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Abstract A maximal [-diameter tree cover of a graph G = (V, E) is a spanning subgraph C =
(V, E¢) of G such that each connected component of C is a tree, C' contains no path with more
than [ edges, and adding any edge in E — E¢ to C yields either a path of length { + 1 or a cycle.
For every function f from positive integers to positive integers, the maximal f-diameter tree cover
problem (MDTC(f) problem for short) is to find a maximal f(n)-diameter tree cover of G, given an
n-node graph G. In this paper, we give three parallel algorithms for the MDTC(f) problem. The
first algorithm can be implemented in time O(Tarsp(n, f(n)) + log® n) using polynomial number of
processors on a P-RAM, where Tysp(n, f(n)) is the time needed to find a maximal set of vertex
disjoint paths of length f(n) in a given n-node graph using polynomial number of processors on a
P-RAM. We then show that if suitable restrictions are imposed on the input graph and/or on the
magnitude of f, then Tarsp(n, f(n)) = O(loghn) for some constant k and thus, for such cases, we
obtain an NC algorithm for the MDTC(f) problem. The second algorithm runs in time O(-}'jl%%})
using polynomial number of processors on a P-RAM. Thus if f(n) = Q(]o—g"r;) for some k > 0, we
obtain an NC algorithm for the MDTC(f) problem. The third algorithm is a randomized one and can

be implemented in time O(logh) using polynomial number of processors on a P-RAM for arbitrary
functions and graphs.

1 Introduction

Parallel algorithms for specific maximal subgraph problems and their natural extensions have received sub-
stantial attention recently [1, 2, 9, 10, 11, 12, 13, 17, 18]. Two outstanding maximal subgraph problems are
the maximal independent set (MIS) problem and the maximal matching (MM) problem. Much work has
been done on the development of efficient parallel algorithms for these two problems [1, 9, 10, 11, 12, 13].
As natural extensions of the MIS problem, there have been the maximal bipartite set problem [16] and the
bounded degree maximal subgraph problem [17], However to our knowledge, no natural extension of the MM
problem is known. In this paper, we give a natural extension of the MM problem and present three parallel
algorithms for solving it.

A tree cover of a graph G is a spanning subgraph of G in which each connected component is a tree. An
l-diameter tree cover of a graph G is a tree cover of G that contains no path with more than ! edges. An
l-diameter tree cover C = (V, E¢) of a graph G = (V, E) is said to be mazimal if for each edge e € £ — E¢,
the graph (V, Ec U {e}) contains either a path of length /+ 1 or a cycle. For every function f from positive
integers to positive integers, the mazimal f-diameter tree cover problem (the MDTC(f) problem for short) is
to find a maximal f(n)-diameter tree cover, given an n-node graph G. By this definition, the MM problem
can be viewed as the MDTC(f) problem where f(n) = 1 for each n, and the MDTC(f) problem becomes the
problem of finding a spanning forest if f is the identity function. Thus we can view the MDTC(f) problem
as a natural extension of both problems above.

