
18

Groups and Generating Functions
吉田知行 (Tomoyuki YOSHIDA 北大理)

1. Generating Functions

Let $a_{0},$ $a_{1)}a_{n},$ $\cdots$ be a sequence of numbers. Then the (ordinary)
generating function associated with this sequence is defined by

$A(x)$ $:= \sum_{n=0}^{\infty}a_{n}x^{n}$ .

Example: Fibonacci numbers $F_{0},$ $F_{1},$ $\cdots$ have the following well-known re-
currence formula:

$\ovalbox{\tt\small REJECT}=F_{1}=1$ , $F_{n}+1=F_{n}+F_{n-1}$ $(n\geq 1)$ .

This formula means that the generating function $F(x)$ $:=\Sigma F_{n}x^{n}$ satisfies
the equation:

$(1-x-x^{2})\cdot F(x)=1$ ,

and so
$F(x)= \frac{1}{1-x-x^{2}}=1+x+2x^{2}+3x^{2}+5x^{3}+\cdots$ .

Expanding $F(x)$ , we have an explicit formula for Fibonacci numbers:

$F_{n}= \frac{1}{\sqrt{5}}((\frac{1+f5}{2})^{n+1}-(\frac{1-\sqrt{5}}{2})^{n+1})$ .

Example: Bell numbers $b(O),$ $b(1))$
)

$b(n))$ are defined by

$b(n)$ $:=the$ number of equivalence relations on $\{1, \cdots, n\}$

Then Bell numbers satisfy the recurrence formula

$b(n+1)= \sum_{k=0}^{n}(\begin{array}{l}nk\end{array})b(k))$ $b(0)=1$ .
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Using this, we see that the generating function $B(x)$ of exponential type
satisfies

$B(x)$ $:= \sum_{n=0}^{\infty}b(n)\frac{x^{n}}{n!}=\exp(e^{x}-1)$ .

The concept of generating functions is a powerful tool for studying a se-
quence of numbers. If we have a generating function for a sequence $a_{0},$ $a_{1)}\cdots$ ,
we can read many matters in it as follows:

(a) Explicit formula for $a_{n}$ (e.g. Fibonacci numbers).

(b) Recurrence formula for $a_{n}$ . For example, the exponential generating
function $B(x)=\exp(e^{x}-1)$ for Bell numbers $b(n)$ satisfies

$B’(x)=e^{x}B(x)$ ,

which gives the recurrence formula for Bell numbers.
(c) Proof of identities.

We give an easy example. Binominal coefficients has the following gener-
ating function:

$(1+x)^{m}= \sum_{i=0}^{\gamma n}(\begin{array}{l}ni\end{array})x^{i}$ .

Substituting it into the identity

$(1+x)^{m}(1+x)^{n}=(1+x)^{m+n}$ ,

we have the well-known identity:

$\sum_{:=0}^{k}(\begin{array}{l}mi\end{array})(\begin{array}{ll} nk -i\end{array})= (\begin{array}{l}m+nk\end{array})$
$\sigma^{-}$

(d) Proof of congruence relation.
Let $p$ be a prime. Then

$(1+x)^{pn}\equiv(1+x^{p})^{n}$ $(mod pZ[x])$ .

Using the binomial theorem, we have the following well-known congruence:

$(\begin{array}{l}pnpr\end{array})\equiv(\begin{array}{l}nr\end{array})$ $(mod p)$
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(e) Proof of unimodality, convexity.
For example, observing the form of the generating function $(1+x)^{n}$ for

binomial coefficients, we can prove that

$(\begin{array}{l}n0\end{array})\leq(\begin{array}{l}n1\end{array})\leq\cdots\leq(_{[n/2]}n)=(_{[(n+1)/2]}n)\geq\cdots\geq(\begin{array}{ll} nn -1\end{array})\geq(\begin{array}{l}nn\end{array})$

$(\begin{array}{l}nr\end{array})>(\begin{array}{ll} nr -1\end{array})(\begin{array}{ll} nr +1\end{array})\rangle$ $1\leq r\leq n-1$

(f) Statistic properties (eg. averages).

(g) Asymptotic formula

2. Exponential Series

Generating functions appear also in group theory. For example, Poincare
series are used to study cohomology rings of finite groups. However, I think
that we should further pursue the application of generating functions in group
theory. We here give generating functions associated with the numbers of
subgroups and homomorphisms of groups.

