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An infinitesimal analysis in topology
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1° INTRODUCTION

Algebraic topology is the study of functors from the category Top of topological spaces
into some algebraic categories.

Take, for example, functor H'( ) of the singular cohomology in coefficient K a coomu-
tative ring. Given a diagram in Top

Z

d

XC——v.
If f extends to Y, one will get in the category 2lgy of K-algebras a commutative diagram
H(2)

H Ss
(f)l 2 TNy
H(X) e H(Y).
Further, if f denotes an extension of f, then H'(f) must commute with all the ﬁa.tura.l

transformations, called cohomology operations, from H'( ) into itself, hence if lucky, one
can sometimes decide if an extension exists or not by algebraic means.

If K is a field of positive characteristic, we have a well-known set of cohomology oper-
ations constituting a skew graded Hopf algebra A4, called the Steenrod algebra. One thus
wishes to study the algebra A and the A-module structures of H'(X). -

This is a survey to introduce an attempt [KSTY] to throw a new light on the Steenrod
algebra using infinitesimal unipotent K-groups.

For simplicity we will fix KX = F;, p odd prime, in what follows.

2° THE STEENROD ALGEBRA

(2.1) The Bockstein operator 3 is a natural map

H™(X) — H"*}(X) Vne€N,
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induced by the short exact sequence 0 — F, — Z/p*Z 2 F, — 0 such that

(1) | A =0
and
2) Bzy) = (Bz)y + (~1)*=(By) Va € H*(X),y € H™(X),

where the multiplication is the cup product H'(X) ®x H'(X) — H'(X) induced by the
diagonal mapping X — X x X. '

Further, one has unique natural maps [SE],(VI.1)
p i H*(X) — HH30-1(X) Vine N,
called the Steenrod reduced powers, such that

(3) p° =id,

@ o { 2? if z € H¥(X)
L0 ifeze Hi(X)with j < 2,

(5) (Cartan formula)

pey) = S P (@)F(y) Ve HYX),y € H™(X)

j:O .
and
(6) (Adem relations)
(5] (p—1)(b—t)—1
Ya < pb, papb — Z(_l)a+t< p ( . )pn+b—tpt;
t=0 a_pt
& (p—-1)-1)
Va <pb, pBp° = (—1)“*‘(” )ﬁp““"’“p‘
t=0 a -—pt
& (- 1B-1)-1
+ -1 a+t—1( - A ) atb—tg,t
g( ) a1 )PTBR

~0

With those in mind we define the Steenrod algebra A to be

Tx(M)/(B?, Adem relations),
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where Tk (M) is the tensor algebra over K of a K-linear space M with basis B, i€ Zt,
corresponding to 3, p*, respectively. We assign B (resp. P*) degree 1 (resp. 2i(p—1)), thus
making A into a graded K-algebra. Put P° =1,

(2.2) Instead of A itself we will consider below the graded quotient S := A4/(B). I
I=(iy,...,34) EN* k> 1, wesetin A
P =P ‘33""

By abuse of notations we will denote the image of 87 in S by the same letter. We say I is
admissible iff either I =0 or

Vv € [1,k], i, >1andi, > pi,pq with i541 =0
in which case we call 87 an admissible monomial.

(2.3) THEOREM (Milnor[Mil]). We have

(1) The admissible monomials form a K-linear basis of S. In particular, each homoge-
neous part Sy, is finite dimensional.

(i) S is generated as K-algebra by P? ‘,i € N.
(1il) With comultiplication

k
AS . "Bh N th ®mk—i
i=0

and the counit B! — 0 VI admissible # 0, S forms a cocommutative graded bigebra.

(24) If A = [;504; is a graded K-bigebra with 49 = K, then A admits a unique
antipode o 4, making A into a graded Hopf algebra, due to R. Thom [MM],(8.7): if a € 4,
one defines o 4(a) inductively on the degree of the elements by

oala) = —a-—ZaA(a,)a

ifAs(a)=1®a+a®1+);a; ®a} with ¢; and a} homogeneous of less degrees than a. In
particular, § carries a structure of cocommutative graded Hopf algebra.

