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Modular representations and quantum algebras

after G.Lusztig, and H.H.Andersen, P.Polo and Wen K.

-~ B o) .
FN Ea]  Ee E S
HASEGAWA Y. and KANEDA M.

Department of Mathematics Niigata University

"Usually, the representation theory of [finite Chevalley groupsl
is approached via that of the ambient algebraic groups. Many results
are of the form: |If we know some data for the algebraic group, then
we know (in principle) some data for the finite group.” J.C.Jantzen
[JAT, p.12T.

For example, if GZ is a split semisimple simply connected Z-group
(scheme) and @ a power of a prime P, then GZ(Fq) is a universal
Chevalley group and all the irreducible GZ(Fq)-modules over Fq are
obtained as the restriction of certain G-simples, where we put & =
GZ @Z Fp' We do not know, however, even the dimension of simple
G-modules. Recently., G.Lusztig has proposed a novel program to attack
the problem using the quantized enveloping algebras, or quantum
algebras for short, discovered independently by V.G.Drinfeld and
Jimbo M.

The purpose of this note is to convey some of Lusztig's ideas,
and subsequent developments by H.H.Andersen, P.Polo and Wen K. There
is an excellent introduction to the subject by Lusztig himself [LI1,

which has helped us organize the present survey.
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I° Definition of the quantum algebras

o _ Y.
(1.1) Let Eatjnlﬁi,jin be a Cartan matrix: a;; = 2 i, aij €N

Vﬂ # Jj, and adi AR ﬂdiaijn is symmetric and positive definite. We

will take the di so that d] + .. 4 dn is as small as possible, hence

di € {1, 2, 3}.

- n T ,

Let X = U Zwi' Y = 1 Zail and define a bilinear pairing

i=1 i=1
\Y Y. .
<, > :XxY—1Z by <@g, 0> = aij i, §. Let o, € X such that
\% Y. ) v

<o aj > = aji J, and define 8, € GLX) by z — & - <z, o, >0 We
call W := <8, s 8> < GL(X) the Wey!l group, R := W{o:], N =

X the set of roots, the pair (R, W) the root system associated to the

k{4
+
Cartan matrix Haijﬂ, and R° =R n 2 Nai a positive system of R.
i=1

(1.2) To each root system R there is associated a unique
semisimple Lie algebra g over ®. If U is the universal enveloping
algebra of 8, then U has a presentation as ®-algebra by generators

e, fi’ hi' 1 £ 141 £7n, and relations

hbhj = hjht,
hzeg - ejht = atjej, hifj - fjht = -atJfJ,
etfj - fjei = atdht'
1-a, ;
> <—1)3( S”)ei"ejeis -0 if i # g
r+3=1—a£j
g|!” iJ r g
2 D F,0f:8.7 =0 if i # 7.
T+8=1-a, - : J
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Further, U carries a structure of Hopf algebra with
comultiplication A € QAla WU, U ®® U), counit € € QAla U, @), and

antipode 5 € QAla(U., U°P) given by Vm € g,

Az —> 10872 +281,
E $ F——9 O/
S .z — -

Let UZ be the subalgebra of U generated by

r P
et ot FM .t i <ci<n, reN.
r! r!

Then UZ inherits from U the structure of Hopf algebra such that
UZ ®Z Q@ «U. IfT is a commutative ring, we will put Ur = UZ OZ r.
(1.3) Let $z be the split semisimple simply connected Z-group

with the root system R. If T is a commutative ring., we set Gr =

52 92 F. In case I' = Fp we will abbreviate GFp as 6.

| f Dist(GZ) is the algebra of distributions of $Z' then
UZ ~ Dist(GZ) as Hopf algebras.
Hence for any commutative ring [

Ur = Uz GZ r sl Dist($z) GZ r X DiSt(Gr).
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We recall that in case I' is a field, the category GFMQQ of Gr-modules
is equivalent to the category of locally finite Dist(Gr)—modules [J1,
(I.1.20), hence of locally finite Ur—modules.

