Some Problems in Formal Language Theory Known as Decidable are Proved EXPTIME Complete

Takumi Kasai*and Shigeki Iwata[†]

Abstract

Some problems in formal language theory are considered and shown deterministic exponential time complete. They include the problems for a given context-free language L, a regular set R, a deterministic context-free language L_D , to determine whether $L \subset R$, and to determine whether $L_D \subset R$.

1 INTRODUCTION

A number of complete problems for deterministic exponential time have been presented. Since Chandra and Stockmeyer [1] established the notion of alternation in 1976, many authors have shown complete problems for deterministic exponential time by using of alternation. Most of these problems were related to combionatorial games. [2, 5, 6, 7, 8]

We consider in this paper several problems in the formal language theory and show that the problems are deterministic exponential time complete. They were already known as decidable. Let L be a context-free language, R a regular set, L_D a deterministic context-free language. The problems we consider include the ones to determine whether $L \subset R$, and whether $L_D \subset R$.

In order to prove that the concerned problems are deterministic exponential timehard, we use the pebble game problem [5], which was already shown complete for deterministic exponential time, and we establish the polynomial-time reduction from the pebble game problem.

We write λ to denote the empty string, and |x| to denote the length of a string x. Let Σ_k denote the set $\{[1,]_1, [2,]_2, \dots, [k,]_k\}$. See [4] for definitions of deterministic finite automata (dfa) $M = (Q, \Sigma, \delta, q_0, F)$ except that the transition function δ is given by a partial function from $Q \times \Sigma$ to Q. See also [4] for definitions of nondeterministic finite automata (nfa), regular set, context-free grammar (cfg), context-free language (cfl), deterministic context-free language (dcfl), deterministic pushdown automaton (dpda), Turing machine, polynomial time, and polynomial-time reducibility.

The Dyck language D_k of k balanced parenthesis is the one generated by the cfg $G = (\{S\}, \Sigma_k, P, S)$, where P is the set of productions of the forms

$$S \to SS \mid \lambda \mid [, S], \ (1 \le i \le k).$$

^{*}Department of Computer Science, University of Electro-Communications, Chofu, Japan †Information Science Laboratory, Tokai University, Hiratsuka, Japan

For a cfg G, let L(G) denote the language generated by G, and for an automaton or a machine M, L(M) denote the language accepted by M. Whenever we say "given a cfl L, …", we assume that a cfg G, L(G) = L, is given, and in particular when we say "given a dcfl L, …", a dpda M, L(M) = L is assumed. When we say "given a regular set R, …", it always means that an nfa M, L(M) = R is given.

EXPTIME is the class of sets accepted by 2^{n^k} time bounded deterministic Turing machines for some k. A language L is called EXPTIME *complete* if L is in EXPTIME, and L' is polynomial-time reducible to L for any L' in EXPTIME.

A pebble game [5] is a quadruple $\mathcal{G} = (X, R, S, t)$ where:

- (1) X is a finite set of nodes,
- (2) $R \subset \{(x_a, x_b, x_c) \mid x_a, x_b, x_c \in X, x_a \neq x_b, x_b \neq x_c, x_c \neq x_a\}$ is called a set of rules,
- (3) S is a subset of X, and
- (4) $t \in X$ is called the *terminal* node.

At the beginning of a pebble game, pebbles are placed on all nodes of S, and we call the placement the *initial pebble-placement*. A move of the game is as follows: if pebbles are placed on x_a , x_b , but not on x_c , and $(x_a, x_b, x_c) \in R$, then a player can move a pebble from x_a to x_c in his turn. The game is played by two players, and each player alternately applies one of the rules of \mathcal{G} to move a pebble. The winner is the player who can first put a pebble on the terminal node, or who can make the other player unable to move.

The first player has a forced win (or winning strategy) from a pebble-placement in \mathcal{G} if there is a winning game-tree for the first player, whose root is labeled with the pebble-placement. The winning game-tree of \mathcal{G} for the first player (game-tree for short) is the tree, nodes of which are labeled with pebble-placements, or WIN, where WIN means that the second player is already unable to move, thus the first player wins the game. We sometimes confuse a node of the game-tree with its label. A level of a node in the tree is the length of the path from the root to the node. The level of the root is zero. A *depth* of the game-tree is the maximum level among the nodes of the tree. Any node u of the even level in the tree is labeled with a pebble-placement for the first player's turn to move, and has exactly one child v, where v is obtained by an application of a rule of the game to u. Any non-leaf of the odd level is labeled with a pebble-placement for the second player's turn, and has exactly m children, where m is the number of the rules of the game. For $1 \le j \le m$, the j-th child of v is labeled with a pebble-placement obtained by an application of the *j*-th rule r_j of the game to v if r_j is applicable; and with WIN if r_j is not applicable to v. Every leaf of the game-tree is labeled either with WIN or with a pebble-placement in which the first player wins.

The pebble game problem is, given a pebble game \mathcal{G} , to determine whether there is a winning strategy for the first player from the initial pebble-placement in \mathcal{G} .

Theorem 1.1 [5] The pebble game problem is EXPTIME complete.