2.5) Let §*9" = [[.5, S} be the graded dual of S. Using the identification (SQ@x S)*9" ~
i20%3 g
S$*" @k 87 via ‘

(f ® g)(a ®b) = f(a)g(b),
S§*" comes equipped with a structure of commutative graded Hopf algebra.

Let I, = (p""l.,p"“z,.. 05 2%), k> 1, and ¢, € 8°7" the dual of P’ with respect to
the basis of admissible monomials, so deg(¢,) = 2(p* — 1).
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(2.6) THEOREM (Milnor[Mil]). 8*9" is the polynomial algebra K[{l,fz, .] in indetermi-
nates §;,1 > 1, with the comultiplicatication

k
G— ) G0k
i=0

and the counit annihilating all §;.

(2.7) Let Ty, k > 0, be the ideal of S*9" generated by

PO
ﬂ’ s£g "")££:£k+)’) i1

Then I}, is a Hopf ideal, hence $*9" [T, ~ K[¢,,... ,f;.]/({fl yo++ 1 &4) is a finite dimensional
graded Hopf algebra. In turn, its dual S(k) is a Hopf subalgebra of S.

One can show that S(k) is generated as K-algebra by
P, 0<i<k-l,

hence § = Ui>15(k) by (2.3). In [KSTY] S(k) is denoted by P(k — 1).

3° INFINITESIMAL UNIPOTENT GROUPS

(3.1) An (affine) K-group (scheme) ® is a representable functor from the category K[g
of commutative K-algebras into the category ®tp of groups: there is commutative Hopf K-
algebra K[®] such that

(1) &( )= KAlg(K[S], _).

If mg (resp. Ag, €g, 0¢) is the multiplication (resp. comultiplication, counit, antipode) of
K[®], then for each R € K2lg, ®(R) is a group under the multiplication

8(R) x B(R) ceeis

@ ] ! H

Kﬁlfg( [@] ®K K[@],R) m Kﬂ(g(K[Qﬁ] R)

and inversion
s )

3 | ") |

K2Ulg(K[8),R) KAgooR) KR,
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with the identity element defined by

k() oo ®(R)
@) ll 2 |
KUK, B) ———— K2AY(K[®], R).

A &-module is a K-linear space M fogethér withamap Ay : M — M@k K([®], called a
K[®]-comodule map, such that for each R € K2lg, the map &(R)x (M ®x R) — M®x R
via

(5) (2,m ®7) — (M ®x 2) 0 Am(m))r = Zmi ® rz(a;)

if Apy(m) =3Y; m; ® a;, makes M ®x R into a &(R)-module over R.

(3.2) We say a K-group ® is algebraic iff the algebra K[®] is of finite type over K. In
this note we will consider only algebraic K-groups.

Let J¢ = ker(eg), called the augmentation ideal of the Hopf algebra K[®], and set
(1) Dist,,(®) = {u € K[8]* | u(Fo™ ') =0}, meN.

Then Dist(®) := Uy, enDist,,(8) carries a structure of cocommutative Hopf algebra, called
the algebra of distributions of &, with the multiplication given by

(wv)(e) = (u®v) 0 As(a) = Zﬂ(as)V(aS) if Ag(e) = Zai ® a;,

comultiplication A}y such that Aly(p)(a ® b) = p(ab), counit €}y such that ey(p) = p(1),
and the antipode oy such that o (p) = p 0 o', using natural isomorphisms [J],(1.7.4)(2)

Dist(®) ® Dist(®) —~  Dist(® x ®)
(2) ] ]
™ Dist;(8) ® Disty—i(8) —— Distr(® x ).
In particular,
(3) Dist; (&) := {4 € Dist(®) | u(1) = 0}
forms a Lie algebra over K, called the Lie algebra of &, with [, v] := pv — vp.
Any ®-module M carﬁes a structure of Dist(@)-modulé such that

(4) pm = (M®xp)o Ap(m) = Zﬂ(ai)mi

Vu € Dist(®) and m € M if Apr(m) = Zm; ® a;.
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(3.3) We say a K-group ® is infinitesimal iff K[®] is finite dimensional over K with the
nilpotent augmentation ideal Jg.