We are interested in designing efficient parallel algorithms for the MDTC(f) problem. If computing f
is hard, say is hard for PTIME, then the MDTC(f) problem may not have an efficient parallel algorithm.
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This says that it is necessary to give some assumption on the complexity of f in order to parallelize the
MDTC(f) problem. Hence we shall assume that f is computable in NC®. Under this assumption, two
parallel algorithms are presented for the MDTC( f) problem. The first algorithm can be implemented in time
O(Tumsp(n, f(n)) + log® n) using polynomial number of processors on a P-RAM, where Tarsp(n, f(n)) is the
time needed to find a maximal set of vertex disjoint paths of length f(n) in a given n-node graph using
polynomial number of processors on a P-RAM. In general, it seems unlikely that Ty sp(n, f(n)) = O(log* n)
for some constant k, because computing a maximal set of vertex disjoint path of length n — 1 in an n-node
graph is equivalent to computing a Hamiltonian path in the graph. However, if one of the following (1), (2),
and (3) holds, then it can be shown that Thssp(n, f(n)) = O(log® n) for some constant k, and thus, NC
algorithms can be obtained for the three cases: (1) f is a constant function, i.e., f maps each integer to a
fixed constant; (2) f(n) = O(logn) and the input graph is of bounded degree; (3) the input graph is either
a tree or an n-node graph with minimum degree at least 3. Our second algorithm runs in time O(%ﬁ%}?)
using polynomial number of processors on a P-RAM. Thus if f(n) = Q(T;g'i——';) for some k > 0, we obtain an
NC algorithm for the MDTC(f) problem. Our third algorithm is a randomized one and can be implemented
in time O(log$) using polynomial number of processors on a P-RAM. The basic idea used in the algorithms is
to extend a simple path of length f(n) in the graph to a subtree maximal with respect to the condition that
the subtree contains no simple path with more than f(n) edges. The key idea used in the third algorithm is
that of path separators [3, 4].

2 Preliminaries

Throughout this paper, we mean, by a graph, an undirected graph without any multiple edges and self-loops.
A graph may be connected or not. Let G = (V, E) be a graph. We sometimes write V = V(G) and E = E(G).
For a subset U C V, the subgraph of G induced by U is the graph (U, F) with F = {{u,v} € E: u,v € U}.
Unless stated otherwise, by a path, we mean a simple path. The length of a path is the number of edges it
traverses. We use |p] to denote the length of a path p. Two paths are vertez disjoint if they share no common
vertex. We often identify a set P of paths with the graph consisting of vertices and edges on paths of P,
and hence V(P) and E(P) mean the sets of all vertices and edges on paths of P, respectively. If P is a set
containing a single path p, then we identify P with p. A tree cover of a graph is a spanning subgraph in
which each connected component is a tree. An I-diameter tree cover of a graph G is a tree cover C of G that
contains no path of length I+ 1. An l-diameter tree cover C = (V, E¢) of a graph G = (V, E) is said to be
mazimal if for each edge e € E — E¢, the graph (V, Ec U {e}) contains a path of length [+ 1 or a cycle. We
denote by distg(u,v) the distance between two vertices u, v in a graph G, and denote by G; U Gy the graph
(ViU Vg, Ey U Ey), where G, = (V4, E1) and G, = (Va, E3). By a function, we mean a function from positive
integers to positive integers. Unless stated otherwise, all functions in this paper are assumed to be computable
in NC2,

For every function f, the mazimal f-diameter tree cover problem (the MDTC(f) problem for short) is
defined by

Instance: An n-node graph G.

Problem: Find a maximal f(n)-diameter tree cover of G.



3 A basic procedure

In this section, we give a basic procedure that will be used in our algorithms for the MDTC(f) problem. We
assume that all vertices in an n-node graph are linearly ordered by indexing them with numbers between 1
through n. The procedure has the following description. -

Procedure Eztend(G;,, P)

Input: A graph Gip = (Vis, Eiy) and a set P = {p1,---,p} of vertex disjoint paths of length { in Gjj,.

Output: A subgraph Gout = (Vout, Eout) of Gin such that Goy; contains all vertices in V(P) but contains
neither a path of length [ + 1 nor a cycle, and for each edge {u,v} € Ei — Eou; with u € Vo
or v € Voyt, the graph (Vou: U {u, v}, Eou: U {{u,v}}) contains a path of length { + 1 or a cycle.

