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Group extensions and cohomology

愛媛大理 庭崎隆 (Takashi Niwasaki)

1. Introduction.

Let $G$ be a group (not necessary finite), and $M$ a left ZG-module. For $n\geq 0$ , the

n-th cohomology group H $(G, M)=Ext_{ZG}^{n}(Z, M)ofMisdefinedasthen$-th homology

of $Hom_{ZG}(P_{*}, M)$ , where $P_{l}$ is a projective resolution of the trivial ZG-module Z. As

well-known, there are some interpretations for low dimensional cohomology groups. By

taking the Bar resolution as a projective resolution of $Z,$ $H^{1}(G, M)$ is isomorphic to the

group of derivations from $G$ to $M$ modulo principal derivations. However a derivation

defines a splitting monomorphism &om $G$ into the fixed semidirect product of $M$ by

$G$ . Hence $H^{1}(G, M)$ is also bijective to the set of G-conjugacy classes of semidirect

products of $M$ by $G$ . By the same way, $H^{2}(G, M)$ is isomorphic to the group of factor

sets modulo principal factor sets. It is also bijective to the set of equivalent classes of

extensions of $M$ by $G$ in which the conjugate action of $G$ on $M$ is the given one. The

latter becomes an abelian group by a certain sum, called Baer sum. So this bijection is

an isomorphism.
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In this report, an exact sequence

$0arrow Aarrow B_{n-1}arrow B_{n-2}arrow\cdotsarrow B_{1}arrow B_{0}arrow Carrow 0$

is said to $st$ar$t$ at $A$ , end at $C$ , and have length $n$ . Since an extension of $M$ by $G$ is

a short exact sequence $0arrow Marrow Earrow Garrow 1$ , elements of $H^{2}(G, M)$ have length

1. A semidirect product may be regarded as an exact sequence of length $0$ . Although

third cohomology has an interpretation in terms of obstructions to the construction of

extensions by $G$ of a non-abelian kernel, it can not be straightforward regarded as such

exact sequences.

On the other hand, there is Yoneda’s nice interpretation for cohomology. Elements

of $H^{n}(G, M)=Ext_{ZG}^{n}(Z, M)$ correspond to equivalent classes of exact sequences of left

ZG-modules, which have length $n$ , start at $M$ and end at Z. Their sum is Baer sum.

Moreover cup product corresponds to connecting two sequences. So the connecting

homomorphisms which appear in the cohomology long exact sequence for a short exact

sequence $\zeta$ of ZG-modules, correspond just to connecting $\zeta$ . Since the existence of

cohomology long exact sequences is a basic tool for methods of dimension shifting, it is

sensitive to give such a clear image.

The interpretation as semidirect products or group extensions is similar to Yoneda’s

one, although $G$ itself appears, and lengths decrease in the former. Then, can it be gener-

alized for $n\geq 3$? The answer is yes. It was discovered by several people simultaneously,

but independently. In the report we study this interpretation, i.e. $H^{n}(G, M)$ is isomor-
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phic to some equivalent classes of exact sequences of groups (say, crossed extensions)

which have length $n-1$ , start at $M$ and end at $G$ . However the result seems not to be

the best style, because crossed extensions are not enough general forms. They $stiU$ have

many functorial properties like Yoneda’s interpretation. For example, suppose $H\leq G$ ,

and 2 : $Harrow G$ be the inclusion map. Let $t\#$ : $H^{n}(G, JI)arrow H^{n}(H, M)$ be the natural

map constructed by taking the pullback of a crossed extension with $t$ as in Yoneda’s

interpretation. Then $\iota\#$ coincides with the restriction map. At this point of view, it is

very interesting to make something like the cohomology long exact sequences for exten-

sions of groups. If we could make them, we might use the methods of dimension shifting

rather than spectral sequences. In section 4, Ratcliffe’s result is introd $L\grave{1}\backslash ^{\backslash }\backslash .ed$ , which is

related to $n=3$ terms of such cohomology long exact sequences. Unfortunately, the

author does not generalize his results yet. The fundamental concepts of them seem to

lie in Rinehart’s abstruct argument [8].

Historical note and references can be found in [6].

Notations. In this paper we treat exact sequences in several categories, i.e. in groups,

in ZG-modules, etc. The following notations are commonly used in them.

For morphisms $Aarrow B$ and $Carrow B,$ $A\cross {}_{B}C$ denotes the pullback of them. Similarly

for $Barrow A$ and $Barrow C,$ $A\coprod_{B}C$ denotes the pushout of them.

