters are given by

cos 6, sin 84
cos ‘

—sin#d, cos &,
—sinfd, ‘

sin 6y

— exp{\/ —1(m191 + m292)} € C*

cos 8

Here mj,m, are some integers. The derivation of these characters determines an
integral structure of h* = Hom(h,C), the weight lattice.

The set of compact positive roots is given by £F = {(1,—1)}. Hence the set of
dominant weight are given by {(A1,A2) € Z®%|)\; 2 A2}. In order to parametrize the
representation of the discrete series of Sp(2;R), we first enumerate all the positive
root systems compatible to £F. There are four such positive root systems:

(I) : E?_ = {(1’_1)’(270)’(1a1)7(0>2)};

(H) : E?i = {(1’”1)7(1>1)v(2v 0)7(07'—2)};
(IH) : EHI = {(1’_1)7(27 0),(0,—2),(—1,—1)};
(IV) : ok = {(1,-1),(-2,0),(-1,-1),(0,-2)}.

Let J be a variable running over the set of indices {I, I, III, IV}. Then we write
E}"n = Z‘}' ~ ©7F for the set of non-compact positive roots for each index J.
Define a subset = ; of dominant weights by

=7 = {A = (A;,A;) dominant w.r.t. =F | (A, B) >0,V € Ejn}

v
Then the set JUI =7 gives the Harish-Chandra parametrization of the representation
of the discrete series for Sp(2;R). Let 75 be the associated representation of G for

v
A e JLiIE‘]. The K-types of 7a|x is described by the formula of Blattner proved

finally by Hecht-Schmid [ ]. Among others the minimal K-type of 7, is given by
Amin = A — pc + pn. Here p. and p,, are the half of the sum of compact positive
roots and non-compact positive roots. Here is a table of Ay;,.

type J ] I 11, 111, v
Amin | (Ar+1,A2+2), (Ar+1,42), (A1,Ay—1), (A1—2,A2—1)
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§3 Representations of the maximal compact subgroup.

For our later computation, we recall some basic facts about the representation of
the maximal compact subgroup K or its complexification K¢. Since K is identified
with the unitary group of degree 2 U(2), K¢ is isomorphic to GL(2,C). Recall a
basis of u(2)c given in Section 1:

10\ ,_(1 0 (0 1\ & [0 0
2= (o 1) = 4)x= (0 0)x=(0)

The irreducible finite-dimensional representations of the Lie algebra gl(2,C) are
parametrized by a set

(A= (A1, \p) € 292 | A1 2 A2, ie. Ais dominant}.
For each dominant weight A, we set d = A; — As 2 0. Then the dimension of the
representation space V) associated to A is d+ 1. We can choose a basis {vi |0 =

k £ d} in V) such that the associated representation 7y is given by

A(Z)vk = (A1 + A2)vi;
TA(H Yog = (2k - d)vyg;
A(X)ve = (k + Dvgys;
T)\(X)’Uk = (d +1-— k)vk_l = {d — (k’ — 1)}vk_1.

Since H{ = $(Z + H') and H} = 3(Z — H'), we have
TA(H v = (k+ X)vg and  ma(Hy)vg = (—k + Ay )vg.

If it is necessary to refer explicitly to the dominant weight A, we denote v; by vy .

For the adjoint representation of ' on p., we have an isomorphism p4 = V{3 ¢),
and the correspondence of the basis is given by

(X(O,Q),X(1,1),X(2,o)) U— ('U07U17v2)-
Similarly for p_, we have p_ = V(o _,), and the identification of the basis is
(X(=2,00s X(=1,~1)s X(0,-2)) = (vo, —v1,v2).

Let us consider a tensor product Vy ® py. Then it has a decomposition into
irreducible factors:

A @b+ =VA® Viz0) = Viai42,00) @ Viu+1,0,41) B Via, a42)-
Let P20 P11 and P2 be the projectors from Va®p4 to the factors Vix, 42,1,),

Viar+1,2.41), and V(x, 3, 19), respectively. We denote v(; o) i (k = 0,1,2) by wy (k =
0,1,2).
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Lemma (3.1). Set pu = (A + 2,A). Then up to scalars, the projector P(*9 is

given by '

(i) POy, @ wy) = (k + 1);(k + 2)vu’k+2;

(i) PO (o, @ w1) = (k+1)(d + 1= K)oy

(i) PR (0 4 @ wo) = (d+1- k)z(d +2 - k)v”,k.