(1.4) Let VU be an indeterminate. Following Gauss we set vm € Z,

reN, and d € 2%,

r . d®m-8s+1) -d (R-8+1)
n] v - v
[r]d - 321 CEN v—ds € Q.
r .ds -ds
r11, = ML=t € Q).
s=1 v -V

Both [g]d and [r]!d actually belong to Z[v,v_]], and under the

specialization U 2 1 we get

Now the quantized enveloping algebra, or quantum algebra for
short, associated to the Cartan matrix Eaijﬂ is the Q(v)-algebra U’

b .
with generators Ei' Ft' Kili 1 £ 1 £7, and relations

_ -1 _ g
KK. =KK_, KK, =1 =K, K.,

17 J t i i
T d.a. . -d.a, .
_ 171J _ Lt 1J
KiEj = U EjKi’ KiFj =V FjKi’
K, - K;‘
EFg = Fife = %45 —4, 4,
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(1-a ;]

S0 Mg ETEES <0 it i g

r+s=l—aij ! 1
spl'aij. T s '

2 SARh | F,'F.F.° =0 if i & g,

r+8=1-a, : s ldj i g '
iJ
The quantum algebra U' is equipped with a structure of Hopf

algebra with comultipltication A, counit &, and antipode § defined by

. -1
A Ei — Ei ® 1 + Ki ® Ei , Fi — Fi ® Ki + 1 @ Fi p
Ki — Ki ® Kt ,
g : Ei — 0. Fi — 0, Ki — 1,

. _ 1 i -1
S antihom : Ei — Ki Ei , Fi — FiKi , Ki — Ki

(1.5) In order to define a quantum -analogue of UZ' we let 4 =

A {

Z[UIU-I]/ and put T € ]NI
r T
E(r)_= 1 F(r)_= Fi
i [r]!d ‘ i [r]!d ’
i i
dt(—s+1) 1 -di(~s+1)
K r K., v - K, v
1 _ -n- 1 1
r g=1 d.s -d;s
v -

We define Ud to be the d-subalgebra of U' generated by Eér), Fér),
1

KL

K.
contains all t
r |-

;1 <i<n, 7 €N Then Uy is a Hoof d-subaloebra of U' and
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Let U; (resp. U;) be the d-subalgebra of Uﬂ generated by Eér)

(resp. Fér)), 1< i<n, re€N, and let Ug the d-subalgebra of Ud

K.
- 4 .
generated by Ki]' [rt], 1 <i<n, re€N. Then

B 0 + mult _

+
and Ud Qd Qw) = U' as Hoef algebras. In fact, each of Ud and US has

an d-free basis.

. . M -— t—
If T is a commutative d-algebra, we will put Ur = Uy Qd r, UF =
% 0o _ ,,0 :
Ud Qd ', and UF = Ud ®d r.
(1.6) Fix £ € Z* such that (£, aij) = 1 vaij # 0. In particular,

£ is odd. Let ¢£ be the £-th cyclotomic polynomial and put & = d/(¢£)’
with 8' the field of fractions of 3. Regarding 3 and 8' as d-algebras
in a natural way, we set

{;_]I

24
s Kn

¢
&S
f

_ ~ _ {
Uz/(K] -1 and Uﬁ' = Uﬁ'/(K1 -1, ..., K -1,

63 has a Z-basis that is also a B'-basis of &ﬁ" We note that in Uﬁ
K.2£ = 1 and K.{ is central Vi.
1 1
In case £ =1, 8 =172, 3" = Q, and we have an isomorphism of Hopf
Q-algebras
= 14

U —— UQ such that e, — Ei and fi — Fi i

that restricts to vield UZ = ﬁZ sending
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R, R.(h.-1) ... (R.-t+1) K.
[tt] o —t b t onto [tt]’ 1 <i<mn, teN.
t

2° A Frobenius map in characteristic O

(2.1) The Frobenius morphism Frob on 6 induces by taking the

differential an endomorphism Fr of the Hopf Fp—algebra UF such that
p

d(Frob)
Dist(G) » Dist ()
| ? t|
U ——=——-—- — U
Fp Fr Fp

Let 61 = ker (Frob) . Under the isomorphism Dist(®) = UF ,
p

Dist(&l) is identified with the restricted enveloping algebra of

Lie(G) = Dist:(G)

Dist (§) y U,
Fp
J 2 ]
P (r (r)
Dist(G,) T T ey T > gicn, osrsp-1
If & is the counit of Dist(G]), then ker (Fr) = (ker(Sll)).