Let $A$ be a finitely generated group. Then we define the exponential
generating function of $A$ as follows:

$E(A;t)$ $:= \exp(\sum_{B\leq A}\frac{1}{(A\cdot.B)}t^{(A:B)})$

$=$ $\exp(\sum_{n=0}^{\infty}\frac{s^{n}(A)}{n}t^{n})$ ,

where
$s^{n}(A)$ $:=\#\{B\leq A|(A : B)=n\}$

Then the following exponential formula holds:
Proposition (Wohlfahrt 1977):

$E(A;t)= \sum_{n=0}^{\infty}|Hom(A, S_{n})|\frac{t^{n}}{n!}$
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This identity was repeatedly discovered by some mathematicians, but it
seems that it was first proved by Wholfahrt $([Wo77])$ . The recurrence for-
mula for $h_{n}(A)$ $:=|Hom(A, S_{n})|$ that is equivalent to Wholfahrt’s exponential
formula is proved by Dey ([De 65]):

$h_{n}(A)= \sum_{r\geq 1}\frac{(n-1)}{(n-r)}!h_{n-r}(A)s^{n}(A)$ .

This formula was applied to study the numbers of subgroups of given index
in a free group and the modular group $SL_{2}(Z)([Ha49])$ .

There are some interesting application of the exponential formula. We
here state about the restricted Burnside problem. An application to Frobe-
nius theorem is found in Section 4.

Let $f(q, m)$ be the supremum of the order of finite groups with $m$ gener-
ators any of which elements have orders divisible by $m$ . For example, it is
well-known that $f(2, m)=2^{m}$ .
Restricted Burside Problem: $f(q, m)<\infty$ ?

This conjecture was reduced to the case where $q$ is a power of a prime $p$

by using Classification of Finite Simple Groups, and it was correctly proved
by Zelmanov recently.

We can rewrite RBP by using generating functions as follows:
Define

$L_{q,m}\{t$), $;= \log(\sum_{n=0}^{\infty}h_{n}t^{n}/n!)$

$h_{n}$ $;=$ $|Hom(B(q, m),$ $S_{n}$ ) $|$

$=$ $\#\{(x_{i})\in S_{n}^{m}|(x_{1}, \cdots x_{m}\rangle^{q}=1\}$ ,

where $B(q, m)$ is a so-caUed Burnside group that is the largest group with $m$

generators and satisfies the relation $X^{q}=1$ for all elements $X$ .
Then by the exponential formula, we have

RBP $\Leftrightarrow L_{q_{t}m}(t)$ is a polynomial.

This statement does not mean that it can be used to prove RBP, but
perhaps there is another approach to RBP.



22

3. The Artin-Hasse exponential function.

The Artin-Hasse exponential function is defined by

$E_{p}(t):=E( \overline{Z}_{p};t)=\exp(_{:}\sum_{=0}^{\infty}p^{-i}t^{p^{1}})$ .

By the exponential formula for $A=\overline{Z}_{p)}$ we have that

$40)= \sum_{n=0}^{\infty}\frac{h_{n}}{n!}t^{n}$ ,

where
$h_{n}:=|Hom(\overline{Z}_{p}, S_{n})|=\#$ { $p$-elements in $S_{n}$ }.

By Frobenius theorem, we have that

$h_{n}\equiv 0$ $(mod n!_{p})$ .

This means that
$E_{p}(t)$ converges in $\nu_{p}(t)>0$

as p-adic power series, where $\nu_{p}(p^{e}q)$ $:=e$ . Note that $\nu_{p}(n!)=n!_{p}\approx n/(p-1)$ .
Thus the convergence region of the ordinal exponential function $\exp(t)$ is
$\nu_{p}(t)>1/(p-1)$ .

Unfortunately, the Artin-Hasse exponential function does not satisfy the
exponential law: $E_{p}(s+t)\neq E_{p}(s)\cdot E_{p}(t)$ . However, Witt summation for Witt
vectors makes the Artin-Hasse exponentiaJ function satisfy the exponential
law.

A Witt vector $x$ is a sequence of p-adic numbers:

$x=(x_{0}, x_{1}, x_{2}, \cdots)$ .

The sum $z=x+y$ of Witt vectors $x$ and $y$ is inductively defined by

$\sum_{i=0}^{n}p^{i}z;^{p^{n-i}}=\sum_{i=0}^{n}p^{i}x;^{p^{n-i}}+\sum_{=:0}^{n}p^{i}y_{i^{p^{n-i}}}$ , $n=0,1,2,$ $\cdots$ .
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Thus

$z_{0}=x_{0}+y_{0}$ , $z_{1}=x_{1}+y_{1}- \frac{1}{p}\sum_{\mathfrak{i}=1}^{p-1}(\begin{array}{l}pi\end{array})x_{0^{p-i}}y0^{i}$, $\cdots$ .

We further extend the domain of the Artin-Hasse exponential function
$E_{p}(x)$ to Witt vectors $x=(x_{0}, x_{1}, x_{2}, \cdots)$ as follows:

$E_{p}(x):= \exp(\sum_{i=0}^{\infty}p^{-:}x_{i}^{p^{n-i}})$ .