Lemma (3.2). Set v = (A, 4+ 1, A2 + 1). Then up to scalars, the projector P11
is given by

(0) POD (0 g © w5) = 0

(i) POD(vy x @ wa) = (k4 1)y, k41 (0<kSd—1)

(ii) POD(y @ wy) = (d — 2k)v, 4 (0 <k £ d);

(iii) POy @wo) = —(d+1—k)v, 11 12k <d).
Lemma (3.3). Set 7 = (A, Ay +2). Then up to scalars, the projector P(®2) is
given by

(i) PO (v 1k @ wy) = vy (0sk=d-2)

(i) POy, y @wy) = —2 vr k- (1<ksSd-1);

(i) PO () 4 @ wp) = Var k2 (22 kS d);

(iv) POD(py @wy) = POP(vg @ wy) = POV (vg_y @ wy) = 0.

Proofs of the above lemmas are easy. It is enough to find the highest weight
vectors in V) @ p4. corresponding to the factors V,,, V,,, and V;, respectively. Other
steps of proofs are settled by induction.
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§4 Characters of the unipotent radical.
Put N = exp(n). Then N is written as

12

I |
— 12

The commutator group [N, N] of N is given by

‘nl ng

no,Nn1,N2, N3 € R}

n nog
1o I !

[N,N]:{ I nz 0

ny,Ng, € R}.

1o

Hence a unitary character n of N is written as

‘nl N

19
\ 1 0] "2 T8 | — exp{2mi(cono + csns)}

1y

for some real numbers cg,c3 € R.
We denote by the same letter 7, the derivative of n

n:n—C.
Since [n,n] = RE(, —e5) DR E(3e,), 1 is determined by the purely imaginary numbers

770 = U(Eel—eg) and 773 = U(EZez)-

161
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§5 Characterization of the minimal K-type.
Let n : N = exp(n) — C* be a unitary character. Then we denote by C°(N\G)
the space

CP(N\G) = {¢ : G — C,C*-function | ¢(ng) = n(n)¢(g),(n,9) € N x G}.

By the right regular action of G,C3°(N\G) has structures of smooth G-module,
and (gg, K )-module.
For any finite-dimensional K -module (7,V’), we put

C(N\G/K)
= {F:G — V,C>function | F(ngk™") = n(n)r(k)F(g),(n,9,k) € N x G x K}.

Let (A, Ep) be the representation of discrete series with Harish-Chandra parameter
A, and let (7}, Ex) be its contragradient representation.

Assume that there exists a continuous homomorphism W : (73, EX) — C°(N\G ) |
of smooth G-modules. Then the restriction of W to the minimal K-type 75 of 7}
gives an element. Fiy € Cp5, (NV\G/K) such that

W(v*) = (v*, Fw(-)) forall o* e Vy.

There is a characterization of the minimal K-type function F by means of a
differential operator acting on C°. (N\G/K).

7,Tx
Let g = €@ p be a Cartan decomposition of g, and Ad = Ad,, the adjoint
representation of K on pc. Then we have a canonical covariant differential operator
Vg from €3S (N\G/K) to CFF,, 5 44(N\G/K):

7T

VorF =3, Ly, F(-)® Xi, F e C=._(N\G/K),

T

where (X;); is any fixed orthonormal basis of p with respect to the Killing form of
g, and Lx,Flg) = (£F (s - exp(tX)))| _(s€ ).

Let (757, V)" ) be the sum of irreducible K-submodules of V) ® pc with highest
weights of the form A — 3, B being a non-compact root in ©*. Denote by Py a
surjective K-homomorphism from V) ® pc to V,”. We define D, ) as the composite

of V, y with Py:
Dy Cr5 (N\G/K) — C:;?r; (N\G/K), Dy\F= P)\(V,,’,\F(‘))
(FE c=° (N\G/K)).

hTx
We have the following

Proposition (5.1). (Proposition (2.1) of Yamashita [Y-I])
Let 5 be a representation of discrete series with Harish-Chandra parameter A
of Sp(2,R). Set A = A — p. + pn. Then the linear map

W € Hom(ye ) (71, C°(N\G)) — Fw € Ker(Dy2)
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is injective.