Let $\alpha$ : $1arrow Xarrow A_{r-1}arrow A_{r-2}arrow\cdotsarrow A_{0}arrow Yarrow 1$ , $\beta$ : $1arrow Xarrow B_{-1}arrow$

$B_{-2}arrow\cdotsarrow B_{0}arrow Yarrow 1$ be exact sequences. We write $\alpha\sim\beta$ if there is a chain
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map (i.e. a family of maps which makes the below diagram commutative)

$1arrow Xarrow A_{\tau-1}arrow A_{-2}arrow\cdotsarrow A_{0}arrow Yarrow 1$

$\Vert$ $\downarrow$ $\downarrow$ $\downarrow$ $\Vert$

$1arrow Xarrow B_{-1}arrow B_{\tau-2}arrow\cdotsarrow B_{0}arrow Yarrow 1$

which is the identity on $X$ and Y. Then $\sim$ generates an $e$quivalent relation in those

exact sequences. We will adopt this equivalent relation in the report unless stated.

2. Yoneda’s interpretation.

In this section we recall Yoneda’s interpretation, since it is the basic model in the

report.

Let $L,$ $M$ be left ZG-modules. The definition of $Ext_{ZG}^{n}(L, M)$ is the value at $L$

of the left derived functor of the additive left exact functor $Hom_{ZG}(-, M)$ from the

category of left ZG-modules to the category of abelian groups. Namely, let

(2.1) $...arrow P_{n+1^{arrow}}^{\theta_{n+1}}P_{n}arrow^{\partial_{\pi}}P_{n-1}arrow\cdotsarrow P_{1}arrow^{\partial_{1}}P_{0}arrow^{\partial_{0}}Larrow 0$

be a ZG-projective resolution of $L$ . For $n\geq 1,$ $Ext_{ZG}^{n}(L, M)$ is defined as the n-

th homology group of $Hom_{ZG}(P_{*}, M)$ , i.e. $Ker\partial_{n+1}^{\#}/{\rm Im}\partial_{n}\#$ , where $\partial_{n}\#$ is the natural

map $Hom_{ZG}(P_{n-1}, M)arrow Hom_{ZG}(P_{n}, M)$ . For $n=0,$ $Ext_{ZG}^{0}(L, M)$ is defined as

$Hom_{ZG}(L, M)$ . We remark that $a$ projective resolution (2.1) has two important prop-

erties,
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(1) for any exact sequences $\cdotsarrow B_{1}arrow B_{0}arrow Narrow 0$ of ZG-modules, and

for any ZG-homomorphism $f$ : $Larrow N$ , there is a chain map $P_{*}arrow B_{*}$

whose last term is $f$ ,

(2) such chain maps are homotopic.

These properties imply that the cohomology groups are independent of the choice of

projective resolutions.

Yoneda’s interpretation is as follows. Consider an exact sequence

$0arrow Marrow B_{n-1}arrow B_{n-2}arrow\cdotsarrow B_{1}arrow B_{0}arrow Larrow 0$

of ZG-modules of length $n$ . By the above, there is a chain map

$...arrow P_{n}arrow P_{n-1}arrow P_{n-2}arrow\cdotsarrow P_{0}arrow Larrow 0$

$\mu\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\Vert$

$0$ $arrow Marrow B_{n-1}arrow B_{n-2}arrow\cdotsarrow B_{0}arrow Larrow 0$ .

Then $\mu$ is coycle (i.e. $\mu\in Ker\partial_{n+1}^{\#}$ ). Conversely let $\mu\in Ker\partial_{n+1}^{\#}$ . Then $\mu$ is regarded

as a map to $M$ &om $\Omega^{n}=Ker\partial_{n-1}\simeq P_{n}/{\rm Im}\partial_{n+1}$ . So we can construct an exact

sequence as

$0arrow\Omega^{n}arrow$ $P_{n-1}$ $arrow P_{n-2}arrow\cdotsarrow P_{0}arrow Larrow 0$

$\downarrow\mu$ $\downarrow$

’

$0arrow Marrow MII_{\Omega^{n}}P_{n-1}arrow P_{n-2}arrow\cdotsarrow P_{0}arrow Larrow 0$ .

