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ON AUSLANDER-REITEN QUIVERS
OF FINITE GROUPS

AR RFHFE  MEKRA  (Shigeto KAWATA)

1. Iatroduction

Let G be a finite group and k a field of characteristic p > 0.
Let T (kG) be the stable Auslander-Reiten quiver of the group algebra
kG. By Webb's Theorem, the tree class of a connected component A of
Ts(kG) is restricted. We summarize results from [W, O1, Btl, E-S] on

the graph structure of connected components of T (kG).

Theorem 1.1({W], [O1], [Btl], [E-S]). Let A be a connected
component of I (kG). ‘Then the tree class of A is Ap, A1,2 B3, Aco,
Boo, Coo, Doo or A, . If k is algebraically closéd, then the tree class is
not Beo or Co. Moreover if the tree class or the reduced graph of A
is Euclidean, then the modules in A lie in a block whose defect group

is a Klein four group Cp xCj.

Moreover if A contains the trivial kG-module k, then the graph

structure of A has been investigated [W, L, O1, E2].
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Theorem 1.2([W], [L], [O1], [E2]). Let Ap be the connected
component containing the trivial kG-module k and T the tree class of
Ag. Let P be a Sylow p-subgroup of G. Then;

(1) If P iscyclic, then T = A, for some n.

(2) If P=C;xCy and Ng(P) = Cg(P), then T = Ay .

(B)If P=CyxCy and Ng(P) # Cg(P) but k does not contain a
primitive cube root of unity, then T = Bs.

(4 If P is a dihedral 2-group and neither (2) nor (3) holds, then T =
A% . Moreover if P is dihedral of order at least 8, then Ag =ZAZ .
(5) If P is a semidihedral 2-group, then T = Do and Ag=7De.

(6) f P is a generalized quaternion 2-group, then T = As and Ag is

a 2-tube.
(7T = Ao and Ag=ZA otherwise.

Here we study a connected component of Is(kG) containing an
indecomposable kG-module whose k-dimension is not divided by p.
Suppose that M is an indecomposable kG-module and p ) dimM. In
Section 2, we will show that M lies in a connected component
isomorphic to ZA. if k is an algebraically closed field of odd
characteristic and a Sylow p-subgroup of G is not cyclic. In Sections 3
and 4 we consider the situation where p = 2 and a Sylow 2-subgroup
of G is dihedral of order at least 8 or semidihedral. In Section 5 we
make some remarks on tensoring the component containing the trivial
kG-module k with M. V

The notation is almost standard. For an indecomposable non-
projective kG-module W, we write A(W) to denote the ‘Auslander-

Reiten sequence (AR-sequence) 0 — QW — m(W) - W > 0
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terminating at W, where € is the Heller operator. The symbol ®
denotes tensor product over the coefficient field k. For an exact
sequence of kG-modules S : 0 > A—>B—>C— 0 and a kG-module W,
we write S®W to denote the tensor sequence 0 — A®W — BOW —
C®W — 0. For tensoring the AR-sequence with an indecomposable kG-
module, see [A-C, B-C]. If an exact sequence of kG-modules S is of
the fom 0 5 QLW O U - m(W) @US U > W@ U> 0, where W is
an indecomposable non-projective kG-module, and U and U' are
projective or 0, we say that § is the AR-sequence A(W) modulo
projectives. Concerning some basic facts and terminologies used here,

we refer to [Bn], [F] and [G].

2. ZAe-—Component

Throughout this section, we assume that

(#2) k is algebraically closed and a Sylow p-subgroup P of G

is not cyclic, dihedral, semidihedral or generalized quaternion.
First of all, we show

Theorem 2.1. Suppose that © is a connected component of
Is(kG) containing an indecomposable kG-module whose k-dimension is
not divided by p. Then
(1) © is isomorphic t0 ZAc 0Or ZDc.

(2) If p is odd, then © is isomorphic t0 ZAc.
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(3) All modules in © have the same vertex P,

Remark. The above (3) follows from [U, Theorem 4.3].

Let M be an indecomposable kG-module with a Sylow p-
subgroup P of G as vertex, and let S be a P-source of M. Then
p } dimyM if and only if p | dimyS from [B-C, Proposition 2.4}.

Proposition 2.2. Let M be an indecomposable kG-module such
that p | dimgM, and let S be a P-source of M. Let © be the
connected component of T5(kG) containing M, and let E be the
connected component of Is(kP) containing S. Then
(1) © is isomorphic to ZAs if and only if E is isomorphic 10 ZAc.

)] M lies at the end of ZAw-component if and only if S lies at the
end of ZAw-component.