Inttialization: Set Vyyy to V(P) and set E,y, to E(P).

begin

1. Compute H = (Vip, Eip — {{v,v'} € Eip, = v,v' € V(P)}).

2. In parallel, for each vertex v € V(P), compute pos(v, P) = maz{distp(v1,v), distp(vs,v)}, where v;

and vy are two endpoints of the path in P containing v. (Note: [%] < pos(v, P) <)
3. In parallel, for each vertex v € V(P), perform the following two steps:
3.1 Compute N(v,P) = {u € Vin — V(P) : v is the vertex in V(P) with the smallest index such that
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pos(v, P)+distg(v,v) < ! and pos(v, P)+distg(v, u) < pos(v', P)+disty(v',u)

for all v € V(P)}.
3.2 Compute a breadth-first spanning tree rooted at v of the subgraph of H induced by {v} U N(v, P),
and add the tree to Goy;.

end

We below show the correctness and the running time of procedure Eztend. The notations in the procedure
are used in the remainder of this section. By the procedure, we immediately have three useful facts:

Fact 1 The subgraph of H induced by {v} U N(v, P) is connected for every v € V(P), and N(v',P) N
N(v", P) = 0 for every two distinct vertices v’ and v in V(P).

Proof. It is obvious from the definition of N (v, P) that there is a path in H with no more than [ edges
between v and every vertex of N(v, P). Thus we have the first assertion. If a vertex u is in N (v, P) for some
v € V(P), then v is of the smallest index among all such vertices satisfying the condition on u and v in the
definition of N(v, P). Thus the second assertion is obvious. l

Fact 2 Let v be a vertex in V(P), and let u be a vertex in N(v, P). Then the distance between v and u
in any breadth-first spanning tree of the subgraph of H induced by {v} U N(v, P) is equal to distg (v, u).

Proof. This follows from a well-known fact that if 7" is a breadth-first spanning tree rooted at v of a
connected graph G and u is a vertex in 7', then the distance between v and u in T is equal to the distance
between u and v in G [8]. |

Fact 3 Let u € Vi, — V(P). Then, u is contained in the output of Fztend(Gin, P) if and only if there
exists a vertex v € V(P) such that pos(v, P) + disty (v, u) <.

Lemma 3.1 G,y contains neither a path of length { + 1 nor a cycle.

Proof. By the procedure and Fact 1, it is easy to see that G,,, contains no cycle. What we need to show
1s that G,y¢ contains no path of length { + 1. It is sufficient to show that each connected component T of Gy
contains no path of length [+ 1. By the procedure and Fact 1, we know that 7" must contain exactly one path

p of P. Fix two arbitrary vertices w; and wy in T. Then we distinguish three cases below.
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Case 1: both wy and wy are on p. Since p has length /, disty(w;, wq) < 1.

Case 2: there exists a vertez v on p such that w; and wy are contained in {v}UN(v, P). By the definition
of N(v, P), we know that pos(v, P) + disty(v,w) < ! and that pos(v, P) + dist y(v,w2) < 1. Since pos(v, P)
is no less than [4], we further know that disty(v, w;) < | £} and that disty (v, ws) < |4]. Combining these
observations with Fact 2, we have that disty (v, w;) < [_-%J and that distp (v, wq) < L%j Hence distr(wy, wy) <
distp(wy,v) + distr(wq, v) <.

Case 3: there erist two distinct vertices v/ and v’ on p such that wy € {V'} UN(V,P) and wy €
{v"} UN(v",P). Let v; and v, be p’s two endpoints. Noting that distr(v',v;) = dist,(v',v;) for 1 <
i < 2, we have that distr(v,,v') + distr(v/,v9) = [ and that distp(v',w;) + pos(v’, P) = distp(v',w;) +
maz{disty(vy,v'),distr(v',v2)}. Since wy € {v'} UN(v', P), we know that distr(v',w;) + pos(v’, P) < 1.
From these facts, we easily see that distr(v/,w;) < min{disty(v,v'),distr(v',v2)}. Similarly, we can see
that distr(v", we) < min{disty(v1,v"), distp(v",v2)}. Thus, we have:

distr(wy, wy) = disty(wy,v') + distp(v', v") + distp(v", wy)
< min{distr (v, v'), distr (v, v2)} + distr(v/, v") + min{distz(v1, v"), distr(v”, v2)}

<l |

Lemma 3.2 For every edge {wi,ws} € Ein — Eoy with wy € Voyuy or wy € Vouy, the graph (Vou: U
{wy, w2}, Egy U {{wy, w2}}) contains a path of length { + 1 or a cycle.