Example 1.1 Consider the following pebble game $\mathcal{G} = (X, R, S, x_5)$, where $X = \{x_1, x_2, x_3, x_4, x_5\}, S = \{x_1, x_2, x_3\}, R = \{r_1, r_2, r_3, r_4\}$, and $r_1 = (x_1, x_2, x_4), r_2 = (x_2, x_1, x_4), r_3 = (x_3, x_4, x_2), r_4 = (x_2, x_4, x_5).$

	begin
1)	Let $G, L = L(G)$ be a cfg, and let $M, R = L(M)$ be an nfa.
2)	Construct a dfa M' such that $L(M') = \Sigma^* - L(M)$.
3)	Construct the cfg G' as in Lemma 2.1 such that $L(G') = L(G) \cap L(M')$.
4)	Use polynomial time algorithm to determine whether $L(G') = \phi$.
5)	If $L(G') = \phi$ then $L \subset R$ else $L \not\subset R$.
	end

Fig. 2.1 Algorithm to determine whether $L \subset R$

If the first player applies r_1 to move a pebble from x_1 to x_4 , the second player then applies r_4 to move a pebble from x_2 to x_5 and the second player wins the game. Suppose that the first player first applies r_2 to move a pebble from x_2 to x_4 . Then the only rule for the second player to apply is r_3 to move a pebble from x_3 to x_2 . Then the first player applies r_4 to move a pebble from x_2 to x_5 and wins the game. Thus the first player has a forced win in \mathcal{G} .

2 Complete problem

Lemma 2.1 For a cfg G and an nfa M, we can construct a cfg G' such that $L(G') = L(G) \cap L(M)$ within polynomial time.

Proof. Let $G = (V, \Sigma, P, S)$ and $M = (Q, \Sigma', \delta, \{q_0\}, F)$. Without loss of generality, we assume that $\Sigma = \Sigma'$, and that G is in Chomsky normal form. Let $G' = (V', \Sigma, P', S')$, $V' = \{[q, X, p] \mid q, p \in Q, X \in V\} \cup \{S'\}$. P' contains

 $\begin{cases} [q, X, p] \to a & \text{if } X \to a \in P \text{ and } p \in \delta(q, a), & \text{for } q, p \in Q, a \in \Sigma, \\ [q, X, p] \to [q, A, q'][q', B, p] & \\ & \text{if } X \to AB \in P & \text{for } q, q', p \in Q, \end{cases}$

and $S' \rightarrow [q_0, S, q_f]$ for $q_f \in F$.

By induction, we can prove that for $q, p \in Q, X \in V, w \in \Sigma^*$

$$[q, X, p] \stackrel{*}{\xrightarrow[G]} w$$
 if and only if $X \stackrel{*}{\xrightarrow[G]} w$ and $p \in \delta(q, w)$.

Thus

$$S' \xrightarrow{\simeq}_{G'} [q_0, S, q_f] \xrightarrow{\approx}_{\overline{G'}} w$$
 if and only if $S \xrightarrow{\approx}_{\overline{G}} w$ and $q_f \in \delta(q_0, w)$.

The number of productions in G' is polynomial to the length of G and M. Thus the construction of G' can be performed within polynomial time.

Next we present an algorithm in Fig.2.1 to determine whether $L \subset R$ for a given cfl L and a regular set R.

Lemma 2.2 Given a cfl L and a regular set R, the algorithm shown in Fig.2.1 determines whether $L \subset R$ within exponential time.

Proof. In line (2), apply an usual algorithm, for example p.22 of [4], to obtain a dfa M_1 such that $L(M) = L(M_1)$, and exchange the accepting states and the non-accepting states of M_1 to obtain M', which accepts the complement of R. Note that the time

In line (4), apply the CYK algorithm [9] for example.

In total, our algorithm runs in exponential time to determine whether $L \subset R$.

Consider the following problem P_1 :

Given: a cfl L, and a regular set R. To determine whether: $L \subset R$.

Theorem 2.1 P_1 is EXPTIME complete.

Proof. Since EXPTIME is closed under complementation, it is sufficient to show that the problem P_1' :

Given: a cfl L, and a regular set R. To determine whether: $L \not\subset R$.

is EXPTIME complete. By Lemma 2.2, P_1' is solvable within exponential time.

To show that P_1' is EXPTIME hard, we establish that the pebble game problem is polynomial-time reducible to P_1' . Let $\mathcal{G} = (X, \tilde{R}, S, x_n)$ be a pebble game. We construct a cfg G and an nfa M within polynomial time such that there is a forced win for the first player in \mathcal{G} if and only if $L(G) \not\subset L(M)$.

Prior to the construction of M, we construct dfa's M_1, M_2, \dots, M_n , where n is the number of the nodes of \mathcal{G} , such that there is a winning strategy for the first player in \mathcal{G} if and only if $L(G) \cap \bigcap_{i=1}^n L(M_i) \neq \phi$. Then we construct an nfa M, which accepts the complement of $\bigcap_{i=1}^n L(M_i)$. Thus $L(G) \cap \bigcap_{i=1}^n L(M_i) \neq \phi$ is equivalent to $L(G) \notin L(M)$.

We will explain briefly how the simulation of \mathcal{G} works in G and M_i 's. The derivation of G guesses a game-tree of \mathcal{G} , that is, what rules of \mathcal{G} the first player applies in order to win the game. For the first player's turn to move in the game-tree, a derivation of G guesses a rule which the first player applies to the pebble-placement, while for the second player's turn, derivations in G guess for each rule whether the rule is applicable to the coressponding pebble-placement. The purpose of M_i 's is to examine whether the above guesses by G are correct, and whether the derivation is the one for the first player to win the game.