11
(2.2) Let £ be as in (1.6). Lusztig [LQG],(8.16) has found a

remarkable map ?r € BAlgW,, Uﬁ) such that

T
(I) ‘
Eér)l——*{ei if ¢l r
0 otherwise.
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Fér)l—-){fi it ¢l r

0 otherwise.

Let uz, (resp. uﬁ) be the B' (resp. B)-subalgebra of Uz.(resp.

r (r T 1 .
U$> generated byEi ,Fi ,Ki,IStS'n,OST'Sf, W.Thenl.lﬁ
is a Hopf subalgebra of Ug , B-free of rank Zn{lR|+n, nd
ker Fr 8, 8') = (ker(g, )) [LQGI. (8.16) .,
2 Ug.
where Bug‘ is the counit of ug,.
Set Eg = uQ/(Ki£_1)£ and EQ. = uﬂ,/(Ki£—1)£ Hg remains B-free
of rank £|Rl+n.
Fr factors through Ug to induce Fr: U ___EZ__q U
3 3 Tﬁ
nat l ? : Fr
~ 4
(2.3) Assume { = P a prime and regard Fp as a B-algebra under
the specialization ¥ V> 1. Then ﬁﬁ 93 Fp x UFp, and
f‘r@ F
~ % p N
U3 ®$ Fp > U3 82 Fp

0 2 y

U
Fp Fr p
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In this sense one can regard ?r as a quantization of Fr or as a
lifting of Fr to characteristic O.

Also u3 Gﬁ Fp o DlSt(G])/ hence one may regard ug, as a
quantization of Dist(G]).

°

3 Representations of the quantum algebras

(3.1) 1f X € X, we will write A, = <d, aiv>. set X" = t 1€ x|

Y,
Ai =20 't }.

Any finite dimensional U-module is semisimple and the set of
isomorphism classes of finite dimensional simple U-modules is

classified by X"
A — L) simple module of highest weight A.
If we define
Louy=tmelad | hm= <u o, >m Vi,

then ch LX) := X (dim Z(A)u)eu € Z[X1 is given by Weyl's character
NEX

formula, where Z[X] is the group ring of X with natural basis e”,

u € X.

|
(3.2) For each X € X, 3'81 € dAloU,, 4) such that Vi € [1, 1),

dixi
'I.—’ ra - 7 -
KL v Etl—»o Ftl——ao.
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In particular, 8., is the counit of Ud' Set xl= g

0 A

0-
Ug
If T is a commutative d-algebra and ¥ € Ungj, we define the
A-weight space of M to be
¥

_ ~ 0
”x' {meEM| un = o, 84 M@w)m U € Ur }.

In case MA is T'-free of finite rank vk € X, we set

Fch M = % rk(MA)el.
2eX

We savy that ¥ is a highest weight module if and only if ¥ has
a vector m' € Ml\ 0 for some X € X such that ¥ = Urm+ and that Eér)m+
=0 vi € [1, 7] and T > 0. In each case we consider below, A (resp.

+ X +
M ) is uniquely determined (resp. up to I''). We call m (resp. X) a

highest weight vector (resp. the highest weight) of M.

Let U# = U?UF. If x € X, let Fl be the U#-module ' with U#
acting by 81 Gd ' and set Yr(k) = UF OU# FA. Then each highest weight
r

Ur-module of highest weight X is a quotient of Yr(k). We call Yr(k)
the Verma module of highest weight A.

(3.3) Any finite dimensional U'-module is semisimple [R], and
any finite dimensional simple U'-module is obtained as the head of a
Verma module Y@(v)(k)' A € X+. If L'(X) is such, then take a highest
weight vector ®' of L'(X). Then L' (X)) = dm+ ®4 Q) while Udm+ ®at Q
under the specialization ¥ > 1 is a simple aﬁ—module [LQD1., (4.12>.