(3) Suppose that © is isomorphic to ZAc and M lies at the end of ©.
Let M— My —-— M, — -+ is a maximal tree of © with an

irreducible map Mp+1 = Mp (n 2 1 ). Then there is a P-source S, of
M, (n 2 2) such that S —S) — ~— 8 — - is a maximal tree of =

with an irreducible map Sp+1 = Sy (n2 1),

Now we give examples of indecomposable kG-modules lying at

the ends of ZAo-components,

Proposition 2.3. Let M be an indecomposable kG-module
whose k-dimension is not divided by p. Let Q be a proper subgroup

of P. Suppose that M satisfies the following conditions (with respect

to Q);
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(1) The trivial kQ-module k is a direct summand of (M®M )J,Q with
multiplicity one;
(2) f Q is generalized quaternion, then 2k | (M®M)lg.

Then M lies at the end of ZAw-component.

Remark. The above condition (1) is equivalent to the following
condition: (1') We have an indecomposable direct sum decomposition

N®(® W) of Mlg, where p | dimgN and p | dimW; for all i
From Proposition 2.3, we have following

Example 2.4. (1) Suppose that p is odd. Let M be an

indecomposable kG-module with vertex P and S a P-source of M.

Suppose that dimgS = 2. Then M lies at the end of ZAw-component.
(2) Suppose that p #3. Let M be an indecomposable kG-module
with vertex P. and S a P-source of M. Suppose that dimgS = 3. Then
M lies at the end of ZAs-component. \
Proof.  There exists an element x of P such that x does not
act on S trivially. Let Q = < x > Then § satisfies the conditions (with

respect to Q) im Proposition 2.3.

Remark. In [E3], Erdmann proved that if k is algebraically
closed and a p-group P is not cyclic, dihedral, semidihedral or
generalized duaternion, then there are infinitely many kP—modules of
dimension 2 or 3 lying at the ends of ZAso-components ([E3], |
Propositions 4.2 and 4.4.). Using this result, she consequently showed
that for a block B over an algebraically closed field, the stable

Auslander-Reiten quiver TI's(B) has infinitely many components of the



form ZAs if a defect group of B is not cyclic, dihedral, semidihedral

or generalized quaternion.

3. Dihedral 2-group
In this section we consider the following situation:

(#3) k is an algebraically closed field of characteristic 2 and a

Sylow 2-subgroup P of G is dihedral of order at least 8.

Let Ag be the connected component containing the trivial kG-
module k. Then Ag is isomorphic to ZA. by Theorem 1.2. It is
known that all modules in Ag are endotrivial kG-modules (see, e.g.,

[Bt2]). Hence the following holds.

Proposition 3.1. Assume (#3): Let M be an odd dimensional
indecomposable kG-module. Let © be the connected component of
I(kG) containing M and Ag the connected component containing k.

Then © is isomorphic to ZAL and tensoring with M induces a graph
isomorphism from Ap onto ©. Moreover all modules in © have the
same vertex P.

4. Semidihedral 2-group

Throughout this section, we assume that

37
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(#4) k is an algebraically closed field of characteristic 2 and a

Sylow 2-subgroup P of G is semidihedral.

Let Ap be the connected component of Ig(kP) containing the

trivial kP-module k. Then Ag is isomorphic to ZDe (see [E2, p.76, IL
10.7 Remark). Thus a part of Ag is as follows for some

indecomposable kG-modules Hy, H3 and L

Let P=(x, y; x2=y2""'=1, yx=y1+22°2y and X = {<x>}. Then
an X-projective cover resolution of k is 0 —Qxk - (klg)T?F 5k =0,
where (k¢<x>)TP—>k is a canonical epimorphism and Qxk is its
kernel. Concerning some basic facts on relative projective cover, we
refer to [Kn, T, Q2]

In [02], Okuyama showed the following

Theorem 4.1[02]. With the same assumption and notations as
above,
() T=(Qxk) and 1 is an endotrivial kP-module.
(2) 1 is self-dual and odd dimensional.

(3) If T is self-dual, odd dimensional and indecomposable, then
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I'=k or L
Applying Theorem 4.1, we have

Lemma 4.2. Let § -be an odd dimensional indecomposable kP-

module. Then S }’ S®I.

If S§ is an odd dimensional indecomposable kP-module, then
the projective-free part §' of S®I is odd dimensional indecomposable
and S # §' by Theorem 4.1 and Lemma 4.2. Moreover it follows that

the projective-free part of S®H, is indecomposable. Therefore the

following holds.

Proposition 4.3. Let S be an odd dimensional indecomposable
kP-module and = the connected component of I (kP) containing 8.
Then
(1) E is isomorphic t0 ZDc.