Assume that $X = \{x_1, x_2, \dots, x_n\}$, and that $\tilde{R} = \{r_1, r_2, \dots, r_m\}$. We write $\Sigma_{4m} = \{r_j, \overline{r_j}, a_j, \overline{a_j}, b_j, \overline{b_j}, c_j, \overline{c_j} \mid 1 \leq j \leq m\}$, where a symbol without bar and the symbol with bar are intended to form a pair of balanced parenthesis in Σ_{4m} . Let $G = (\{U, W, V_1, V_2, \dots, V_m\}, \Sigma_{4m}, P, U)$, where P contains

(1) $W \rightarrow V_1 V_2 \cdots V_m$,

and for each rule $r_j = (x_{j1}, x_{j2}, x_{j3}), 1 \leq j \leq m$ of \tilde{R} ,

- (2) $\begin{cases} U \to r_j W \overline{r_j} & (j3 \neq n) \\ U \to r_j \overline{r_j} & (j3 = n), \end{cases}$
- (3) $V_i \rightarrow a_i \overline{a_i} \mid b_i \overline{b_i} \mid c_i \overline{c_i}$, and
- (4) $V_j \rightarrow r_j U \overline{r_j} \quad (j3 \neq n).$

Fig. 2.2 transition $\delta_{i1}(p_{i1}, \sigma_i)$

a_j, aj, bj, bj, ^cj, c;

Fig. 2.3 transition $\delta_{j2}(p_{j2}, \sigma_j)$

The nonterminal U is associated with a pebble-placement for the first player's turn to move, while W is for the second player. $V_j, 1 \leq j \leq m$, means in the simulation to guess an application of a rule $r_j \in \tilde{R}$ to the pebble-placement associated with W. The production rules in (2) are for the simulation of the first player in \mathcal{G} to select r_j to move a pebble from x_{j1} to x_{j3} . The production $U \to r_j W \overline{r_j}$ is the one to denote that the first player applies r_j and the next turn is the second player, while $U \to r_j \overline{r_j}$ denotes for the first player to apply r_j and wins to put a pebble on x_n . The productions (1),(3),(4) are for the second player's move. (1) is to try every rule r_1, r_2, \dots, r_m as the second player's move. (3) is to indicate that r_j is not a proper rule to make: if a pebble is not on x_{j1} (is not on x_{j2} , is on x_{j3}), then $V_j \to a_j \overline{a_j}$ $(V_j \to b_j \overline{b_j}, V_j \to c_j \overline{c_j}$, respectively) can be applied. (4) is to select r_j to move. $V_j \to r_j U \overline{r_j}$ is to apply r_j and the next turn is the first player.

For $1 \leq i \leq n$, M_i keeps track of the existence of a pebble on x_i in \mathcal{G} . If the state of M_i is in x_i ($\overline{x_i}$) then it means that there is (there is not, respectively) a pebble on x_i in \mathcal{G} . Let $M_i = (\{x_i, \overline{x_i}\}, \Sigma_{4m}, \delta_i, q_i, \{q_i\})$, and $q_i = x_i$ for $x_i \in S$, and $q_i = \overline{x_i}$ for $x_i \notin S$. For each i ($1 \leq i \leq n$) and j ($1 \leq j \leq m$), let $\delta_i(p_i, \sigma_j)$, $p_i \in \{x_i, \overline{x_i}\}, \sigma_j \in \{r_j, \overline{r_j}, a_j, \overline{a_j}, \overline{b_j}, \overline{b_j}, c_j, \overline{c_j}\}$, be the following transition. Assume that $r_j = (x_{j1}, x_{j2}, x_{j3})$ is a rule in \tilde{R} .

If i = j1 then $\delta_i(p_i, \sigma_j)$ is the transitions shown in Fig.2.2. If i = j2 then it is shown in Fig.2.3, and if i = j3 then it is in Fig.2.4. If $i \notin \{j1, j2, j3\}$ then $\delta_i(p_i, \sigma_j) = p_i$ for each $p_i \in \{x_i, \overline{x_i}\}$, and $\sigma_j \in \{r_j, \overline{r_j}, a_j, \overline{a_j}, b_j, \overline{b_j}, c_j, \overline{c_j}\}$. Note that $\delta_{j1}(x_{j1}, a_j), \delta_{j2}(x_{j2}, b_j)$, and $\delta_{j3}(\overline{x_{j3}}, c_j)$ are undefined. (See Fig's 2.2, 2.3, and 2.4.) The object of the construction of M_1, M_2, \dots, M_n is to define a "product dfa" N of M_1, M_2, \dots, M_n , which is defined below. We consider N as a tool for the proof of the theorem, and we do not actually construct N in the simulation.

Fig. 2.4 transition $\delta_{j3}(p_{j3}, \sigma_j)$

Now we define $N = (Q, \Sigma_{4m}, \delta, S, \{S\})$, where

$$Q = \{x_1, \overline{x_1}\} \times \{x_2, \overline{x_2}\} \times \cdots \times \{x_n, \overline{x_n}\},\$$

$$S = (q_1, q_2, \cdots, q_n),\$$

$$\delta((p_1, p_2, \cdots, p_n), \sigma) = (\delta_1(p_1, \sigma), \delta_2(p_2, \sigma), \cdots, \delta_n(p_n, \sigma)), p_i \in \{x_i, \overline{x_i}\},\$$

and $\delta((p_1, p_2, \dots, p_n), \sigma)$ is undefined if $\delta_i(p_i, \sigma)$ is undefined for some *i*.

