On Nilpotent Blocks of Finite Groups

Atumi WATANABE

能本大学教養部一渡辺アフミ

Let G be a finite group, F be an algebraically closed field of prime characteristic p and B be a p-block of G. If Q is a p-subgroup of G and b is a p-block of $C_G(Q)$ associated with B, we call (Q, b) a B-Brauer pair. When $Q = \langle \pi \rangle$, we call (π, b) a B-Brauer element. In Alperin-Broué [1], the method of the p-local theory for finite groups is generalized to a local theory for p-blocks. In the local theory for p-blocks the Brauer pairs correspond to the p-subgroups, and the B-Brauer elements correspond to the p-elements. Between Brauer pairs, "inclusion" is defined, and if for B-Brauer pair (Q, b_Q) and B-Brauer element (π, b_{π}) , $(\langle \pi \rangle, b_{\pi}) \subset (Q, b_Q)$ then we write $(\pi, b_{\pi}) \in (Q, b_Q)$. G naturally acts on the B-Brauer pairs and on the B-Brauer elements, respectively. Maximal B-Brauer pairs are mutually conjugate and they behave like Sylow p-subgroups of G.

On the other hand, Puig introduced so called pointed group theory in [6]. For any subgroup Q of G, put $(FG)^Q = \{a \in FG \mid ax = xa \text{ for all } x \in Q\}$. A pointed group over FG is any pair Q_δ where Q is a subgroup of G and δ is a equivalence class of primitive idempotents of $(FG)^Q$, and we say that δ is a point of Q over FG. If $Q = \langle u \rangle$, we say that the pair u_δ is a pointed element. For pointed groups Q_δ and P_ϵ , we write $Q_\delta \subset P_\epsilon$ and say that Q_δ is contained in P_ϵ if $Q \subset P$ and

for any $i \in E$ there exists $j \in \delta$ such that ij = j = ji. If $Q = \langle u \rangle$, then we write $u_{\delta} \in P_{E}$ whenever $Q_{\delta} \subset P_{E}$. We say that a pointed group Q_{δ} is local or that δ is a local point of Q over FG, if Q is a p-subgroup and for $i \in \delta$, the image of i by the Brauer homomorphism from $(FG)^{Q}$ to $FC_{G}(Q)$ does not vanish. Thus there is a bijection between the set of local points of Q over FG and the set of isomorphism classes of irreducible $FC_{G}(Q)$ -modules. G acts on the pointed groups over FG and the maximal local pointed groups contained in $G_{\{B\}}$ are mutually conjugate. (We must add that pointed groups are defined in more general situation).

Now nilpotent blocks were introduced in Broue-Puig [2]: We say that the block B is nilpotent if for any B-Brauer pair (Q, b_Q), $N_G(Q, b_Q)/C_G(Q)$ is a p-group. The structure of nilpotent blocks is described in [2] and Puig [7], and in Külshammer [4] which is recently published. Let (D, b) be a maximal B-Brauer pair and D_{γ} be a maximal local pointed group over FG contained in $G_{\{B\}}$. If B is nilpotent, then FGB is isomorphic to a full matrix algebra over FD from the main theorem in [7]. Moreover, if B is nilpotent, then we have the following.

- (I) The number of conjugacy classes of B-Brauer elements is equal to the number of conjugacy classes of D, that is, for B-Brauer elements (π, b_{π}) , $(\sigma, b_{\sigma}) \in (D, b)$, if (π, b_{π}) and (σ, b_{σ}) are conjugate, we have $(\pi, b_{\pi}) = (\sigma, b_{\sigma})^d$ where $d \in D$.
 - (II) For any B-Brauer pair (Q, b_Q), $l(b_Q) = 1$.
- (III) For any local pointed element $u_{\epsilon} \in D_{\gamma}$ and any $x \in G$ such that $(u_{\epsilon})^x \in D_{\gamma}$ we have x = zd where $z \in C_G(u)$ and $d \in D$.

Here $l\left(\mathrm{B}\right)$ denote the number of isomorphism classes of irreducible

FG-modules in B. In this report we consider the converse of (I), (II) and (III), respectively.

I

The converse of (I) is true:

Theorem 1. Let B be a p-block of G and (D, b) be a maximal B-Brauer pair. Suppose that for any B-Brauer elements (π, b_{π}) and $(\sigma, b_{\sigma}) \in (D, b)$, if (π, b_{π}) and (σ, b_{σ}) are conjugate, then we have $(\pi, b_{\pi}) = (\sigma, b_{\sigma})^d$ where $d \in D$. Then B is nilpotent.

Let B_0 be the principal p-block of G. By the Frobenius criterion for p-nilpotent groups and the third main theorem on p-blocks, B_0 is nilpotent if and only if G is p-nilpotent. Let P be a Sylow p-subgroup of G and suppose that for any π , $\sigma \in P$, if π and σ are conjugate, then we have $\pi = \sigma^d$ where $d \in P$. Then G is p-nilpotent. So Theorem 1 is a kind of generalization of this well known result to p-blocks.

The following is used to prove Theorem 1.

Lemma 2. Let Z be a central p-subgroup of G and \bar{B} be the p-block of \bar{G} corresponding to B, where $\bar{G}=G/Z$. Then B is nilpotent if and only if \bar{B} is nilpotent.