As UQ ~U (1.6), one gets
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Qv)ch L') = dch(Udm+) = ch L.

(3.4) Throughout the rest of this section we will consider in
the category Q} of the finite dimensional Ug.-modules on which the

L Y. , _
central element Ki acts as 1 i. If M € gf’ then X Ml = I ”A'

LeX xeX
In case £ =1, '= Q and Ki acts as 1, hence any Uﬂ,—module is a
32.—module. But ﬁﬁ' = Uﬂ'/(Ki_])i ~ U, so nothing happens here.
If £ > 1, however., not all objects of Q} are semisimple. In what
follows we will assume £ > 1.

(3.5) Let A € X', 1t ®" is a highest weisht vector of L' (),
set D'(x) = dm+ @d B'. Then D'(X) has a simple head, denoted Lg,(k),
and the simple objects of @} are exhausted in this way.

Let X{ = {neX | W, < {4-1 Vi } and write X = X' + {A" with
A'E Xt' A" € X', We have a auantum analogue., due to Lusztig [LMRI,

(7.4), of Steinberg's tensor product theorem:
Lz.(l) b5 Lz.(l‘) eszz.(tl") in Uﬁ.Mgd,
where Uy, acts on the right hand side via A Gd 3.
Moreover, Lg,({l") is obtained by regarding L(x") @@ Z' as
Ug.—module via Fr 88 3 Ug, —_— 32,. In particular.,

8'ch Lg, (x") = ch L"),

On the other hand. Lz,(k') remains simple upon restriction to uﬁ,

and any simple uﬁ.—module on which Kit acts as 1 Vi arises in this
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way .
4° Lusztig's conjectures
(4.1) Assume in this section that R is irreducible and let o, be
the highest shorf root of R, p = Y h = <p, a0v> + 1.
. . v -
Define a permutation 84 of X by n (<u, o, >+£)a0. | f Sa =
{SO' S], s Sn} and Wt = <Sa> < GX' (W£, Sa) forms a Coxeter system.

Let Px,y’ z,Y € WL, be the Kazhdan-Lusztig polynomials of (th Sa).
Define a new action of Wt on X by W't = w( + p) - p, W € Wt, L e X.

Let A= {u€X | <u + p, aiv> <0 Vi € [1.,n] and <u + p, aov> > -4 1,

and A its closure in X 92 R. I1f pwe X and ¥ € W£, let M, = yw;]'u,

I}
where uu is the element of Wi of minimal length such that u;l-u € A.

(4.2) If X € X+, Lusztig conjectures [LMR1.,(8.2)

s t(yul) _
QD] B'ch Ly, (X)) = -1 P (1Yech L) .
3 yew£ v.ou, I}

Modulo L.Casian's [C] and S.Kumaf's [K] proofs of Lusztig's
similar conjecture on affine Kac-Moody Lie algebras [LQG], (2.5),
D.Kazhdan and Lusztig [KL] has just announced the validity of (1).

(4.3) Assume 4 = p a prime, and let X € X{. Take a highest
weight vector m' of LQ.(A), and set Lp(k) = u$m+ L2 Fp regarding Fp
as a 8-algebra under ¥ > 1. Then Lp(l) comes equipped with a
structure of Dist(G])—module. As such Lp(l) has a simple head, that
is the simple G-module £(X) of highest weight X.

Lusztig conjectures [LFD1.,(0.3) that for p >> 0
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hence B'ch Lz,(l) = ch £(X). Indeed, Lusztig conjectured in 1978 [LS]

]'u € A and if <u + p, @ V> < p(p-h+2), one

, + . -
that if # € X with w“ 0

should have

£(yw )

ch 2 = 3 (-1 u Py 4 (Deh I(uy>.
yEWp U

5° Induction

(5.1) In a large part the representation theory of & is the
study of the cohomologies H (6/8B, £(X)) of the G-linearized invertible
sheaves £(A) induced from the lI-dimensional B-module (Fp)k' X € X, on
the flag scheme 6/8, where B is the Borel subgroup of & whose roots
are -RT. Algebraically, H (6/8, £(x)) are obtained as the right
derived functors of the induction functor indg from BMod into GMod

defined by M s (M ® ]F'[(S])iB the fixed points of M 8-~ F_[6]1 under
Fp p Fp p

the action of B on the coordinate algebra Fp[6] of & (resp. on M) by
the right regular action (resp. as given) with & acting on the
resulting set by the left regular action on Fp[G]. In [APW] H.H.
Andersen( P. Polo, and Wen K. quantize the induction functor., on
which we will briefly touch in what remains.