We use a state (p_1, p_2, \dots, p_n) of N and a pebble-placement P of the game-tree in the same meaning: for each $i (1 \le i \le n)$, $p_i = x_i$ if and only if there is a pebble on x_n in P, and $p_i = \overline{x_i}$ if and only if there is not a pebble on x_n in P.

Then by the definition of N, we have the following lemmas 2.3 and 2.4:

Lemma 2.3 Let P be a pebble-placement and let r_j be a rule of \mathcal{G} . If r_j is applicable to P and if P' is the resultant pebble-placement then

$$\delta(P, r_j) = P' \text{ and } \delta(P', \overline{r_j}) = P.$$

If r_j is not applicable to P, then $\delta(P, r_j)$ is undefined.

Proof. Let $P = (p_1, p_2, \dots, p_n)$ and let $r_j = (x_{j1}, x_{j2}, x_{j3})$. Suppose that r_j is not applicable to P. Then either $p_{j1} = \overline{x_{j1}}$ (there is not a pebble on x_{j1}), $p_{j2} = \overline{x_{j2}}$ (a pebble is not on x_{j2}), or $p_{j3} = x_{j3}$ (a pebble is on x_{j3}) holds. If $p_{j1} = \overline{x_{j1}}$ then $\delta_{j1}(p_{j1}, r_j)$ is undefined (see Fig.2.2), if $p_{j2} = \overline{x_{j2}}$ then $\delta_{j2}(p_{j2}, r_j)$ is undefined (see Fig.2.3), and if $p_{j3} = x_{j3}$ then $\delta_{j3}(p_{j3}, r_j)$ is undefined (see Fig.2.4). Thus $\delta(P, r_j)$ is undefined.

Suppose that r_j is applicable to P. Then $p_{j1} = x_{j1}$, $p_{j2} = x_{j2}$, and $p_{j3} = \overline{x_{j3}}$. Thus

$$\delta(P, r_j) = (p_1', p_2', \cdots, p_n'),$$

$$p_{j1}' = \overline{x_{j1}}, \ p_{j2}' = \overline{x_{j2}}, \ p_{j3}' = \overline{x_{j3}}, \text{ and } p_i' = p_i, i \notin \{j1, j2, j3\}.$$

Further we have $\delta((p_1', p_2', \cdots, p_n'), \overline{r_i}) = P$.

Lemma 2.4 For any public-placement P and any symbol $\sigma \in \{a_j, \overline{a_j}, b_j, \overline{b_j}, c_j, \overline{c_j} \mid 1 \le j \le m\},$

 $\delta(P,\sigma) = P$ or it is undefined.

Further, r_j is not applicable to P if and only if there is $w_j \in \{a_j\overline{a_j}, b_j\overline{b_j}, c_j\overline{c_j}\}$ such that $\delta(P, w_j) = P$.

Proof. For any $p_i \in \{x_i, \overline{x_i}\}, 1 \leq i \leq n$, and $\sigma \in \{\overline{a_j}, \overline{b_j}, \overline{c_j}\}, 1 \leq j \leq m$, we have $\delta_i(p_i, \sigma) = p_i$. (See Fig's.2.2, 2.3, and 2.4.) For any $\sigma \in \{a_j, b_j, c_j\}$, either $\delta_i(p_i, \sigma) = p_i$ or $\delta_i(p_i, \sigma)$ is undefined.

The necessary and sufficient condition that $\delta_i(p_i, a_j)$ is undefined is that i = j1and $p_i = x_{j1}$, that is, there is a pebble on x_{j1} in P. Likewise, the necessary and sufficient condition for $\delta_i(p_i, b_j)$ to be undefined is that i = j2 and $p_i = x_{j2}$, that is, a pebble is on x_{j2} in P, and the necessary and sufficient condition for $\delta_i(p_i, c_j)$ to be undefined is that i = j3 and $p_i = x_{j3}$, that is, a pebble is not on x_{j3} in P. Thus, r_j is applicable to P if and only if none of $\delta(P, a_j)$, $\delta(P, b_j)$, nor $\delta(P, c_j)$ are defined.

Note that L(G) is a subset of D_{4m} . Further we can obtain the following lemma: Lemma 2.5 For any $\alpha \in D_{4m}$ and a pebble-placement P,

$$\delta(P, \alpha) = P$$
 or it is undefined.

Proof. We can show the lemma by induction on $|\alpha|$.

Lemma 2.6 The first player has a winning strategy from a pebble-placement P if and only if there is $w \in \Sigma_{4m}^*$ such that

$$U \stackrel{*}{\Rightarrow} w \text{ and } \delta(P, w) = P.$$

Example 2.1 Before we prove the lemma, consider the pebble game \mathcal{G} of Example 1.1. The cfg G guesses the following derivation:

$$U \Rightarrow r_2 W \overline{r_2} \Rightarrow r_2 V_1 V_2 V_3 V_4 \overline{r_2}$$

$$\Rightarrow r_2 b_1 \overline{b_1} a_2 \overline{a_2} r_3 U \overline{r_3} a_4 \overline{a_4} \overline{r_2}$$

$$\Rightarrow r_2 b_1 \overline{b_1} a_2 \overline{a_2} r_3 r_4 \overline{r_4} \overline{r_3} a_4 \overline{a_4} \overline{r_2}.$$

Let $P_0 = (x_1, x_2, x_3, \overline{x_4}, \overline{x_5})$. P_0 is the initial pebble-placement of \mathcal{G} . Then

$$\delta(P_0, r_2) = (x_1, \overline{x_2}, x_3, x_4, \overline{x_5}) = P_1.$$

 P_1 is the resultant pebble-placement after an application of r_2 to P_0 .