Sketch of proof of Theorem 1. We prove the theorem by induction

on the order |G| of G. Put Z = Z(D) and $b_Z = b^{C_G(Z)}$. We can show by routine argument that b_Z satisfies the assumption of the theorem. Therefore if $C_G(Z) \neq G$, then b_Z is nilpotent.

In the case $C_G(Z) \neq G$. Let (R, b_R) be a B-Brauer pair such that $(R, b_R) \subset (D, b)$ and (R, b_R) is extremal in (D, b) and that R is a defect group of b_R as a p-block of $RC_G(R)$. Then by [1, Proposition $C_G(Z) = b_Z$. So (R, b_R) can be seen as a b_Z -Brauer pair. Furthermore for $\sigma \in Z$ and $t \in N_G(R, b_R)$, $(\sigma, b_\sigma) \in (R, b_R)$ and $(\sigma, b_\sigma)^t \in (R, b_R) \subset (D, b)$. So by the assumption $N_G(R, b_R) \subset C_G(Z)$, and hence $N_G(R, b_R)/C_G(R)$ is a p-group, because b_Z is nilpotent. Next let (Q, b_Q) be an arbitrary B-Brauer pair and S a defect group of b_Q regarded as a p-block of $QC_G(Q)$ and (S, b_S) be a maximal b_Q -Brauer pair. By replacing (Q, b_Q) by its conjugate if necessary, we may assume $(S, b_S) \subset (D, b)$ and (S, b_S) is extremal in (D, b). As is shown in just above, $N_G(S, b_S)/C_G(S)$ is a p-group. Since $N_G(Q, b_Q) \subset N_G(S, b_S)/C_G(Q)$, $N_G(Q, b_Q)/C_G(Q)$ is a p-group.

In the case $C_{\bar{G}}(Z)=G$. Put $\bar{G}=G/Z$ and \bar{B} be the p-block of \bar{G} corresponding to B. We can show that \bar{B} satisfies the assumption of the theorem. Since we may assume that $D\neq 1$, \bar{B} is nilpotent by the induction hypothesis. Therefore by Lemma 2, B is nilpotent. Thus the proof is complete.

Π

In Puig [7, 1.9] he says that the converse of (II) is probably true. A partial answer for his question is given.

Proposition 3. Let G be a p-solvable group and B be a p-block of G. If $l(b_Q) = 1$ for any B-Brauer pair (Q, b_Q), then B is nilpotent.

We can show that if Alperin's weight conjecture is true, then the converse of (II) is true. For a p-block B and a p-subgroup Q of G, denote by $\mathrm{Bl}(\mathrm{N}_{\mathrm{G}}(\mathrm{Q}), \mathrm{B})$ the set of p-blocks of $\mathrm{N}_{\mathrm{G}}(\mathrm{Q})$ associated with B and denote by $l_{\mathrm{B}}(\mathrm{Q})$ the number of isomorphism classes of irreducible FG-modules in B with vertex Q. By Okuyama [5, Theorem], Alperin's conjecture is true for p-solvable groups as follows.

Lemma 4. Let G be a p-solvable group and B be a p-block of G. Then the following hold.

- (i) We have $l(B) = \sum_{Q} \sum_{b \in B1(N_G(Q),B)} l_b(Q)$, where Q ranges over a complete set of representatives for the conjugacy classes of p-subgroups of G.
- (ii) Let P be a normal p-subgroup of G. then we have $l(B) = \sum_{Q} \sum_{b \in Bl(N_G(Q), B)} l_b(Q)$, where Q ranges over a complete set of representatives for the conjugacy classes of p-subgroups of G containing P.

III

The converse of (III) is true:

Theorem 5. Let B be a p-block of G and D_{γ} be a maximal local

pointed group over FG contained in $G_{\{B\}}$. Suppose that for any local pointed element $u_{\mathcal{E}} \in D_{\gamma}$ and any element $x \in G$ such that $(u_{\mathcal{E}})^X \in D_{\gamma}$ we have x = zd where $z \in C_G(u)$ and $d \in D$. Then B is nilpotent.

The above result is due to L. Puig. He proves it by the same argument as in the proof of Theorem 1. But in this time , ϵ is no longer uniquely determined by γ and u, and hence its proof is more complicated than Brauer element case. In particular it is not easy to show that $\bar{\rm B}$ satisfies the assumption. Section 3 in Kulshammer-Puig [3] satisfactorily meets the requirement.

The detail version of this report will probably be published elsewhere.

References

- [1] J. L. Alperin M. Broué: Local methods in block theory, Ann. of Math., 110(1979), 143-157.
- [2] M. Broue L. Puig : A Frobenius theorem for blocks, Invent.

 Math., 56(1980), 117-128.
- [3] B. Külshammer L. Puig: Extensions of nilpotent blocks, Invent Math., 102(1990), 17-71.
- [4] B. Külshammer: Lectures on block theory, London Math. Soc. L. N. Series 161, Cambridge Univ. Press, 1991.
- [5] T. Okuyama: Vertices of irreducible modules of p-solvable groups, preprint.
- [6] L. Puig: Pointed groups and construction of characters, Math.

- Z. 176(1981), 265-292.
- [7] L. Puig: Nilpotent blocks and their source algebras, Invent.

 Math., 93(1988), 77-116.