(2) Al indecomposable kP-modules in = have the same vertex P.

Remark. The above (2) follows from [El, Theorem A].

Let k—Hy; —H3 —-—H,; — -~ be a maximal tree of Ap.

I
I

If S is an odd dimensional indecomposable kG-module, then the
projective-free part S, of H,®S is indecomposable and the tensor

sequence  A(H,)®S is the AR-sequence A(S;) modulo projectives.

Hence the following holds.
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Lemma 4.4. Let S be an odd dimensional indecomposable kP-
module and = the connected component of Ts(kP) containing S.

Then tensoring with S induces a graph isomorphism from Ap onto E.

Using [Kal, Theorem and Ka2, Theorem], we obtain

Proposition 4.5. Let M be an odd dimensional indecomposable
kG-module and © the connected component containing M. Let Ap be
the connected component containing the trivial kG-module k. Then
(1) © is isomorphic to ZD. and tensoring with M induces a graph
isomorphism from Ap onfo ©.

(2) All indecomposable kG-modules in ©® have the same vertex P.

5. Remarks on tenmsoring with a certain module

Suppose that M is an indecomposable kG-module and
P I} dimyM. Let © be the connected component of T's(kG) containing
M and Ag the connected component containing the trivial kG-module
k. If a Sylow p-subgroup P of G is dihedral of order at least & or
semidihedral, then tensoring with M induces a graph isomorphism
from Ag onto © as we have seen in Propositions 3.1 and 4.5.

In this section we consider on tensoring modules in Ap with M

under the same hypothesis as in Section 2. = Throughout this section, we

assume that



(#) k is algebraically closed and a Sylow p-subgroup P of G

is not cyclic, dihedral, semidihedral or generalized quaternion.

Hence the connected component Ag of I's(kG) containing the trivial

kG-module k is of the form ZAs by Theorem 1.2.

Proposition 5.1. Suppose that M is indecomposable kG-module
and p I dimgM. Let © be the connected component of T (kG)
containing M. Let S be a P-source of M and E the connected
component of Tg(kP) containing S. Suppose that © is isomorphic to
ZAs» and M lies at the end of ©. Then the following are equivalent.
H Ten$oring with M induces a graph isomorphism from Ag onto ©O.
(2) Tensoring with S induces a graph isomorphism from the

connected component of T (kP) containing the trivial kP-module k

onto ZE.

Note that the hypothesis of Proposition 5.1 implies that E=ZAc

and S lies at the end of = by Proposition 2.2

Example 5.2. Let M be a trivial source module with vertex P.
Let ©® be the connected component of Ts(kG) containing M. Then ©

is isomorphic to ZAs and M lies at the end of ©. Moreover tensoring

with M induces a graph isomorphism from  Ag onto ©.

We consider an indecomposable kG-module M lying at the end

of its connected component © isomorphic t0 ZA~. In the following,
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we give conditions which imply that tensoring with M induces a graph

isomorphism from Ag onto O.

Proposition 5.3. Let M be an indecomposable kG-module with
p | dimgM, and let © be the ‘connected component of TIs(kG)
containing M.  Suppose that M lies at the end of © and MOM* =k @
(®; W;), where each W; is indecomposable and p I dimgW;. Then

tensoring with M induces a graph isomorphism from Ag onto ©O.

Example 5.4. Suppose that M is an endotrivial kG-module. Let
©® Dbe the connected component containing M. Then M  satisfies the
condition in Proposition 5.5. Hence tensoring with M induces a graph

isomorphism from Ap onto ©O.

Remark. Without the assumption (#2), if M is an endotrivial
kG-module, then tensorinngith M induces a graph isomorphism from
the connected component containing the trivial kG-module onto the
connected component containing M (Bt2, Theorem 2.3]), For related

results on endotrivial modules, see also [Bt2].

Proposition 5.5. Let M be an indecomposable kG-module with
p | dimg M, and let © be the connected component of T (kG)
containing M. Let Q be a proper subgroup of P. Suppos¢ that M

satisfies the conditions (with respect to Q) in Proposition 2.3. Then

tensoring with M induces a graph isomorphism from Ap onto O,
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Example 5.6. (1) Suppose that p is odd. Let M be an
indecomposable kG-module with vertex P and S a P-source of M.
Suppose that dimgS = 2. Then tensoring with M induces a graph
isomorphism from Ap onto the connected component containing M.

(2) Suppose that p =2 Let M be an indecomposable kG-
module with vertex P and S a P-source of M. Suppose that dimg$S =
3. Then tensoring with M induces a graph isomorphism from Ao

onto the connected component containing M.
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