Since there is not a pebble on the second component x_2 of r_1 , r_1 is not applicable to P_1 , and $\delta(P_1, b_1 \overline{b_1}) = P_1$. Similarly, r_2 and r_4 are not applicable to P_1 , since there is not a pebble on the first component x_2 of r_2 and r_4 . Thus $\delta(P_1, a_2 \overline{a_2}) = P_1$, and $\delta(P_1, a_4 \overline{a_4}) = P_1$. Further

$$\delta(P_1, r_3) = (x_1, x_2, \overline{x_3}, x_4, \overline{x_5}) = P_2, \text{ and } \\ \delta(P_2, r_4) = (x_1, \overline{x_2}, \overline{x_3}, x_4, x_5) = P_3.$$

 P_2 is the pebble-placement after the second player applies r_3 to P_1 , and P_3 is the pebble-placement after the first player applies r_4 to P_2 . The symbols $\overline{r_4}, \overline{r_3}, \overline{r_2}$ are for backtracking procedures. Thus we have

$$\delta(P_3, \overline{r_4}) = P_2, \ \delta(P_2, \overline{r_3}) = P_1, \ \text{and} \ \delta(P_1, \overline{r_2}) = P_0.$$

Therefore, there is $w \in \Sigma_{4m}^*$ such that $U \stackrel{*}{\Rightarrow} w$, and $\delta(P_0, w) = P_0$.

$$\delta(P, r_j \overline{r_j}) = \delta(P', \overline{r_j}) = P$$

by Lemma 2.3. Thus the "only if" part holds for the basis of the induction.

Assume that the depth of the tree is greater than one, that $r_j = (x_{j1}, x_{j2}, x_{j3})$ is the first player's rule to apply to P and that P' is the resultant pebble-placement. Prior to show the inductive step, we will show that

for each $j (1 \le j \le m)$, there is $w_j \in D_{4m}$ such that

$$V_j \stackrel{*}{\Rightarrow} w_j, \delta(P', w_j) = P$$

If r_j is not applicable to P' then there is $w_j \in \{a_j \overline{a_j}, b_j \overline{b_j}, c_j \overline{c_j}\}$ which satisfies (*) by Lemma 2.4.

Suppose that r_j is applicable to P', and that P_j' is the pebble-placement after the application of r_j to P'. Since the first player has a winning strategy from P_j' , there is $v_j \in \Sigma_{4m}^*$ such that

$$U \stackrel{*}{\Rightarrow} v_j, \delta(P_j', v_j) = P_j'$$

by the inductive hypothesis. If we put $w_j = r_j v_j \overline{r_j}$ then

$$V_j \Rightarrow r_j U \overline{r_j} \stackrel{*}{\Rightarrow} r_j v_j \overline{r_j} = w_j,$$

$$\delta(P', w_j) = \delta(P_j', v_j \overline{r_j}) = \delta(P_j', \overline{r_j}) = P'.$$

Thus (*) holds in the inductive step. We have shown (*).

Therefore we have

(*)

$$U \Rightarrow r_j W \overline{r_j} \Rightarrow r_j V_1 \cdots V_m \overline{r_j} \stackrel{*}{\Rightarrow} r_j w_1 \cdots w_m \overline{r_j}, \text{ and} \\ \delta(P, r_j w_1 \cdots w_m \overline{r_j}) = \delta(P', w_1 \cdots w_m \overline{r_j}) = \delta(P', \overline{r_j}) = P.$$

(If): We use induction on the number of steps of the derivation $U \stackrel{*}{\Rightarrow} w$. Assume that the number of the steps is one, that is, $U \Rightarrow r_j \overline{r_j} = w$. Obviously the first player has a winning strategy from P.

Assume that

$$U \Rightarrow r_j W \overline{r_j} \Rightarrow r_j V_1 \cdots V_m \overline{r_j} \stackrel{*}{\Rightarrow} r_j w_1 \cdots w_m \overline{r_j} = w,$$

$$V_j \stackrel{*}{\Rightarrow} w_j, (1 \le j \le m).$$

Since $\delta(P, w) = P$, $\delta(P, r_j)$ is defined. If $\delta(P, r_j) = P'$, then P' is the pebbleplacement after the application of r_j to P, and $\delta(P', \overline{r_j}) = P$. By Lemma 2.5 and by $\delta(P', w_1 \cdots w_n) = P'$, we have

$$\delta(P', w_i) = P'$$

for every $j (1 \le j \le m)$. If $w_j \in \{a_j \overline{a_j}, b_j \overline{b_j}, c_j \overline{c_j}\}$, then r_j is not applicable to P' by Lemma 2.4. If $w_j \notin \{a_j \overline{a_j}, b_j \overline{b_j}, c_j \overline{c_j}\}$, then r_j is applicable to P' and w_j is of the form $r_j v_j \overline{r_j}, v_j \in D_{4m}$. Thus

$$V_j \Rightarrow r_j U \overline{r_j} \stackrel{*}{\Rightarrow} r_j v_j \overline{r_j} = w_j, \text{ and } U \stackrel{*}{\Rightarrow} v_j.$$

If $\delta(P', r_j) = P_j'$ then P_j' is the pebble-placement after the application of r_j to P', and $\delta(P_j', v_j) = P_j'$. By the inductive hypothesis, $U \stackrel{*}{\Rightarrow} v_j$ and $\delta(P_j', v_j) = P_j'$ imply that the first player has a winning strategy from P_j' . Thus the first player can win the game no matter what rule r_j the second player may apply to P'.