Proof. There are two cases that can occur:

Case 1: both w; and wq are contained in G,y;. Note that if some connected component of Gy contains
both w; and wg, then the graph (Vou: U {wy, w2}, Eout U {{w1,w2}}) contains a cycle. Thus, we may assume
that some connected component T} of G,y contains w; and another connected component T3 of G,y contains
wsy. By the procedure, we know that each of Ty and T must contain a path of P. Let p; and p; be the paths
of P contained in T and T3, respectively. Let v; and vy be p;’s two endpoints, and let vz and v4 be py’s two
endpoints. Since distr, (v1,v2) = and T} is a tree, it is obvious that maz {distt, (w1, v1), distr, (w1, v2)} > [£].

* Similarly, it holds that maz{distr,(vs, wp), disty, (vy, wq)} > fé] These facts imply that when edge {wy, w2}

is added to G,yt, the resulting graph has a path with more than [ edges.

Case 2: only one of w) and wy is contained in Goyy. Without loss of generality, we may assume that
w; is contained in G,y while wy is not. Let v be the vertex in V(P) such that w; € N(v, P) U {v}. Then,
it holds that pos(v, P) + disty (v, w;) = I, or else pos(v, P) + disty (v, w;) < I which contradicts that w, is
not in Goyy by Fact 3. Let v; and vy be the endpoints of the path of P containing v. We now have that
maz{distg,  (vi,w), distg,,,(v2,w1)} = | by Fact 2 and the definition of pos(v, P). This, in turn, implies
that when edge {w;, w;} is added to G,y:, the resulting graph contains a path of length I+ 1. |

NC? algorithms are known for computing the distance between two vertices in a graph and for computing a
breadth-first spanning tree of a connected graph [6]. Thus all steps of procedure Fztend can be performed in
time O(log2 n) using polynomial number of processors on a P-RAM. Hence we immediately have the following

theorem by summarizing the results above.

Theorem 3.1 Procedure Extend is correct and can be executed in O(log? n) time using polynomial number

of processors on a P-RAM, where n is the number of vertices in the input graph.

4 The first algorithm

In this section, we present our first parallel algorithm that finds a maximal f(n)-diameter tree cover of a given

n-node graph. The algorithm unifies several disparate algorithms corresponding to several special cases which



47

will be discussed in the latter half of this section. Those disparate algorithms differ from each other only in
the implementation of Stage 1 shown below. In the first half of this section, we first show the correctness of
the algorithm and then show the running time of each stage except Stage 1 of the algorithm. The algorithm
has the following description.

Algorithm 1
Input: An n-node graph G, = (V1, E1).
Stage I
1. Compute a maximal set P of vertex disjoint paths of length f(n) in G,.
(Note: By maximal, we mean that when all vertices in P are removed from Gy, the resulting graph
contains no path with f(n) edges.)
Stage 2:
2. Set C; to the output of Eztend(G,, P).
Stage 3:
3. Set Gj to the subgraph of G; induced by Vi — V(C}) and set C, to the empty graph.
4. In parallel, for each connected component of G4, compute its spanning tree and add the tree to Cs.
Output: Cy U Cy.
End of Algorithm 1.

We first show the correctness of Algorithm 1. In addition to the notations used in the algorithm, let
Cout = C1 Uy, i.e., Coyy is the output of Algorithm 1.

Lemma 4.1 C,y; is a maximal f(n)-diameter tree cover of Gy.