This correspondence implies that $Ext_{ZG}^{n}(L, M)$ is bijective to the set of equivalent classes

of exact sequences which $have$ length $n$ , start at $M$ and end at $L$ .
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The bijection induces sum and product between exact sequences. For $\alpha$ : $0arrow Marrow$

$A_{r-1}arrow\cdotsarrow A_{0}arrow Larrow 0$ and $\beta$ : $0arrow Marrow B_{-1}arrow\cdotsarrow B_{0}arrow Larrow 0$, their sum

$\alpha+\beta$ is

$0arrow Marrow A_{r-1}\coprod_{M}B_{r-1}arrow A_{-2}\oplus B_{-2}arrow\cdotsarrow A_{1}\oplus B_{1}arrow A_{0}X_{L}B_{0}arrow Larrow 0$ .

This is called Baer sum. For 7 : $0arrow Narrow C_{-1}arrow\cdotsarrow C_{0}arrow Marrow 0$ and

$\beta$ : $0arrow Marrow B_{r-1}arrow\cdotsarrow B_{0}arrow Larrow 0$, their composition (or inner cup) product $\gamma\beta$

is

$0arrow Narrow C_{-1}arrow\cdotsarrow C_{0}arrow B_{\tau-1}arrow\cdotsarrow B_{0}arrow Larrow 0$ ,

i.e. connecting them. It is called Yoneda splice.

Functorial properties of $Ext$ are interpreted as follows. Let $N$ be a ZG-module

having a projective resolution $\cdotsarrow Q_{1}arrow Q_{0}arrow Narrow 0$ . Suppose ZG-homomorphism

$f$ : $N$ $arrow$ $L$ is given. Then $f$ induces $a$ chain map $f^{*}$ : $Q_{*}$ $arrow$ $P_{*}$ , and

$f^{*\#}$ ; $Hom_{ZG}(P_{*}, M)$ $arrow$ $Hom_{ZG}(Q_{*}, M)$ . Hence $f$ induces a homomorphism

$f^{\#}$ : $Ext_{ZG}^{n}(L, M)arrow Ext_{ZG}^{n}(N, M)$ . In terms of exact sequences, only using a pull-

back, it is

$f^{\#}(\beta)$ : $0arrow Marrow B_{n-1}arrow\cdotsarrow B_{1}arrow B_{0}\cross LNarrow Narrow 0$

$\downarrow$ $\downarrow$ ;

$\beta$ : $0arrow Marrow B_{n-1}arrow\cdotsarrow B_{1}arrow$ $B_{0}$ $arrow Larrow 0$ .
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Similarly, for $f$ : $Marrow N$ , the induced map $f_{\#}$ : $ExtZ_{G}(L, M)arrow Ext$ZG $(L, N)$ is

$\beta$ : $0arrow Marrow$ $B_{n-1}$ $arrow B_{n-2}arrow\cdotsarrow B_{0}arrow Larrow 0$

$;\downarrow$ $\downarrow$

$f_{\#}(\beta)$ : $0arrow Narrow NL_{M}B_{n-1}arrow B_{n-2}arrow\cdotsarrow B_{0}arrow Larrow 0$.

Let $\zeta$ : $0arrow M_{1}arrow^{f}M_{2}arrow^{g}M_{8}arrow 0$ be a short exact sequence. In the cohomology

long exact sequence

$...arrow\delta Ext_{ZG}^{n}(L, M_{1})arrow^{Jt}Ext_{ZG}^{n}(L, M_{2})arrow^{g|}Ext_{ZG}^{n}(L, M_{S})arrow^{5}Ext_{ZG}^{n+1}(L, M_{1})arrow f_{1}\ldots$ ,

the connecting homomorphism 6 is just the multiplication by $\zeta$ on the left. So coho-

mology long exact sequences can be naturally interpreted by this aspect.

3. Crossed extensions.

We fix $a$ group $G$ , and a left ZG-module $M$ . Next is the main theorem.

THEOREM. $H^{n+1}(G, M)\simeq XExt^{n}(G, M)$ for $n\geq 1$ .

XExt is the group of crossed extensions (see below). It was discovered indepen-

dently by Holt [3], Huebschmann [4], Hill [l](without proof), and for $n=$ case, by

Ratcliffe [7], Leedham-Green and MacKay [5], Wu [9]. Our proof mainly follows Hueb-

schmann’s method, but it is reduced to somewhat simpler case with Holt’s lemma to

understand the decrease of length more naturally.
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To state the definition of crossed extensions, we introduce Whitehead’s crossed

modules. A homomorphism 6: $C_{1}arrow C_{0}$ of groups is a $(C_{0^{-}})crossed$ module if

(1) $C_{I}$ is a $C_{0}$-group, i.e. $C_{0}$ acts on $C_{1}$ as group automorphisms,

(2) 6 is a $C_{0}$-homomorphism, i.e. $\delta(ax)=a\delta(x)a^{-1}$ for $a\in C_{0},$ $x\in C_{1}$ ,

(3) $yxy^{-1}=\delta(y)_{X}$ for $x,$ $y\in C_{1}$ .