Therefore the lemma is proved.

By Lemma 2.6, the necessary and sufficient condition for the first player to have a winning strategy from the initial pebble-placement in \mathcal{G} is that there is $w \in \Sigma_{4m}^*$ such that $w \in L(G) \cap L(N)$, and the condition is also that $L(G) \cap \bigcap_{i=1}^n L(M_i) \neq \phi$.

To complete the proof of the theorem, we have to construct M. It is clear that we can easily construct the dfa M_i' from M_i which accepts $\Sigma_{4m}^* - L(M_i)$, the complement of $L(M_i)$. Now we consider an nfa M such that M accepts the complement of $\bigcap_{i=1}^n L(M_i)$. Since

$$\Sigma_{4m}^* - \bigcap_{i=1}^n L(M_i) = \bigcup_{i=1}^n (\Sigma_{4m}^* - L(M_i)) = \bigcup_{i=1}^n L(M_i) = L(M),$$

we can construct an nfa M as the collection of M_1', M_2', \dots, M_n' together with the initial state q_0 of M by simply adding λ -moves from q_0 to each initial state of M_1', M_2', \dots, M_n' . The set of the accepting states of M is the union of the ones of M_1', M_2', \dots, M_n' .

Therefore, there is a winning strategy for the first player from the initial pebbleplacemene in \mathcal{G} if and only if $L(G) \not\subset L(M)$. The constructions of G and M can be performed within polynomial time. We note that M can be constructed within polynomial time since M is nondeterministic. Thus both P_1' and P_1 are complete for EXPTIME.

3 PROBLEMS ON DCFL'S

We consider in this section some problems concerning dcfl's.

Theorem 3.1 The problem P_2 :

Given: a regular set $R \subset \Sigma_2^*$. To determine whether: $D_2 \subset R$.

is EXPTIME complete.

Proof. To prove the theorem, it suffices to show that the following P_2' :

Given: a regular set $R \subset \Sigma_2^*$. To determine whether: $D_2 \not\subset R$.

Fig. 3.1 dfa M_0

is EXPTIME complete. By Lemma 2.2, P_2' is solvable within exponential time. We show that the pebble game problem is polynomial time reducible to P_2' . The proof proceeds similarly as in the one of Theorem 2.1.

Let $\mathcal{G} = (X, \tilde{R}, S, x_n)$ be a pebble game, $X = \{x_1, x_2, \dots, x_n\}, |\tilde{R}| = m$. Let G be the cfg, let M_1, M_2, \dots, M_n be the dfa's, and let M be the nfa constructed in the proof of Theorem 2.1. We have shown in the preceeding proof that the necessary and sufficient condition for the first player having a forced win from the initial pebble-placement in \mathcal{G} is $L(G) \not\subset L(M)$, hence $L(G) \cap \bigcap_{i=1}^n L(M_i) \neq \phi$. We will construct a dfa M_0 such that $L(G) = D_{4m} \cap L(M_0)$.

Lemma 3.1 There exist a dfa M_0 such that $L(G) = D_{4m} \cap L(M_0)$.

Proof. Assume that R_1 is the set of rules of \mathcal{G} to put a pebble not on x_n , i.e., $R_1 = \{r_j | r_j = (x_{j1}, x_{j2}, x_{j3}), j3 \neq n\}$, and that R_2 is the set of rules to put a pebble on x_n , $R_2 = \{r_j | r_j = (x_{j1}, x_{j2}, x_{j3}), j3 = n\}$. Without loss of generality, we may assume that $R_1 = \{r_1, \dots, r_\ell\}$ and $R_2 = \{r_{\ell+1}, \dots, r_m\}$. We construct M_0 , which is shown in Fig.3.1, where the transition $r_1 + \dots + r_\ell$ from U to V_1 stands for ℓ transitions by r_1, \dots, r_ℓ from U to V_1 . (See Fig.3.2(a).) Transitions by $\overline{r_1} + \dots + \overline{r_\ell}$, $r_{\ell+1} + \dots + r_m$ and $\overline{r_{\ell+1}} + \dots + \overline{r_m}$ in Fig.3.1 are similar abbreviations. For $1 \leq j \leq m$, let $\mu_j = a_j \overline{a_j} + b_j \overline{b_j} + c_j \overline{c_j}$. The transition by μ_j from V_j to V_{j+1} implies that either $a_j \overline{a_j}$, $b_j \overline{b_j}$, or $c_j \overline{c_j}$ causes the transition from V_j to V_{j+1} . (See Fig.3.2(b).)