Then we have the following formula:

Lemma
$E_{p}(x+y)=E_{p}(x)\cdot E_{p}(y)$ .

On the other hand, Dress and Siebeneicher discovered a surprising fact
that the ring of Witt vectors is isomorphic to the (complete) Burnside ring
of an infinite cyclic group $([DS89])$ . It is a mistery why Witt vectors are
related to cyclic groups in two way.

4. Frobenius theorem

In this section, we $s_{\mathscr{O}}t_{\backslash _{A}}ate$ Frobenius theorem and its generalizations.

Theorem (Frobenius 1903, 1907):

$\#\{x\in G|x^{n}=1\}\equiv 0$ mod $gcd(n, |G|)$ .

Some important research around this theorem were published recently
$([BT88])$ . Furthermore, it is noteworthy to write here that H.Yamaki solved
Frobenius conjecture correctly.

We note that Frobenius theorem is extended as follows:

Theorem $([Yo$ ??] $)$ : Let $A$ be a finite group and $G$ a finite group. Then the
number of homomorphisms from $A$ to $G$ satisfies the following congruence:

$|Hom(A, G)|\equiv 0$ $gcd(|A|, |G|)$ .
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The proof of this theorem is elementary but not short as other theorems
in finite group theory. Since there is a bijective correspondence between
$Hom(C_{n}, G)$ and the set $\{x\in G|x^{n}=1\}$ , this theorem implies the ordinary
Frobenius theorem.

Furthermore, when $G$ is a symmetric group $S_{n}$ , there is another proof by
using the exponential formula $([DY$ ??] $)$ . To do it, we study the generating
function

$E(A;t)$ $:= \sum_{n\geq 0}\frac{h_{n}}{n!}t^{n}$ ,

where $h_{n}$ $:=|Hom(A, S_{n})|$ , and then we deduce the proof of the theorem to
the ordinary Frobenius theorem (for cyclic groups) and the following lemma
for abelian p-groups:

Lemma: Let $A$ be an abelian group of order $p^{n}$ and let $s_{i}(A)$ denote the
number of subgroups of $A$ of order $p^{i}$ . Then for $0\leq i\leq[(n+1)/2]$ ,

$s_{*}\cdot(A)\equiv s_{i-1}(A)$ $mod p^{i}$ .

Remark: The unimodality

$1=s_{0}(A)\leq s_{1}(A)\leq\cdots s_{[n/2]}=s_{[(n+1)/2]}\geq\cdots\geq s_{n-1}\geq s_{n}$

was recently proved by L.M.Butler $([Bu87])$ .
It is natural to ask the following generalization of the above Frobenius

type theorem for a non-abelian $A$ :

Conjecture 1: (Asai-Yoshida [AY ??]): For finite groups $A$ and $G$ ,

$|Hom(A, G)|\equiv 0$ mod $gcd(|A/A’|, |G|)$ ,

where $A’$ denotes the commutator group of $A$ .
This conjecture is still unsolved, but a weak result holds:

Theorem $([AY$ ??] $)$ :

$|Hom(A, G)|\equiv 0$ mod $gcd(|(A/A’)/\Phi(A/A’)|)$ ,
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where $\Phi(A/A’)$ denotes the Frattini subgroup of $A/A’$ .

There is more general conjecture than the above one:
Conjecture 2: $([AY$ ??] $)$ : Assume that a finite group $A$ acts on another
finite group G. Then

$|Z^{1}(A, G)|\equiv 0$ mod $gcd(|A/A’|)|G|)$ ,

where $Z^{1}(A, G)$ is the set of cocycles $\zeta:Aarrow G(i.e. \zeta(ab)=\zeta(a)\cdot a\zeta(b))$.

It is known that if Conjecture 2 for any abelian p-group $A$ and any p-group
$G$ is correct, then Conjecture 1 is also correct for all finite groups.

5. Asymptotic Properties for $\nu_{p}(h_{n}(A))$

As in Section 3, we put $h_{n}$ $:=h_{n}(A)$ $:=|Hom(A, S_{n})|$ , and we let $\nu_{p}(n)$ de-
note the ppart of an integer $n$ . We are interested to the asymptotic behavior
of $\nu_{p}(h_{n}(A))$ .

Using Frobenius-Yoshida theorem in the preceding section, we have the
lower bound of $\nu_{p}(h_{n}(A))$ for abelian group $A$ :

Theorem (Frobemus-Yoshida): Let $A$ be a finite abelian group. Then

$\nu_{p}(h_{n}(A))\geq\min(\nu_{p}(|A|)),$ $\nu_{p}(n!))$ .

In particular,
$\nu_{p}(h_{n}(A))\geq\nu_{p}(|A|)$ for large $n$ .