Proof. It is easy to see that V{(C,y:) = V(G)) and that the induced graph of each C; contain neither a
path with more than f(n) edges nor a cycle by the algorithm and Theorem 3.1. Noting that C} and C; share
no common vertex, we have that C,y; is an f(n)-diameter tree cover of G;. Next, we show that for each edge
€ € E1 — E(Cout), adding e to Coy yields either a path of length f(n)+1 or a cycle. To show this, it suffices to
show that for each ¢ with 1 < ¢ < 2 and each edge {w;, w,} € E(G;) - E(C;) with w; € V(C;) or w, € V(C;),
the graph (V(Ci) U {wy, we}, E(C;) U {{wy, we}}) contains a path of length | + 1 or a cycle. This, however,
follows immediately from the algorithm, Theorem 3.1, and Fact 3 in Section 3. |

It is easy to see that all steps of Algorithm 1 except step 1 of Stage 1 can be performed in time O(log2 n)
using polynomial number of processors on a P-RAM. Hence we immediately have the following theorem.

Theorem 4.1. Let Taprsp(n,{) be the time needed to find a maximal set of vertex disjoint paths of length
! in a given n-node graph using polynomial number of processors on a P-RAM. Then for every function f,
Algorithm 1 outputs a maximal f(n)-diameter tree cover of a given n-node graph, and can be performed in

time O(Tysp(n, f(n)) + log? n) using polynomial number of processors on a P-RAM.

In the remainder of this section, we consider the implementation of Stage 1 of Algorithm 1 given in the

above. In general, it seems unlikely that NC implementations of Stage 1 exist, because computing a maximal
 set of vertex disjoint paths of length n — 1 in an n-node graph is equivalent to computing a Hamiltonian path
in the graph. Here we consider several special cases where the input graph and/or the magnitude of f are
suitably restricted so that Stage 1 has NC implementations, and thus NC algorithms are obtained for the
MDTC(f) problem in these special cases by Algorithm 1.

Lemma 4.2 Given an n-node graph G and a positive integer [, finding a maximal set P of vertex disjoint

paths of length [ in G can be done in time O(log® n) using polynomial number of processors on a P-RAM if
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one of the following conditions holds: (1) [ is a fixed constant; (2) | = O(logn) and G is of bounded degree d;
(3) G is a tree.

Proof. To find P, we may first construct a graph H = (Vy, Fg) and then compute a maximal independent

set in H, where
Vi = {p : pis apath of length ! in G}, and
Ex = {{p,p'} : p and p’ are elements of Vy and share a common vertex}.

To compute all elements of Vg and Ey, we may simply enumerate all paths of length [ in G, and may
check, for all pairs of those paths, whether they share a common vertex. The enumeration and checks can be
done in time O(1), O(l), and O(log® n) using O(n'), O(nd"), and O(n?) processors on a P-RAM, respectively
for the three cases (1)-(3). To find a maximal independent set in H, we may use the NC? algorithm for the
MIS problem given by Luby [13]. Hence the lemma holds. |

By combining Theorem 4.1 and Lemma 4.2, we immediately have the following corollary.

Corollary 4.1 Given an n-node graph G, a maximal f(n)-diameter tree cover of G; can be found in time
O(log® n) using polynomial number of processors on a P-RAM if one of the following conditions holds: (1)
f(n) = ¢ for some constant c; (2) f(n) = O(log n) and G, is of bounded degree; (3) Gy is a tree.

Lemma 4.3 Given an n-node graph G with minimum degree at least % and a positive integer I, finding
a maximal set P of vertex disjoint paths of length [ in G can be done in time O(log* n) using polynomial
number of processors on a P-RAM.