Let δ be the transition function of M_0 . Recall that D_{4m} is generated by $G' = (\{S\}, \Sigma_{4m}, P, S)$, where P contains $S \to SS |\lambda| [iS]_i$ for $1 \le i \le 4m$. It is clear that $L(G) \subset D_{4m}$ since any derivation in G can be "mapped into" a derivation in G' by replacing U, W, V_1, \dots, V_m by S.

Thus in order to prove the lemma it suffices to show that for $\alpha \in D_{4m}$

 $U \stackrel{*}{\Rightarrow} \alpha$ if and only if $\delta(U, \alpha) = U'$,

Fig. 3.2 abbreviations in Fig.3.1

for each j $(1 \le j \le m)$, $V_j \stackrel{*}{\xrightarrow[c]{d}} \alpha$ if and only if $\delta(V_j, \alpha) = V_{j+1}$, $W \stackrel{*}{\xrightarrow[c]{d}} \alpha$ if and only if $\delta(V_1, \alpha) = V_{m+1}$.

(Only if): Let us use induction on $|\alpha|$. If $|\alpha| \leq 2$, the cases are trivial. Consider $\alpha, |\alpha| = k > 2$, assuming that the "only if" part holds for each $\beta \in D_{4m}, |\beta| < k$. Suppose $U \stackrel{*}{\xrightarrow[G]} \alpha$. Then the first step of the derivation should be $U \stackrel{*}{\Rightarrow} r_j W \overline{r_j}$ for some j $(1 \leq j \leq m)$, and $W \stackrel{*}{\xrightarrow[G]} \beta \in D_{4m}, \alpha = r_j \beta \overline{r_j}, |\beta| < k$. By the inductive hypothesis, we have $\delta(V_1, \beta) = V_{m+1}$. Thus $\delta(U, \alpha) = \delta(U, r_j \beta \overline{r_j}) = \delta(V_1, \beta \overline{r_j}) = \delta(V_{m+1}, \overline{r_j}) = U'$. The cases that $V_j \stackrel{*}{\xrightarrow[G]} \alpha$ and $W \stackrel{*}{\xrightarrow[G]} \alpha$ can be similarly proved.

(If): By simple induction on $|\beta|, \beta \in D_{4m} - \{\lambda\}$, we can show that

- (i) $\delta(U,\beta) = U'$ or it is undefined, and
- (ii) for each $j \ (1 \le j \le m), \ \delta(V_j, \beta) \in \{V_{j+1}, \cdots, V_{m+1}\}$ or it is undefined.

Again we will use induction on $|\alpha|$ to show the "if" part. If $|\alpha| \leq 2$ the proof is obvious. Consider α , $|\alpha| = k > 2$, and assume that the "if" part holds for each β , $|\beta| < k$.

Suppose $\delta(U, \alpha) = U'$. If $\alpha = \alpha_1 \alpha_2$ and if $\alpha_1, \alpha_2 \in D_{4m} - \{\lambda\}$, then $\delta(U, \alpha_1) = U'$ by (i). The transition from U' is made only by one of $\overline{r_1}, \dots, \overline{r_\ell}$ and $\delta(U', \alpha_2)$ is undefined. Thus M_0 does not accept $\alpha_1 \alpha_2$. So $\alpha = r_j \beta \overline{r_j}$ for some j $(1 \le j \le \ell)$ and $\beta \in (D_{4m} - \{\lambda\})$. Since $\delta(U, r_j) = V_1$ and $\delta(V_1, \beta \overline{r_j}) = U'$, we obtain $\delta(V_1, \beta) = V_{m+1}$. By the inductive hypothesis we have $W \stackrel{*}{\Rightarrow} \beta$. Thus

$$U \rightleftharpoons_{\overrightarrow{G}} r_j W \overline{r_j} \stackrel{*}{\Rightarrow} r_j \beta \overline{r_j} = \alpha.$$

The cases $\delta(V_i, \alpha) = V_{i+1}$ and $\delta(V_1, \alpha) = V_{m+1}$ can be similarly proved.

We define a homomorphism $h: \Sigma_{4m}^* \to \Sigma_2^*$ as follows:

$$\begin{array}{c} h([_i) = [_1 [_2^*] \\ h(]_i) =]_2^*]_1 \end{array} \} (1 \le i \le 4m)$$

Assume that $\Delta = \{h([i), h(]i) \mid 1 \le i \le 4m\}$. Then the following lemma holds.

Lemma 3.2 $h(D_{4m}) = D_2 \cap \Delta^*$.

Proof. By the definition of h and D_{4m} , $h(D_{4m})$ is the language, which can be generated by the cfg ($\{S\}, \Sigma_2, P, S$), where P contains $S \to SS \mid \lambda \mid [1 \mid [2^i S \mid 2^i]_1$ for $1 \leq i \leq 4m$. Thus the lemma follows. \Box

We will complete the proof of Theorem 3.1. By the definition of h, for languages $L, L' \subset \Sigma_{4m}^*$, we have that $L = \phi$ if and only if $h(L) = \phi$, and that $h(L \cap L') = h(L) \cap h(L')$. Thus

$$L(G) \not\subset L(M)$$
 if and only if $D_{4m} \cap \bigcap_{i=0}^{n} L(M_i) \neq \phi$
if and only if $h(D_{4m}) \cap \bigcap_{i=0}^{n} h(L(M_i)) \neq \phi$

It is easy to construct a dfa $\widehat{M_i}$ such that $h(L(M_i)) = L(\widehat{M_i})$ for $0 \le i \le n$. Let $\widehat{M_{n+1}}$ be the dfa, which accepts Δ^* . Then,

$$L(G) \not\subset L(M)$$
 if and only if $D_2 \cap \Delta^* \cap \bigcap_{i=0}^n L(\widehat{M_i}) \neq \phi$
if and only if $D_2 \cap \bigcap_{i=0}^{n+1} L(\widehat{M_i}) \neq \phi$.