Let Homgy (wX,C’,‘]X’(N\G)) be the continuous homomorphisms of smooth G-
modules, then we have a canonical injection.

Homg? (7r7\ , C’;O(N\G)) — Homyg, k) (7r7\, C?(N\G)).
By the results of Kostant [ ], we have
dimg Homg (7%, Co°(N\G)) + dimc Hom@ (74, C’f(N\G)) <1,

and
dim¢ Hom(g¢, k) (74, Co2(N\G)) + dime Homge, k) (72, C5O(N\G)) =0 or [W].
Here |W/| is the order of the Weyl group of Sp(2,R), hence 8.

Since holomorphic discrete series and antiholomorphic discrete series are not
large in the sense of Vogan [ |, if 74 € EYZy [, we have

dim¢ Hom@ (7%, Co°(N\G)) = dim¢ Homyge, k) (74, Co°(N\G)) = 0.
In subsequent sections, we show that if A € =1 U Zypy,
dim Homg. ) (7}, Co2(N\G)) = dimg Ker(D,2) = %lW] =4,
and accordingly
dimg¢ Homg (7%, Cy°(N\G)) + dime Hom (74, CS°(N\G)) =1

by a theorem of Kostant [ ].
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§6 Radial part of differential operators.
Put A = exp(a), i.e.

ay

A= a2 0! aj,as €ER, a; > 0,a2 >0
1
a2_1
Then we have the Iwasawa decomposition of Sp(2;R) : G = NAK. The value of
F e C, (N\G/K) is determined by its restriction ¢ = F' |4 to A.

T

We compute the radial parts R(V, x) and R(Dy ») of V,, s and D, , respectively.
As an orthogonal basis of p, we take

ClIBIXa + X-), LKy~ X-g) (P

with some C > 0 depending on the Killing form. Then

VP =C > [BIPLx_,F®Xs+C > IBIPLx, F @ X_p.
et BeEST

We write N - )
{ VorF = ZlBI° - Lx_, F ® Xg;

VyaF = YEl82 Lx,F @ X_.

1)1

In order to write R(Vni)‘), it is better to introduce some “macro” symbols. We set
9; = Ly, restricted to A. (7 = 1,2), and define linear differential operators £F and

S* on C®(A,Vy) by
LF¢ = (0 £2V/-T aln(Bre))¢ (i=1,2);
{ SE¢ = {a1a7 ' n(Ee,-e,) T V=1a1027(Ee, 4e,) } 9.
Proposition (6.1). The operators R(Vi)\) = C®(A4,Vy) = C®(A, V) ®p+) are
expressed as
() R(VI$ = (L7 +7a® Ady, (Hy) — 4)(¢ ® X(2,0))
+(ST + 7 ® Ady (X))(4 ® X(1,1))
+ (£ +ma® Ady (Hy) = 2)(6 ® X(0,2))
(12) RV )¢ = (L] —ma® Ady_(Hy) —4) (6 ® X(_20)
+ (5+ —TA® Ady_ (X))(¢ 2 X(—-l,—l))
+(£F =2 ® Ad,_(Hj) — 2)(6 ® X(0,-2))-

Proof) In order to prove (i), we have to note that

(LX_(2,0)F)|A ® X(2,0) = {—H; + H1 —2v -1 EQCI}F“ ® X('Z,O)

={Ly ¢+ (7a(Hy) F),} © X(2,0)>
and
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(TA(H{) ) F)lA & X(z,o) =T\ ® Adp+(H{)(¢ ® X(z,o)) -¢Q® [H{,X(z,o)]
=7AQ Adp, (H)(¢ ® X(2,0)) — 2(¢ & X(2,0))-

The case of (ii) is similar. (qe.d)

For a non-compact positive root 8 = (81, 32) in &%, let P? be the projector from
VA ®@ p4 to Vg, and P8 the projector from Vi ® p_ to Va_3.
Then, similarly as Lemma (5.2) of Yamashita [I], we can show the following.