If & is infinitesimal, then &(R) is a singleton for any integral domain R. Also Dist(®) =
K[®)*.

Let & be an arbitrary K-group again. The map
(1) ¢: K[®] — K[®] via ar— adf

is a homomorphism of Hopf algebras, inducing a morphism of K-groups Fg := KUlg(d, _):
® — ®, called the Frobenius morphism of ®. Then ! := ker(Fg) = ® X ¢ ex is a normal
subgroup of &, with

(2) K[8'] ~ K[®] @x[e) (K[®]/Te) = K[®]/(a | a € To),
hence ®! is infinitesimal. More generally, ®" := ker(Fg), r € Z*, is an infinitesimal normal
subgroup of G with K[®"] ~ K[8]/(a?" | a € Jg), called the »-th Frobenius kernel of &.

(3.4) We now focus on the unipotent K-group i, such that K[i,] = K[2;j]icici<n
polynimial algebra in indeterminates 2;;,1 < j < ¢ < n, with the comultiplication

i
(1) 2y Z Zik @ 2pj

k=j

and the counit z;; — 0 Vi,j, where we agree that z; = 1 Vi. If R € Klg, U,(R) is
isomorphic to the group of n x n lower triangular unipotent matrices with the entries in R.
Also if each 2;; is assigned degree 1, then

(2) Dist(il,) ~ K[i,]*9"  as K-linear spaces.

Let 1l; be a subgroup of i, with K[t;] = K[Ua]/(24¢)(s,1)2(,5) = K[#i5], hence Uy;(R)
consists of the (i,j)-th elementary unipotent matrices with the entries in R. With deg(z;;) =
1, K[i;;] is a graded commutative cocommutative Hopf algebra, and

®) Dist(1h;) = K[8h;]"" = Sk (2i5)™"

the graded dual of the symmetric algebra in z;; [B],(IIL.11), with the dual monomial basis
Xijn Xijk(fcf,-) =6, Vk,L € N. Hence :

' k+1{
(5) XijuXije = ( X )Xijh+t,
and
k
(6) Ay, (Xijn) =D Xijt ® Xijca

{=0
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Under the multiplication one has a natural bijection

(7) [I i(R) — t(R) VR e Klg,
1<j<iln
where the product is taken in any order, hence also a K-linear isomorphism
(8) ) Dist(1;) — Dist(ih,),
i

which is, however, not an isomorphism of Hopf algebras if n > 3.

We now arrange the il;; in (7) and (8) in the increasing order such that
(9) (i,7) = (s,t) iff i>sori=s withj<t,
and fix the arrangement in taking the product once and for all. Then under (8)

(H.Xijk)hENn(nz—lz with the product taken in the order of (9)

forms a K-linear basis of Dist(l,) dual to the monomial basis [[; ; 2f; of K[il,] in the sense
of (2).

4° THE STEENROD ALGEBRA REVISITED
(4.1) In 1988 Tezuka M. found a homomorphism of bigebras

(1) 1/) : K[un] = K[zij]1<j<i<n — K[€1)£2) .. -] = S‘gr via Zi; '——’6 ,

Further, by assigning z;; degree 2(p' =7 — 1)p/~! we can make K[il,] into a graded bigebra.
Then by the unicity of the antipode on graded bigebras (2.4), ¥ is actually a homomorphism
of graded Hopf algebras.