We can construct an nfa \widehat{M} which accepts the complement of $\bigcap_{i=0}^{n+1} L(\widehat{M_i})$ as in the proof of Theorem 2.1, since $\widehat{M_0}, \widehat{M_1}, \cdots, \widehat{M_{n+1}}$ are deterministic. Thus,

 $L(G) \not\subset L(M)$ if and only if $D_2 \not\subset L(\widehat{M})$.

The construction of \widehat{M} can be performed within polynomial time. Therefore the proof of the theorem is completed.

Corollary 3.1 For a given regular set R and for each $k \ge 2$, the problem to determine whether $D_k \subset R$ is EXPTIME complete.

Proof. The problem can be solved within EXPTIME. Let R be a regular set. We prove that

 $D_2 \subset R$ if and only if $D_k \subset R \cup (\Sigma_k^* - \Sigma_2^*)$.

Assume that $D_2 \subset R$, and that $w \in D_k$. If $w \in \Sigma_2^*$ then $w \in D_2$. If $w \notin \Sigma_2^*$ then $w \in \Sigma_k^* - \Sigma_2^*$. Thus $w \in R \cup (\Sigma_k^* - \Sigma_2^*)$ and we obtain that $D_k \subset R \cup (\Sigma_k^* - \Sigma_2^*)$. Assume that $D_k \subset R \cup (\Sigma_k^* - \Sigma_2^*)$, and $w \in D_2$. Since $w \in R \cup (\Sigma_k^* - \Sigma_2^*)$ and

 $w \notin \Sigma_k^* - \Sigma_2^*$, we obtain that $w \in R$. Thus $D_2 \subset R$.

As we can construct the nfa accepting $R \cup (\Sigma_k^* - \Sigma_2^*)$ within polynomial time, the corollary is proved.

Open problem 1 The complexity of the problem to determine whether $D_1 \subset R$ for a given regular set R is remained open.

Since we can construct a dpda M to accept D_2 , we obtain the following corollary.

Corollary 3.2 The problem P_3 :

Given: a dcfl L, and a regular set R. To determine whether: $L \subset R$.

is EXPTIME complete.

Corollary 3.3 The problem P_4 :

Given: a dcfl $L \subset \Sigma^*$, and a regular set $R \subset \Sigma^*$. To determine whether: $L \cup R = \Sigma^*$.

is EXPTIME complete.

Proof. Let M be a dpda which accepts L. Since M is deterministic, we can construct a dpda M' such that M' accepts $\Sigma^* - L$. (See [4],p.238, for example.) Then we can construct a cfg G, which satisfies L(G) = L(M').

Since $L \cup R = \Sigma^*$ is equivalent to $L(G) \subset R$, and G can be constructed within polynomial time, P_4 is EXPTIME complete by Corollary 3.2.

Remark The problem to determine whether $R \subset L$ for a given regular set R and a dcfl L is solvable within polynomial time by constructing a cfg G generating the complement of L and by applying the algorithm of Fig.2.1 to determine whether $R \cap L(G) = \phi$, which is equivalent to $R \subset L$.

Open problem 2 Let L be a dcfl and R be a regular set. The following problems are in EXPTIME, however, their complexities are open.

(1)
$$R = L$$
?
(2) $L \subsetneq R$?
(3) $R \subsetneq L$?

REFERENCES

- [1] A. K. Chandra and L. J. Stockmeyer, *Alternation*, Proceedings 17th Ann. IEEE Symp. on Found. of Comput. Sci. (1976), pp.151–174.
- [2] A. S. Fraenkel, and D. Lichtenstein, Computing a perfect strategy for $n \times n$ chess requires time exponential in n, J. Combinatorial Theory, 31(1981), pp.199-214.
- [3] H. B. Hunt II, D. J. Rosenkrantz, and T. G. Szymanski, On the equivalence, containment, and covering problems for the regular and context-free languages, J. Comput. System Sci., 12(1976), pp.222-268.
- [4] J. E. Hopcroft, and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading Mass., 1979.
- [5] T. Kasai, A. Adachi, and S. Iwata, Classes of pebble games and complete problems, SIAM J. Comput., 8(1979), pp.578-586.
- [6] J. M. Robson, The complexity of GO, Proceedings, IFIP 1983(1983), pp.413-417.

- [7] J. M. Robson, N by N checkers is EXPTIME complete, SIAM J. Comput., 13(1984), pp.252-267.
- [8] L. J. Stockmeyer, and A. K. Chandra, Provably difficult combinatorial games, SIAM J. Comput., 8(1979), pp.151-174.
- D. H. Younger, Recognition and parsing of context-free languages in time n³, Inform. Contr., 10(1967), pp.189-208.

謝辞1

岐阜べんなんて忘れてしまったであかんわ.町田さん来年も開くまわししてちょ.

謝辞2

くに荘のおばさん,おっかなかったよ、町田さん,研究会しらいてくれてあんがと. またひてね.