(5.2) In this section we assume £ = P a prime. Let m = (p, V-1)
a maximal ideal of 4, and set d' = dm. We will abbreviate Uﬂ ed 4,
+

+
Ud Gd d', US Qd d' as U, U, and UO, respectively. An advantage of

working over d' is that any projective d'-module is free as 4' is
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local .

|t M € UMod, 2 MA = I ”x' We set
A€EX xEX

Y

F) = (tmell ¥, | Eér)m =0 = Fér)m i € [1.n] and T >> 0 }.

2 A
Let € be the full subcategory of UMod consisting of those M such that
M = F(M). Define also Qf = {(Meg | H isd-finite }.
5.3) set U¥ = UOU". 1t # € UMod, put

FPuh = (mel Mol Eér)m -0 Yp s> 0 and i1,

A

and let Qﬂ the full subcategory of U#Mgd consisting of those M such

that F¥M) = M. Let also Q? = { M G_Q# | # is d'-finite }.

If M € Q?, Ue® " M has a unique minimal U-submodule M' such that
U
W e 8 M/ is d'-finite. We will denote (U © i /8 by DM . In
U U
particular, we will abbreviate D(d'l) as D(X). After A.Joseph the

correspondence M > D(M) defines a right exact functor from g; into

The functor D is left adjoint to the restriction functor

—_ Q?: VM € @? and V € Qf, Qﬁ(ﬂ, V) — Qf(D(M), V) via

Qf.

s

@ — ¢ with % 8 R — U @) .

In particular, D(X) is the universal d'-finite highest weight

U-module of highest weight X.

We have that D) # 0 iff A € X'. Further, DA) is d'-free with
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d'ch D) = ch L), the proof of which makes use of the fact that

U =~U- (1.6).
Fp = Fp
(5.4) If M € dMod, put X(M) = dMod (U, M). X (M) carries two

compatible structures of U-modules ¥ and & defined by
(Yo ) = 6SWw)x) and BWdhw) = 0@w), 0 € XM, u.xz € U.

Accordingly we define FY(K(M)) and Fa(ﬁ(ﬁ)).

On the other hand, let # be the set of ideals I of U such that
U/I is d4'-finite and that I contains a finite intersection of
ker(Xl), X € X. Then [APW1, (1.30)

) g € XM | o) =0 31 € ¥ = Fy(ﬂ(lh) = Fgtdh) .

We define a functor H : 4'Mod — €, called the induction from
4'Mod into €, via ¥ Fa(#(ﬂ)). The functor H is right adjoint to

)

the restriction € — 4 'Mod V € € and ¥ € 4'Mod.

d'Mod(V, M) — g, HM)) via @ — @' such that @' (Z) = @I

with inverse ¥ F— &ve¥, where U(8) = 0(1). In particular, H sends
injective d'-modules into injectives in #.

Further, H is exact, commutes with taking arbitrary direct sums,
and H(d') is d'-free. We set 4' (U] = H(d"), and call it the quantum
coordinate algebra of U. 4'[U] comes naturally equipped with a

structure of Hopf algebra over 4'. |f M € UMod, then [APWI.,(1.31)
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2) HM) ~ 41U ed M =~ 41U ed Mtr. ,

iv
where Mtriv is the U-module M under €. In particular, if T is an

d'-algebra under ¥ —> 1 that is a field of characteristic O, we have

an isomorphism of Hopf algebras over I' (cf.Appendix)

(3) d' U] ed,r &~ F[Gr] the coordinate algebra of Gr.

b

b - uu s Meu Mod., set

(5.5) Let U

A {

FPan = (mel Mo Fér)m =0 'r>>0 and i1,

A

and let @b be the full subcategory of UbMQQ consisting of those M such

b(M) = M. Considering a functor Hb . dMod — Qb defined just

that F
like H, one finds that gb has enough injectives.
We now define a functor., called the induction from gb into 8, by

b

M — Fa(U Mod (U, M)).