Proof. We need a result of Dahlhaus et al. In (7], it was shown that if an n-node graph has minimum
degree at least %, then a Hamiltonian path in the graph can be found in time O(log®* n) using polynomial
number of processors on a P-RAM. To find P, we may first compute a Hamiltonian path p in G by using the
NC* algorithm above, and then compute T("%lﬁ vertex disjoint paths of length f(n) from p and put them into

P. i
By combining Theorem 4.1 and Lemma 4.3, we immediately have the following corollary.

Corollary 4.2 Given an n-node graph with minimum degree at least %, a maximal f(n)-diameter tree

cover of the graph can be found in time O(log® n) using polynomial number of processors on a P-RAM.

5 The second algorithm

In the last section, we gave an algorithm for the MDTC(f) problem and proved that the algorithm has NC
implementations if the magnitude of f is restricted to a small number. In this section, we give another
algorithm for the MDTC(f) problem and show that it has an NC implementation if the magnitude of f is
restricted to a rather large number. This algorithm proceeds in stages. In each stage, a portion of a maximal
f(n)-diameter tree cover is computed and is removed from the input graph. The algorithm halts when the

graph becomes empty. Formally, the algorithm has the following description.

Algorithm 2
Input: An n-node graph Go.
Output: A maximal f(n)-diameter tree cover Ciy:.
Initialization: Set Cp to the empty graph.
Stage i: (1> 1)
1. Set Gj; to the subgraph of G;_; induced by V(G;_,) — V(C;i_y).
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2. If G; is empty, then halt and output Coyy = CoUCL U ---UC ;.

3. Set C; to the empty graph.

4. In parallel, for each connected component H of G;, perform the following steps:
4.1 Compute'a spanning tree Ty of H;
4.2 If Ty contains no path of length f(n)+1,
4.3 then add Ty to Ci,
4.4 else find a maximal set P of vertex disjoint paths of length f(n) in Ty and set C; to the output

of Eztend(G;, P).
End of Algorithm 2.

We now show the correctness of Algorithm 2. In addition to the notations used in the algorithm, let m be
the number of stages required by the algorithm. Then, Cou: = U1<i<mCi.

Lemma 5.1 Coy; is a maximal f(n)-diameter tree cover of Gy.

Proof. By the algorithm and Theorem 3.1, it is easy to see that C; contains neither a path of length
f(n) + 1 nor a cycle. Noting that C; and C; share no common vertex when ¢ # j, we have that Coy, is an
f(n)-diameter tree cover of Go. Next, we show that for every edge e € E(Gq) — E(Cout), adding e to Cou:
yields either a path of length f(n) + 1 or a cycle. Let e = {wy, w2} be an arbitrary edge in E(Go) — E(Cout)-
Then, there are two cases that can occur:

Case 1: both wy and wy are contained in C; for some i with 1 < i < m. By the algorithm and Theorem
3.1, we immediately have that adding e to C,y; yields either a path of length f(n)+ 1 or a cycle in Coys.

Case 2: wy is contained in C; and wy is conlained in C; with i # j. W.lo.g.,, we may assume that
i < j. Let T be the connected component of C; that contains w;. If T is a spanning tree of some connected
component of Gj, then wy could have been in C; by the algorithm and then we have a contradiction. So we
may assume that T is not a spanning tree of a connected component of G;. Then by the algorithm, T" must be
obtained by using procedure Eztend. Now Theorem 3.1 shows that adding e to Coy; yields a path of length
f(n) +1in Coys. |

We next give the running time of Algorithm 2.

Lemma 5.3 Algorithm 2 can be implemented in time O(%‘%—:—?) using polynomial number of processors
on a P-RAM.

Proof. 1t is easy to see that each individual step of Algorithm 2 can be performed in O(log? n) time using
polynomial number of processors on a P-RAM. Since the number of vertices in G; is less than that in G;_;
at least f(n)+1 for 2 < i < m, the number of stages required by Algorithm 2 is no more than R;")—_ﬁ Hence
the lemma follows.

The following theorem summarizes the results above.

Theorem 5.1. For every function f, Algorithm 2 outputs a maximal f(n)-diameter tree cover of a given

n-node, and can be performed in O(?T%‘:TT') time using polynomial number of processors on a P-RAM.
- The following corollary follows immediately from the above theorem.