Now imy = K|[¢,...,&,] is a Hopf subalgebra of §*97, so let us write ¢ again for the
homomorphism of Hopf algebras K{U,] — K[¢1,...,{,] induced by ¢. If

my K] — Kzl /(e )i = K[U3]

-1

and

m Kby oen bnot] — Kby bacd /(€78 €)= S(n—1)°

are the natural maps, we get a commutative diagram of surjective homomorphisms of Hopf{

algebras
k[un] _i—' K[£1’ e vén]

2 | SR I

Dualizing ¥,
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(4.2) THeorEM [KSTY], (3.3). We have an imbedding of Hopf algebras S(n — 1) into
Dist(L17).

(4.3) Hence any ®.£,;-module carries a structure of S(n — 1)-module upon restriction,
enabling one to exploit the representation theory of £, in the study of S(n — 1)-modules,
where L, is the K-group such that &£, (R) is the group of n X n invertible matrices with
the entries in R, R € K%lg.

(4.4) To illustrate an application, let us first recall some representation theory of & .£,,.
Let E be the natural n-dimensional &£,-module of basis e;,... ,e,. If A = (A1,...,A,_1)
is a partition of » = E?,___ll Ai, let (A%,...,Al) be the transposed partition of A, and put

(1) &\ =( Z sgn(0)e (1) @ ... @ es(a)) ® ... B ( Z sgn(0)er(1) ® ... ® ex(ar))
GEGA; 066)‘:"

in E®+. After R. Carter and G. Lusztig [CL] we call Dist(®£,)®) in E®* the Weyl module
of highest weight A, and denote it by V(A).

In case A is column p-regular, i.e.,
(2) 0< XN —Apu<p-1 Vie[l,n-1] with A, =0,
one can show [KSTY],(3.7)

(3) V(A) = S(n — 1)8,.

(4.5) Let Y be the complex (p™ — 1)-projective space. Then
(1 H'(Y)~ K[z]/(z"")  as graded K-algebras,

where z is an indeterminate of degree 2. Hence H'(Y) admits a structure of S-module.
Explicitly,

(2) Pi(e?) = (",)z"“(”’l) mod z? .
i

I V is a K-linear span of z,2?,..., " in H'(Y), V is stable under the action of
S(n — 1). Further, there is an isomorphism

(3) 0:E 5V via e,-b—-»e"i_t, i €[1,n]

of §(n — 1)-modules [KSTY],(4.3), which induces by the Kiinneth formula or by the Cartan
formula an imbedding of S(n — 1)-modules

1 ip—1

(4) 6% :E® - H'(Y") via e, ®...¢; —t ' . P vre Zt.
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In particular, the Weyl module V(A) with » = 37" A; imbeds in H'(Y") as an S(n — 1)-
submodule.

(4.6) Fix a column pregular partition A = (Ay,...,A-1) of » = Y00 A with its
transpose (A},...,AnL).

Composed several times with the cup product, 0%+ of (4.4)(4) yields an S(n — 1)-
homomorphism k

l

(1) 0': E® — H'(Y™) such that ¢, ®...®¢;, — ®:ce(’)
j=1
. i ¢ - i [ -1 ‘
where e(j) = p‘i”l + p i+ 1 + ... + p NS R +A"(J) with k(_’i) =
max{i |1 <i<m,A; > 5} — 1. Set ) = 6'|y(x). One finds
(2) 0r(2x) # 0.

(4.7) THEOREM (SMITH, MITCHELL[MIT], [KSTY],(4.10)). IfA =
(n=1)(p-1),(n—2)(p—1),... ,p—1), then 05 imbeds V(A), called the Steinberg module
that is free over S(n — 1), into H'(Y™"!) as S(n — 1)modules.

(4.8) Further, we have a curious

PROPOSITION [KSTY] (4.10). If Ay < p-—1 and if V(A) is &L, -simple, then §) imbeds
V(}) into H'(Y*1) as a S(n — 1)-submodaule.

(4.9) To further our speculation, Mabuchi [Ma] has verified that in case » > 3 and
A=(p1,...,1) with 1 appearing (n — 2)-times,

(1) 05 is injective iff V(A) is &L, — simple.

Computer work by his fellow student Takeno S. has also checked (1) for all column p-regular
Aincasen =3 and p <T.
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