The functor is right adjoint to the restriction from € into gb, hence

left exact, so we can consider its right derived functors. We denote

the §-th derived functor by HJ(U/Ub, DE
We have VH € @b,
b 0 11 b yb
Fa(U Mod (U, M) ~ H-WU/U”, M) =~ (M Od,d'[U]) in €.
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where U (resp. Ub) acts on M @A.d'[U] trivially on M and by & on

d' U] (resp. by A with ¥ on &' [U]l). Comparing with the classical

induction from BMod into ®Mod (5.1), one may regard HO(U/Ub, _) as a

quantization of indg.

(5.6) Let Wy € W with wOR+ = -RY. 1t a1€X,

b

59 wruP, A = D(-wox)* in UMod,

where the U-module strudture on the right hand side is given by
@ = 0¥ Wz, L EU, € D(-uox)*, T € DC-w )

with ¥ € d'Ala W, U°®) such that E, /™ E ,F, — F K K;'. I'n

b

particular, d'ch HO(U/U , A'A) = ch L) .

(5.7) Let T be a field that is an d'-algebra, eg.., @, Fp under

v — 1, or B3, Q). If A € X", HO(Ur/U?, FA) has a simple socle.

denoted Lr(k), of highest weight X, and every simple object in @r

arises in this way. The notation is compatible with the one in (3.5).

Also LF () = ).
p

Assume now that ¥ =1 inT. Then

UF/(Ki—])i ~ Dist(Gr)

] 2 J

/(Ki—1)i & Dist(Br),

b
Ur

b

hence Qr ~ GFMQQ/ @r ~ BMod., and one finds v

J € N and x € X,
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J b ~ i
H (Ur/Ur, FA) ~ f (lsr/Br, ﬁr(M),

where ﬂr(l) is the induced sheaf on Gr/ﬁr.

(5.8) Many results on H (G/B, Z(N)) as described in [J] carry

over to H'(U/Ub, d'l). In particular, let A € X" and write wy =

8 . with N = |R+|. There is a natural U-homomorphism

...8. 8.
Ty I 4y

Hk”(s. ...S-'l)-—>Hk(S....S.'A) Vk,rE]N,

where we abbreviate Hk(U/Ub, d'u) as Hk(u). Let TU be the composite
0

N k

W ) — Hs. .. .s. 2 — ... — By, a0 — B,

# Ty J 7,

Andersen., Polo and Wen conjecture [APW1,(10.15) that Tu is
0

diagonizable over d'. Their conjecture will imply

V,\EX

B'ch Lﬁ,(k) = ch £) D

Appendix

(A.1) We attempt to give a proof toA(5.4)(3). A similar assertion
appears in [LQGI.(8.17).
For -that it may be worthwhile to start with reviewing the proof

of (6.4)(C1), i.e., [APW],Cor.1,30: VH € 4'Mod,
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(G D) Fa(d'Mgd(U, M) = {9 € d'Mod WU, M) | <) =0 3[ € 31,

where $ = { I QU | U/I is 4'-finite and I 2 N ker(xl)}.
finite
That the left hand side contains the right hand side is the
content of [APWI.,(1.9): Let f be an element of the right hand side
with f(I) =0, I € #. Then im f is d"'-finite, so therefore is 8UJ
as SW)Ff € d'ModW/I, im f) and as 4' is noetherian.