Note that $Ker\delta$ is a ZG-module lying the cent $er$ of $C_{1}$ ( $C_{1}$ is not necessary abelian).

For example, an inclusion map to $a$ group from a normal subgroup is a crossed module.

An exact sequence of groups

$0arrow Marrow^{5,}C_{n-1^{arrow}}^{5,-1}\cdotsarrow^{\delta_{2}}C_{1}arrow^{\delta_{1}}C_{0}arrow^{5_{0}}Garrow 1$

is a crossed extension of length $n$ if

(1) $5_{1}$ : $C_{1}arrow C_{0}$ is a crossed module,

(2) for $i\geq 2,$ $C_{i}$ are ZG-modules, and $\delta_{:}$ are ZG-homomorphisms.

Note that since ${\rm Im}\delta_{2}=Ker\delta_{1}$ is a ZG-module, it makes sense to require $\delta_{2}$ to be ZG-

linear. For example, $0arrow Z(G)arrow Garrow Aut(G)arrow Out(G)arrow 1$ is a crossed extension

of length 2.

Suppose a crossed extension of $G$ and a crossed extension of another group $H$ are

given. A morphism of them is a chain map of them which preserves all the structure

of crossed extensions. Especially, among the crossed extensions starting at $M$ and

ending at $G$ , morphisms whose heads and ends are identity maps generate an equivalent
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relation, as in section 1. XExt$n(G, M)$ denotes the set of equivalent classes of crossed

extensions of length $n$ . For example, $XExt^{1}(G, M)$ isjust the equivalent classes of group

extensions of $M$ by $G$ . Hence the theorem is true for $n=1$ , as well-known.

Holt shows [3, Proposition 2.7],

LEMMA 3.1. Let $\alpha$ be a crossed extension oflength 2. $Tlz$ en th$ere$ is a crossed extension

which is equivaIent to $\alpha$ , and whose $C_{1}$ -term is abelian (hence a $Z$ G-mod$u$le).

Outline of the proof is as follows. Take a free presentation $1arrow Rarrow Farrow Garrow 1$

of $G$ . Then $0arrow Marrow M\cross Rarrow Farrow Garrow 1$ can have a crossed extension structure

equivalent to $\alpha$ . Let $X$ denote $M\cross R$ . Then $0arrow Marrow X/[X, X]arrow F/6[X, X]arrow Garrow$

$1$ is the crossed extension as in the lemma.

By the lemma, it is clear that each crossed extension is equivalent to a crossed

extension whose $C_{1^{-}}term$ is abelian. So we consider only such crossed extensions. Then

we can show that there is a projective object among them as follows.

Let $1arrow Rarrow Farrow Garrow 1$ be a free presentation of $G$ , and $\overline{R}=R/[R, R]$ , $\overline{F}=$

$F/[F, F]$ . Hence $0arrow\overline{R}arrow\overline{F}arrow Garrow 1$ is a cro$ssed$ extension of length 1. Next we take

a ZG-projective $res$olution $\cdotsarrow P_{2}arrow P_{1}arrow\overline{R}arrow 0$ of $\overline{R}$. Combine them at $\overline{R}$ as

$\pi$ : .. . $arrow P_{n}arrow P_{n-1}arrow\cdotsarrow P_{2}arrow P_{1}arrow P_{0}arrow Garrow 1$ .

where $P_{0}=\overline{F}$. Then
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LEMMA 3.2. For any crossed extension $\alpha$ : $0arrow Narrow D_{n-1}arrow\cdotsarrow D_{1}arrow D_{0}arrow Harrow$

$1ofagro$up $H$ in $wAic1rD_{1}$ is abelian, an $d$ for any $gro$up Aomomorphism $f$ : $Garrow H$ ,

there is a morphism $kom\pi$ to $\alpha$ whose last $term$ is $f$ . Moreover such morphisms are

homotopic.

This is easily shown like the module case (section 2), from the above natural con-

struction.