Corollary 5.1 A maximal f(n)-diameter tree cover of a given n-node graph can be found in O(log**? n)

time using polynomial number of processors on a P-RAM if f(n) = Q(Eél,;—;),
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6 The third algorithm

In this section, we present our third algorithm for the MDTC(f) problem. The key idea used in the algorithm
is that of path separators [3, 4]. A path separator of an n-node connected graph G is a path p in G such that
when all vertices on p are removed from G, the resulting graph has no connected component with more than

2 vertices. The following lemma is an immediate consequence of Aggarwal et al.’s results [4].

Lemma 6.1 [4]. There exists an RNC® algorithm which, given a connected graph G, finds a path separator
of G.

Next we give the description of our algorithm for the MDTC(f) problem. This algorithm proceeds in
stages. In each stage, a portion of a maximal [-diameter tree cover is computed and is removed from the input
graph. The algorithm halts when the graph becomes empty. Since we use path separators to halve the graph
in size in each stage, the number of stages required is O(logn). Formally, the algorithm has the following

description.

Algorithm Find_Maz Tree_Cover(G,!)
Input: A graph Gy = (Vi, Ey) and a positive integer [.
Outpul: A maximal I-diameter tree cover Coy; of Go.
Initialization: Set Cj to the empty graph.
begin
Stage i: (i > 1)
1. Set G; to the subgraph of G;_; induced by V(G;_1) — V(Ci_1).
2. If G; is empty, then halt and output Coy; = Upgj<i—1Cj-
3. Set C; to the empty graph.
4. In paralle), for each connected component H of G;, perform the following steps:
4.1 Compute a path separator p of H.
4.2 Divide p as py, €1, p2, -+, €x—1, P& such that |p;| =1 for 1 < i< k-1, |pi] €1, and ¢; is the edge
on p between the end vertex of p; and the start vertex of p;4;.
4.3 If |px| = I, then add the output of Extend(H, {p1,---,pr}) to C; and go to Stage i+1.
4.4 If the output of Extend(H,{py, - -,pr-1}) contains all vertices in V(px), then add the output of
Extend(H,{p1,---,px-1}) to C; and go to Stage i+1.
4.5 Set H' to the subgraph of H induced by V(H) — V(p).
4.6 Add the output H" of Extend(H',{p1, -+, pr-1}) to Ci:
4.7 Set H'" to the connected component of the subgraph of H induced by V(H) ~ V(H") such that
H'" contains pg.
4.8 Compute a spanning tree T' of H'" such that T contains p;.
4.9 If T contains no path of length [ + 1, then add T to C; and go to Stage i+1.
4.10 Find a path p’ of length ! in T such that maa{distr(v1,u), dist7(vs, u)} <1 for each u € V(pg),
where ‘vi and vy are p'’s endpoints. ’
4.11 Add the output of Eztend(H',p') to C;.
End ‘

We below show the correctness and the running time of the algorithm. In addition to the notations used

in the algorithm, let m be the number of stages required by the algorithm. Then, C,y; = Uo<i<mCi.

Lemma 6.2 C,y; is a maximal I-diameter tree cover of Gy.
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Proof. 1t is easy to see that V(C,y;) = V; and that the induced graph of each C; contains no path with more
than [ edges nor a cycle by the algorithm and Theorem 3.1. Noting that C; and Cj share no common vertex
when ¢ # j, we have that Cyy; is an I-diameter tree cover of Gy. Next, we show that for each e € Ey — E(Cout),
the graph (Vo, E(Cou:) U {€}) contains a path with more than [ edges or a cycle. To show this, it suffices to
show that for each 7 with 1 < i < m and each edge {w,, w2} € E(G;)— E(C;) with w; € V(C;) or we € V(C}),
the graph (V(C;) U {wy, w2}, E(C;) U {{wy, w2}}) contains a path of length { + 1 or a cycle. This, however,
follows immediately from the algorithm, Theorem 3.1, and Fact 3 in Section 3. » |