If I 2 ker(xl) N ker(Xu) with A # L, one finds U € UO such that
(2) @ - X, W) - @ - x, W) € 4%

Put 1900

U(ker xl), Uy = U/IO(A), and define |likewise Io(u),

U). Then
Uy @ Uw) — U/ via @&, ¥) — W - xl(u)) - Yy - xu(u))
is a surjective homomorphism of Uo—modules, hence

d'Mod(U/T, M) < d'ModWUX), M) & d'ModU), M)

= d4"'Mod (U, ”),1 & d'Mod (U, ”)u ,

where the weight spaces are taken with respect to 5(U0). In general,
repeat the argument to find that 4'Mod(WU/I, M) admits a weight space
decomposition with respect to B(UO), so therefore does 8(WU)f. Then
SUHF € Qf as dW)Sf is d'-finite, hence f belongs to the left hand

side of (1).
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To see the reverse inclusion, we need [APW]l.Prop.1.27 and Prop.

1.290: ifVEXK, let QW) =1{ A, w e€X xX | u-a2=vi,Jd0 w
(r.) (8.)

-1%wm +  Su E,Y + SUF, L oand D, w) = UZd ). Then
i€01,m] i€r1.ml
T, > A s, > b,

(3) DA, W € 8.

Also under the identification of d'Mod D, ), M) with

{ ¢ € d'Mod WU, M) | @ X, u)) = 0} we have

4) Fa(d'Mgd(U; H))v = U d'Mod@W ), M)
A, ) EQR (V)

Now let ® be an element of the left hand side of (1). We may
assume @ has a weight V relative to 5W° . Then @ € 4d'Mod DX, ), M)
for some (X, W) € Q(V) by (4), hence im(®@) is d'-finite by (3). Then
again by (3) one gets @ € d'Mod DA, 1), im @) < F?(d'Mgd(U, M),
hence one can write
i

(5) @ =2 @, with ¢, € FY(A'MQA<U, M)
i : .

n

On the other hand, define a 4d'-linear automorphism S of

d'Mod (U, #) by ¢ H— ¢ Shl. Then Vx € U and ¢ € d'Mod (U, M),

(6) YE)IS(P) = S5 (ZYP) .,

from which one finds that Vn € X and (£, &) € Q).
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(7 Fy(d'Mgd(U, M))n = U d'ModW/SWJE.E)), M.
(£.8)€Q )

Hence each Qi annihilates an d'~-cofinite right ideal of U, so

therefore does @. Then d3W)Q® is 4d'-finite, hence

(8) SUe € ?f.

Write SWhe = 2 d'wj with Wj having weight v/ with respedt to S(UO).
J

By (3) each ¥, annihilates some Jod, why, o, udy e awdy . 1t we

let J to be the ideal of U generated by N J(AJ, uJ), then J belongs
J

to # and is annihilated by @, hence ¢ lies in the right hand side of
(1), as desired.

(A.2) Let T be an d'-algebra under ¥ > 1 that is a field of
arbitrary characteristic. Repeating the argument one checks that
[APW1,Cor.1.30 remains to hold with U replaced by Ur: with the

obvious notational changes VM € I'Lin,
. _ . _ 3
Frp s (TLinWp, M) = { @ € TLinWp, ) | o) =0 "1 € N

where fr = {74 UF | dim Ur/I <o and I 2 N ker X T } with Xl,r

finite
=xl @d' r.
(A.3) We now consult [HI1,(XVW.3) for some generalities of the

Hopf algebra duals over a field K. If B is a K-algebra, set B' =

{9 € KLin(B, K) | oI) =0 31 4B with dim(B/I) < @}, Then

() B' &, B’ — (B 8 B in KLin
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in a natural way, which induces a structure of K-coalgebra on B' with
the comultiplication given by KLin(mult, K). In case B is even a Hopf
algebra over K with the comultiplication AB , then the multiplication
on B' defined by KLLn(AB, K) makes B' into a Hopf algebra over K,
called the dual Hopf algebra of B.

Let us fix the notation. With the comultiplication (resp.
counit, antipode) of K[SK] denoted by A (resp. Bg, O¢) we will write
b Dist(GK) — Dist(GK) GK Dist(GK) for the comultiplication on
Dist($K)Z AG(H)(Q ® b) = p(ab), u € Dist(GK), a.,b € K[6K]' Recall
also that the multiplication on Dist(GK) is given by (uv) (@) =

%“(ai)v(bi) it Aga) = % a;, ® bi. Let Dist((BK)' be the Hopf

algebra dual to Dist(GK).