Lemma (6.2). Let A\ be the minimal K -type of a discrete series representation
with Harish-Chandra parameter A.

(7) When A € Z1, R(Dy »)¢ = 0 if and only if

POD(R(V;,)6) = 0;
PRV, 0)6) = 0;
PEEO(R(V,5)¢) = 0.

(i) When A € Eq11, R(Dy,0)¢ = 0 if and only if
POD(R(VE)9) = 0;

POD(R(VY)$) = 0;
PEEO(R(V)¢) = 0.
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§7 Difference-differential equations.

In this section, we write the system of differential equations in the last lemma

of the previous section explicitely in terms of components of ¢.

Let A = (A1, A2) be the minimal K-type of the discrete series representation
7. Then in Vy, we choose a basis {vi | 0 < k < d} defined in Section 3. Here

d= A1 — A2. Then ¢ : A — V) is written as
d

#(a) = 3 cula)oy

k=0
with coefficients ¢x(a): A — C.
Lemma (7.1).
(1) The condition P(l’l)(R(V;,\)QS) = 0 is equivalent to the system:
(CH)k k(LT + A2 +d—k = )cg_1(a) + (d — 2k)S " cx(a)
+(k—d) (L5 + M —k—Deppr(a) =0  (0<k <d).
(it) The condition P(_l"l)(R(V;/\)qS) = 0 is equivalent to the system:
(C)k: (b —d) (LY = Ao+ k—d—Vexy1(a) + (2k — d)STer(a)
+ELT =M +k—1cko1(a) =0  (0<k <d).
(i27) The condition P(O’z)(R(V;r’A)qS) = 0 is equivalent to the system:
(CHk : (L] + A2 — k = 2)ck(a) — 28 " cry1(a)
+ (L3 + M —k —2)cpq2(a) =0 (0<k<d-2).
(v) The condition P*=)(R(V \)$) = 0 is equivalent to the system:
(C5 )k : (L7 = A = 2d + k)egia(a) + 28  cpya(a)
+(Lf =X +k)e(a) =0  (0<k<d-2).
Here we interprete, in the above formulae, c_1(a) = cq+1(a) = 0.

Proof) The proof is a direct computation and easy. We omit it.
Since 7 is trivial on the commutator group [N, N], we have

£1|-—":£1_:al :ala—?‘:
St=8"= %J;U(E(l,~1))-

Thus we have the following

Proposition (7.2). Under the same assumption as in Lemma (6.2) (1), ¢(a) =
Zi:o ck(a)vy satisfies the following system of partial differential equations:

(CH)k (L1 4+ Xa =k —2)er(a) — 25 - cry1(a)
(L5 + M — k= 2)ckpala) =0 (0< k< d—2)
(C3)k = (L1 — A2 —2d + k)cgy2(a) + 28 - cky1(a)
+ (L =M +k)er(a) =0 (0<k<d—2)

(C3)kg1 (kB + 1= d)(Ly = Ao —d+ k)epqa(a) + (25 + 2 = d)S - cxq1(a)

+(k+ (LT =N +k)er(a) =0 (-1<k<d—1)

(g.e.d.)
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§8 Reduction of the system of partial differential equations.

In this section we reduce the system of partial differential equations of the pre-
vious proposition to a simpler holonomic system, when 7 is generic.

In the first place, we see that the functions ci(a) is determined by the coeflicient
of the highest weight vector c4(a).

In fact, when k=0, or k =d

(C3 )o: (L1 =Xy —d—1)c1(a) + Sep(a) =0

(C3)a: Sca(a) + (L5 =\ +d —1)cg—1(a) = 0.

Moreover for 1 < k < d — 1, the computation of (k + 1)(C5 ) — (C5 Jesr yields
(L1 =X — d — Dexsa(a) + Scesr(a) = 0.

Noting A; + d = Ay together with (C, )o, we have

(B : (L1 =M1 = Degga(a) + Sepqa(a) =0 (-1Sk=d-1)

Hence cy(a),c1(a),. .. ,c4—1(a) are determined downward recursively by cy(a).
The system of the equations (C;) are now replaced by the above (E); and

(Cy )a-1: Sca(a) + (L — A +d —1)cg—1(a) = 0.