The following two lemmas show that step 4.8 and step 4.10 can be done in NC2,

Lemma 6.3 Given a connected graph G with n vertices and a path p in G, a spanning tree T containing
p can be found in time O(log® n) using O(n?) processors on a P-RAM.
Proof. Let G = (V, E) be a connected graph with n vertices and let p be a path in G. To find a spanning
tree T containing p, we first introduce a new vertex vy, and construct a graph G’ = (V', E) as follows:
V= (V = V(p)) U {tnew} and
E={{u,v}€E : uy,vg V(p)} U{{vnew,v} : v¢& V(p) and (3u € V(p))[{u, v} € E}}.
We then find a spanning tree T of G'. Next we shall describe how to find T from T" and G, by specifying the
edge set E(T) of T Initially E(T) is set to E(p). All edges {v,u} € E(T’) with v # vnew and u # vpew are
then added to E(T). Finally, for each edge {vnew,v} € E(T'), exactly one edge {u,v} € E with u € V(p) is
added to E(T). Now, it is easy to see that T is a spanning tree of G containing p and that T" can be found in
time O(log® n) using O(n?) processors on a P-RAM. [ |

Lemma 6.4 Let (T, p,!) be a 3-tuple consisting of an n-node tree T, a path p in T, and a positive integer
{ such that T contains a path of length { and |p|] < {. Then we can find a path p’ of length ! in T" in time
O(log? n) using O(n?) processors on a P-RAM such that maz{disty(v,, u), disty(vs,u)} < for each vertex u
on p, where v; and vy are p'’s endpoints.

Proof. 1t is easy to see that T must contain such a path p’. To find such a path p’, we may check in parallel

for each two vertices w; and ws in T whether the path from w; to w, in T satisfies the condition for p'. §

Lemma 6.5 The number of iterations required by the algorithm is O(logn).

Proof. To show the lemma, it suffices to show that for each ¢ and each connected component H of G,
C; contains all vertices contained in the path separator p (step 4.1) of H. By the algorithm and procedure
Eztend, we need only to show that if step 4.10 and step 4.11 of Stage ¢ are executed, then all vertices in V(pg)
are contained in the output of Extend(H'” p'). Let vy and vy be the endpoints of p', and let pos(v,p’) =
maz{disty (v,v1),distp(v,v2)} for each v € V(p'). Fix an arbitrary vertex u € V(pi) to consider. We can
first make sure that if u € V(p'), then u is contained in the output of Eztend(H"”,p’), by procedure Eztend.
So we may assume that v ¢ V(p’). Then by step 4.10, we know that maz{disty(v;, u),distpr(vq,u)} < L.
Combining this with the fact that T is a spanning tree of H'” containing p’, we have that there must exist a
vertex v € V(p’) such that pos(v,p’) + distgw(v,u) < I. Now, Fact 3 in Section 3 implies that u is contained
in the output of Extend(H",p'). Hence, the lemma follows. |

By Lemma 6.1 and the results above, we have the following theorem.

Theorem 6.1 There exists an RNC® algorithm for the MDTC(f) problem.
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7 Conclusions

In this paper, we have shown that the MDTC(f) problem can be solved by an NC? algorithm if f maps each
positive integer to a fixed constant. It remains open to find an NC algorithm for the MDTC(f) problem
where the magnitude of f is not bounded to a fixed constant (e.g., f(n) = O(logn)). We have also shown
that the MDTC(f) problem can be solved by an NC algorithm if the input graph and/or the magnitude of
f are suitably restricted. One obvious question is to loosen these restrictions. Finally, we have shown that
the MDTC( f) problem can be solved by an RNC® algorithm. Another obvious question is to design a more
efficient RNC algorithm.
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