We prove the theorem. By Lemma 3.1, XExt$n(G, M)$ is bijective to the set of

equivalent classes of crossed extensions of length $n$ , whose $C_{1}$ -term is abelian. However,

we have Lemma 3.2. So it is bijective to the n-th homology group $H^{n}(Hom_{ZG}(P_{*}, M))$ by

the same argument as Yoneda’s interpretation. Hence it is sufficient to show

$H^{n}(Hom_{ZG}(P_{*}, M))=H^{n+1}(G, M)$ . But there is the Gruenburg resolu tion

$0arrow\overline{R}arrow ZG\otimes_{ZF}I_{F}arrow ZGarrow Zarrow 0$ ,

where $ZG\otimes_{ZF}I_{F}$ is ZG-projective ( $I_{F}$ is the augumentaion ideal of $ZF$ ). Therefore, we

can construct a ZG-projective resolution

.. . $arrow P_{n}arrow P_{n-1}arrow\cdotsarrow P_{2}arrow P_{1}arrow ZG\otimes_{ZF}I_{F}arrow ZGarrow Zarrow 0$

of Z. This proves the bijection of the theorem.

By Lemma 3.2, we can treat crossed extensions like exact sequences of modules.

Let $f$ : $Harrow G$ be $a$ group homomorphism. Then ZG-modules are ZH-modules via $f$ .
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The induced map is

$f\#(\beta)$ : $0arrow Marrow C_{n-1}arrow\cdotsarrow C_{1}arrow C_{0}\cross {}_{G}Harrow Harrow 0$

$\downarrow$ $\downarrow f$

$\beta$ : $0arrow Marrow C_{n-1}arrow\cdotsarrow C_{1}arrow$ $C_{0}$ $arrow Garrow 0$ ,

in $t$ erms of crossed extensions. If $f$ is monic, then it is just the $re$striction map. If $f$ is

epic, then it is just the inflation map.

Like modules, we can define the sum of two crossed extensions as Baer sum. It

makes the bijection of the theorem an isomorphism. However, it may not be easy to

define their products. It is also difficult to construct something like the cohomology

long exact sequence, for a group extension, especially difficult near the connecting ho-

momorphisms. It is still possible for $n=3$ term which is discussed in the next section.

We note Holt’s method. He showed

(1) Baer sum in XExt$n(G, M)$ is well-defined.

(2) XExt is a bi-functor to abelian groups.

(3) $XExt^{*}(G, -)h$as cohomology long exact sequences for short exact se-

quences of modules.

(4) XExt $(G, I)=0$ for any injective module $I$ .

Hence we can use the dimension shifting. Since XExt $(G, M)\simeq H^{2}(G, M)$ , we get

result.
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4. Cohomology long exact sequences.

Ratcliffe [7] shows an interesting result for lower degrees. We fix a group extension

$1arrow Narrow Garrow Qarrow 1$ and a left ZQ-module $M$ . Then $M$ is a ZG-module on which

$N$ acts trivially. An exact sequence $0arrow Marrow Carrow Narrow 1$ of groups is called $a$ $G-$

crossed extension if the induced map $Carrow G$ is a crossed module. Morphism$s$ preserving

the structure generate an equivalent relation among G-crossed extensions. $H_{G}^{2}(N, M)$

denotes the set of equivalent classes of G-crossed extensions. Not $e$ that the natur$a1$ map

$t:H_{G}^{2}(N, M)arrow H^{2}(N, M)$ may not be monic. $Kert$ consists of the classes of extensions

which split as groups, but not necessary split as G-groups.

PROPOSITION. There is an exac $t$ sequence

$H^{2}(Q, M) \inf_{arrow H^{2}(G,M)}arrow^{\rho}H_{G}^{2}(N, M)arrow^{s}H^{S}(Q, M)\inf_{arrow H^{8}(G,M)}$ .

Here $\inf$ are the inflation maps, and $\iota\rho$ coincides with the restriction map. Moreover

$\delta$ is just Yoneda splice, i.e. for $\alpha$ : $0arrow Marrow Carrow Narrow 1,$ $\delta(\alpha)$ is $0arrow Marrow Carrow$

$Garrow Qarrow 1$ . If we could generalize it for higher degrees, we might more roughly and

easily replace groups –the first variant of cohomology –than the use of the spectral

sequences. However, the author can not do it yet. Ratcliffe’s proof uses a generalized

concept of factor set $s$ , say factor systems. Its calculating method may not be suitable

for higher degrees.

We introduce the Rinehart’s foresighted theory [8], without proo&, to conclude

the report. Although he discussed on very general categories, we concentrat $eo$nly our
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situation.