Thus the system of the equations of Proposition (7.2) in Section 7 is equivalent to
a system of equations:

(F-1): (L1 = A1 —1)ca(a) + Sca—1(a) = 0;

(F-2): (L1 —=X —1ego1(a) + Scqg—a(a) = 0;

(F-3):  Sca(a) +(£3 =M +d —1)cg—1(a) = 0;

(F-4): (L1 4+ A2 —d)cg—2(a) = 2S8cq-1(a) + (L3 + M\ — d)cq(a) = 0.

In order to make the above equations simpler, we replace unknown functions
ck(a) by hi(a) defined by relations

k
a .
ex(e) = a1t (1) e En o)

as
Now we introduce Euler operators 9; (v = 1,2) by 9; = aig‘%—; for each 7 = 1, 2.
Then the system of equations (F-1) ~ (F-4) is replaced by
(G-1): O1hg(a) +n(Eey —e, )ha—1(a) = 0;
(G'Q) : (81 - 1)hd—1(a) + T](Eel~e2)h(1_2(a) = 0;
(G-3): S (%) ha(a) + O2hq-1(a) = 0;
2

(G—4) . (31 + 2/\2 - 1)hd_.2(a) - 28 <?l> hd_l((l)

i2

2
+ (Z—l> (02 + 2M\; —2d — 28" hy(a) = 0.
2
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Here ' = 3(LF — £7) = 2¢/=1n(Ez., )a3.
(G-1) and (G-3) are equivalent to a single’equation:

(H-1) : (8,05 — §?)ha(a) = 0.

(G-1), (G-2), and (G-4) is equivalent to a single equation:

() : (81 + 2% — 1)(8 ~ 1)0y { (a—l>2 ha(a) } +2 (%‘)2 d1ha(a)

(€3] 2

az

2
+ <ﬁ1—> (89 +2Xy — 28" )hy(a) = 0.
Here we used the assumption that n is generic, 1.e.

U(Eel—eg) = 770 # O’ a'nd n(E2€2) = T73 7é 0‘

Apply the operator 8; to the above equation (*), and use (H-1) to replace
&102hq4(a) by S?hg(a). Then we have

(H-2): {02 428,80, + 92 + (2X2 — 2)(01 + %) + (=22 + 1) = 28’0}y = 0

At last we have the following
Lemma (8.1). The system of equations of Proposition (7.2) is equivalent to
(H-1): (8,0 — S*)hg(a) =0

and
(H-2) : {(81 + 82)2 + (2/\2 — 2)(81 + 02) + (—2)\2 + 1) — 25’82}hd(a) =0

We can easily check that the system (H-1), (H-2) is a holonomic system of rank
4 defined over (Rs¢)? = {(a1,a2) € R? | a1,a2 > 0}. Hence dimg¢ Ker(D,, 1) = 4.
The contragradient representation 7} of mp (A € Zy1) is written as 7} = war with
some A' € Zpy1. Using the difference-differential equations (C;), (C5) and (C3),
we can similarly show that dim¢ Ker(D,, »/) = 4 for the minimal K-type A’ of my/.
Since Kostant’s result implies (cf. §5)

8 = dim Homy k) (7}, c‘j;o(N\G)) + dim Hom g, x) (TrA,c‘"’o(N\G))
< dimg Ker(D,, ») + dimg Ker(D,, ) = 8,

we have the following

Proposition. Assume that 7 is generic, i.e.

o =1(Ee,~e;) #0 and n3 =n(Ea.,) # 0.
Then for a discrete series representation wa(A € =y U Zpp1),

dlm(c Hom(g’]() (WA ’ C(;O(j\’\G)) =4.
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When A € =11 UZq1, we have

dime Hom (7%, ¢2°(N\G)) + dime Hom (74, ¢;°(N\G)) = 1.
Hence two cases occur:

(4)  Hom@(nh,cF(V\G)) = C, and Hom (m,c®(N\G)) = {0}

(B) Homg (rx,c°(N\G)) = {0}, and Hom@ (ma, c?(N\G)) = C.