We consider
$h_{n}(C_{p})=\#\{x\in S_{n}|x^{p}=1\}$

The generating function of this sequence $h_{n}(C_{p}),$ $n=0,1,2,$ $\cdots$ is ,

$E(C_{p};t)= \sum_{n=0}^{\infty}\frac{h_{n}(C_{p})}{n!}t^{n}=\exp(t+’\frac{t^{p}}{p})$
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and the recurrence formula is

$h_{n}(C_{p})=h_{n-1}(C_{p})+ \frac{(n-1)}{(n-p)}!h_{n-p}(C_{p})$ , $n\geq 1$ .

Using these formulas, an assymptotic formula was proved by Moser-
Wyman (1955) and Wilf (1986):

However, to calculate $\nu_{p}(h_{n}(C_{p}))$ is a very hard problem. For example,
I do not know when $h_{p}(C_{p})=1+(p-1)!$ is divisible by $p^{2}$ . By a long
calculation on the generating function of $h_{n}(C_{p})$ , we can prove the following
lower bound:

Theorem $([DY$ ??] $)$ :

$\nu_{p}(h_{n}(C_{p}))\geq[\frac{n}{p}]-[\frac{n}{p^{2}}]$ .

In many cases $\nu_{p}(h_{n}(A))$ seems to increse asymptotically in proporsion to
$n$ . Thus to make the following conjecture is natural:

Conjecture: For any finite group $A$ , define

$R_{p}(A)$ $:=narrow\infty hm\nu_{p}(h_{n}(A))/n$ .

Then $R_{p}(A)$ is a rational number.

Example:

$R_{p}(C_{p})$ $=p^{-1}-p^{-2}$ ,
$R_{p}(C_{p^{2}})$ $=p^{-1}+p^{-2}-2p^{-3}$ .

The second formula is essentially proved by Y.Takegahara.
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6. Eulerian series

In this section, we study a q-analogue of the exponential forumula. Let
$F$ $:=F_{q}$ and $A$ a finite group such that $(|A|, q)=$ l.Furthermore, let
$V_{1)}\cdots,$ $V_{r}$ be all irreducible FA-modules (up to isomorphisms) with

$D_{i}:=End_{FA}(V_{i}))$ $q$; $:=|D_{i}|$
)

so that $D_{i}$ is a finite field of order $q_{i}$ .
We now define the q-exponential series by

$Exp_{A,q}(t):=\sum_{n=0}^{\infty}\frac{|Hom(A,GL(n,q))|}{|GL(n,q)|}t^{n}$

Then we have a q-exponential formula:

Theorem: Under the above notation,

$Exp_{A,q}(t)$ $;=$ $\sum_{V}/\frac{t^{\dim\gamma}}{|Aut_{FA}(V)|}$

$=$ $\prod_{i}\sum_{n=0}^{\infty}\frac{t^{\dim V_{*}}}{|GL(n,q_{i})|}$

If $|A|$ divides $q-1$ , then $F$ is a splitting field for $A$ , and so $q_{i}=q$ . Thus by
using Roger-Ramanujan’s identity ([An 76]), we have the following infinite
product expansion:

Corollary: $If|A|$ divides $q-1$ , then

$Exp_{A,q}(1)=(\prod_{n=0}^{\infty}\frac{1}{(1-q^{-5n-1})(1-q^{-5n-4})})^{r}$

It looks strange that $Exp_{A,q}(1)$ depends only on the number $r$ of conjugacy
classes in $A$ .

Using the above theorem, we can prove that a special case of Conjecture
1 in Section 4 is correct:



28

Theorem: If $|A/A’|$ divides $q-1$ and $n\geq 1$ , then

$|Hom(A, GL(n, q))|\equiv 0$ (mod $|G/G’|$ )

7. Congruence zeta function

There is another kind of generating function related to the number of
homomorphisms from a fixed finite group to general linear groups. We fix a
finite group $A$ , a natural number $n$ and a power $q$ of a prime. Then we define
the congruence zeta function as follows:

$N_{r}$ $:=$ $|Hom$( $A$ , GL $(n,$ $q^{r})$ ) $|$

$Z(A;t)$ $:=$ $\exp(\sum_{r=1}^{\infty}\frac{N_{r}}{r}t^{r})$

It is well-known that $Z(A;t)$ is a rational function (Dwork).

Furthermore, Frobenius-Yoshida’s theorem in Section 4 implies the fol-
lowing congruence:

Theorem: Let $A$ be an abelian group such that $(|A|, q)=1$ , Then

$\deg Z(A;t)\equiv 0$ mod $gcd(|A|, |GL(n, q)|)$

However, it seems that the degree of $Z(A;t)$ increase again asymptotically
in proporsion to $n$ . Furthermore, zeros and poles are interesting forms.

Example: Let $l$ be a prime divisor of $q-1$ . Then $\deg Z(C_{l};t)=-l^{n}$ .
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