Let $G$ be a $gr$oup, and $C=(Groups,G)$ the category of groups over $G$ , i.e. the

category of group homomorphisms into G. $|C|$ denotes the class of its objects. We writ $e$

only $A\in|C|$ for $(Aarrow G)\in|\mathbb{C}|$ if no confusion. $C(A, B)$ denotes the morphisms from

$A$ to B. $P\in|C|$ is called projective in $caseC(P, f)$ is surjective for every epimorphism

in $C$ , namely $P$ is $a$ fr$ee$ group. $\mathcal{P}$ denotes the class of projectives.

Let $\mathfrak{U}$ be the dual of the category of abelian groups. $Z\in|C|$ is called an abelian

group in $C$ if $C(-, Z)fac$torize through $\mathfrak{U}$ , that is, $Z$ is a semidirect product of a ZG-

module $M$ by $G$ . So we write it only $M$ . In this $c$ase, $C(-, Z)$ is the derivations

Der$(-, M)$ . $\mathcal{R}$ denotes the full subcategory of the functor category $\mathfrak{U}^{C}$ whose objects

are right exact functors. It can be shown that $\mathcal{R}$ is an abelian category and enough

projectives. $C(-, Z)=Der(-, M)$ is in $\mathcal{R}$ .

For $n\geq 0$ , let $S_{n}$ : $\mathcal{R}arrow \mathfrak{U}^{C}$ be the n-th left derived functor of the inclusion functor

$\mathcal{R}arrow \mathfrak{U}^{C}$ . Define $Ext_{C}^{n}(B, M)=(S_{n}Der(-, M))(B)$ for $B\in|\mathbb{C}|$ .

THEOREM 4.1. Ext“ $(B, M)=H^{n+1}(B, M)$ , the $usuaIcoA$omology group.

Its form is similar to our main theorem of section 3.

Let $\mathbb{C}’$ be the $fuU$ subcategory of the morphism category of $\mathbb{C}$ whose objects are

epimorphisms. For $i=0,1,$ $\Gamma_{i}$ : $C’arrow C$ is the functor defined by $\Gamma_{i}(A_{0}arrow A_{1})=A_{i}$ .

$\mathcal{R}’=\mathcal{R}(C’, \mathfrak{U})$ denotes the category of right exact functors &om $\mathbb{C}’$ to $\mathfrak{U}$ . Let $\Delta$ : $\mathcal{R}arrow$

$\mathcal{R}’$ be the functor defined by $\Delta F=Ker_{R’}(F\Gamma_{0}arrow F\Gamma_{1})$ . So we can define $S^{\prime n}\Delta F$
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where $S^{\prime n}$ is the n-th left derived functor of the inclusion functor $\mathcal{R}’arrow \mathfrak{U}^{C’}$

THEOREM 4.2. For every $F\in \mathcal{R}$, and for every epimorphism $Aarrow B$ in $C$ , there is an

exact sequence

$...arrow S_{n+1}F(B)arrow S_{n}\Delta F(Aarrow B)arrow S_{n}F(A)arrow S_{n}F(B)arrow\cdots$ .

Combining Theorem 4.1, this isjust the cohomology long exact sequence for a group

extension. We hope that it wili be understood in terms of Yoneda’s interpretation.

References

1. R. O. HiU, Jr, A natural algebraic interpretation of the group cohomology

group $H^{n}(Q,$A), n $\geq 4$ , Notices Amer. Math. Soc. 25, 1978, A-$51.

2. P. J. Hilton and U. Stammbach, A course in homological algebra, Springer-

Verlag, New York, 1971.

3. D. F. Holt, An interpretation of the cohomology gmups $lP(G,$M), J. Al-

gebra 60, 1979, $07-$20.

4. J. Huebschmann, Cmssed n-fold extensions of groups and cohomology,

Comment. Math. Helvetici 55, 1980, 302-314.

5. C. R. Leedham-Green and S. MacKay, Baer invariants, isologism, varietal

laws and homology, Acta Math. 137, 1971, 99-150.

6. S. MacLane, Historical Note, J. Algebra 60, 1979, $19-$20.



106

7. J. G. Ratcliffe, Crossed extensions, Trans. Amer. Math. Soc. 257, 1980,

73-89.

8. G. S. Rinehart, Satellites and cohomology, J. Algebra 12, 1969, 295-329.

9. Y.-C. Wu, $B^{s}(G,$A) an obstruction of group extension, J. Pure Appl.

Algebra 12, 1978, 93-100.