In the next section, we see that this dichotomy is controlled by the parity of
the imaginary part of the purely imaginary number 13 = n(Es.,) # 0. And when
Hom (7}, c°(N\G)) is non-zero and generated by W, we have an explicit inte-
gral formula for the image Fy € Ker(Dya) C ¢°. (N\G/K) of the intertwining
operator W.

§9. Integral formula for the Whittaker function..

Let us recall the confluent hypergeometric equation given by Whittaker ( [],
Chap.16):

d? 1 &k I m?
R VA B LA W =0,
dz? +{ 4+z+ 22 }

When Re (k — —;- —-m) < 0, for z ¢ (—00,0), a unique solution, which rapidly
decreases if z — 400, 1s given by

6_%2 - zk e k 14 1 k=3tm t
Wi m = — tTFTETT Ll 4 — - e~ dt.
k() I‘(%——k—{—m)/o ( +z> ¢

The following is the main result of this paper.

Theorem (9.1). Assume that n: N — C* is generic, i.e. 19 = n(Ee,—¢,) # 0 and
n3 = 77(E2€2) # 0.

(1) For A € =y,
{ Homg (7}3,c?(N\G)) = C,  ifIm(ns) <0
Homg (7}, c?(N\ G)) = {0}, if Im(nz) > 0.

(i1) Assume that A € Zq1 and Im(n3) < 0, and let W be a unique intertwining oper-
ator in Homg (7}, Cp°(N \ G)) up to scalar multiple. Then the function hq(ay,az)
associated to ¢(a) = Fya(a) = Z?:o ci(a)v; (Fw € Ker(Dy r,)) has an integral
representation

= t? 8v/=1ninsa?\ di
ha(a1,aq) = / 223 W, _y, (1) exp <_ 770773611> dt
0

+
32v/~1-n3d? 12 t
Proof). It is easy to check that the integral represents a solution of the dif-

ferential equations (H — 1) and (H — 2), by derivation of integrand and partial
integration.
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Replace ¢ by a;t in the above integral expression of hg(ay,asz), then

3
* la Az=3 a
ha(ay, ay) = — .ay-t Wo,-x, — . ay-t
0 as as
2

1 ai 2 2 _0 dt
X ex —_— | — -t + 8V -1 ST —.
P{ 32 /———1773 <a2> o073 } 7

If Im(n3) < 0, —m < 0 and 8\/.—17]817'3 < 0. Als? since A € Zj1, Ag 1s a
negative integer. Hence the integrand is rapidly decreasing when ¢ — 400, and
when t — 0. Therefore the above integral converges, and as a function in (ay, az),
it is rapidly decreasing when 4 — oo and a3 — oo. Put

d
ca(a) = a**1 " ay" - (%) e hy(a),

and cx(a) for 0 < k < d — 1 by the recurrence relation (E)j of §8.
Then ci(a) (0 < k < d) are also rapidly decreasing functions in (%1/g,,as2).

Write ¢(a) = Eﬁzo cp(a)op € C*(A4,Vy). Then for any vector v* of the dual
space V¥, (¢(a),v*) is also a rapidly decreasing function. A fortiori, ¢(a), i.e.
F(g) = n(n)ra(k)"'¢(a) is slowly increasing in ¢ = nak € G. This F defines an
element W in Homg g (ma+, C=®(N\G)) by Schmidt’s characterization ({}).

Now Wallach’s version of multiplicity one (cf. [W], §8) implies that the operators
W in Homg g(n},C®(N\G)) such that W(v) are slowly increasing on G for any
v € Ty, forms a linear subspace of dimension at most one.

Hence Homg (7}, Co°(N \ G)) # {0}, if Im(n3) < 0. If Im(n3) > 0, by a similar
argument, we can show that Homg (74, ¢;°(N \ G)) # {0} Since

dimc Homg (7}, C.°(N \ G)) + dim¢ HomG (74, C°(N \ G)) =1

if n is generic, this proves (i). The part (ii) is immediately follows from the unique-
ness of the Whittaker model.

Remark. For general cases, the condition of (i) is described in terms of wave
front set by Matsumoto ([ ], §).

When G = SU(2,2), we have a similar integral expression of the Whittaker
function of the highest weight vector of the minimal K-type of a discrete series
representation. Details are discussed elsewhere about this case.
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