We now show a variation of [Hl, Th.XWN.3.1 and Th.Z¥W.5.1.

Theorem. Let K be a field. Define 8 : K[SK] — KLln(Dist(GK), K
via 8@ (W) = u@ ., p € Dist(GK), a € K[@K]. Then 8 induces an
injective homomorphism of Hopf algebras over K from K[GK] into
Dist(GK)'. If K is algebraically closed of characteristic 0, then

im 8 = Dist((BK)', hence K[(SK] ~ Dist((SK)'.

Proof. If a € K[GK], write A6(a) = % ai ® bi' Then V :=

ﬁ{ker(B(ai)) N ker(e(bi))} is a K-subspace of Dist(GK) having a finite

1
codimension. But vu €V and v € Dist(GK),

(uv) (@) = 2 “(at)”(bt) =0 =2 v(a£>u<bi) = (V) @) .
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Hence B(&) annihilates the ideal of Dist(&K) generated by V., so im(8)

[ies in Dist($K)'. [f @ =0 Vu € Dist(GK), then

a € N (ker 86)m+1 = 0 by Krull's

meN

intersection theorem.

hence 8 is injective. Also from the definitions given above it

follows that B preserves the structure of Hopf algebras.
Assume finally that K is algebraically closed of characteristic

0. Let ®' be the K-group with the coordinate algebra Dist(GK)'. As B

. L . . . , #
is injective, we get a surjective morphism 8" : ' — & of K-groups.

Then &' is also semisimple [SCl.,Prop.18.1 with Lie(@') = Lie(®) by

[H1,Th.XW.5.1. If &' has the weight lattice X', the fundamental group

of &' is X/X' [St1.,Ex., p.45. But &' is centrallly closed in the
category of reduced algebraic K-groups by [HI1,Th.XW.5.1 again., hence

X' =X, so 6" =6. Then GK is centrally closed, hence 9# must be

invertible as K is algebraically closed of characteristic 0. In turn.,

8 induces a bijection from K[$K] onto Dist(@K)’, as desired.

- (A.4) We are now readyv to show

heorem. If T is an d'-algebra under ¥ > 1 that is a field of

characteristic 0, then

d' [l ed,r ~ r[ﬁr] as Hopf algebras over I.

Proof. We have

4' ] ed,r ~ Fa<d'Mgd(U, ) by (5.4)(2)
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) x Fs(rlin(Ur, My = Fr’a(rLin(Ur, N

{ ¢ € rlin(Ur, m | ed) =0 31 € 3r }oby (A2).

We will write Hrls(r> for the last term. If @ € Hrla(r)v anq T € UF'
then w(xKi) = (S(Ki)w)(x) = @(Z), hence w(x(Ki—1>> = 0. As Ki -1 is
central in Ur , however., @ annihilates the ideal (Ki—])i of Ur

generated by Ki -1, 4 € [1, nl, hence

(2) Hr s = {9 €TlinWp, M| ed) =071 € 8.1,

where ﬁﬁ = {1 € fr | I 2 (Ki~1)i ).
Now recall from (1.6) that U/ (K -1) = ﬁr ~ Dist(G), through
which define Ir € rAlg(U?, ') such that hi — li corresponding to

X

AT A € X, where U? is the subalgebra of UF generated by [hi), i €

t

[1, ml1, £ € N. Corresponding also to #p let ?r = {1 aU. | dim<Ur/I)

r

<o and I 2 N ker(ir) }. Then by (1) and (2)
finite

41 8, > (9 eTlLin@., N |oed)=07%T¢€3F. 1.

Finally, U? is the polynomial algebra in hl' e hn, hence

ker Ir = (hi_li)i' If J is an ideal of Ur of finite codimension, then

Ur/J is naturally a finite dimensional Ur-module, hence admits a
weight space decomposition with respect to U? by integral weights.

Write in Ur/J
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1 = m,o+ ...t R, with m; having weight EF, atex.
r .
Then h,*1 = 3 xtm, Vj € [1, »l, so
I i=1 9t

r —i r —4 —4

N ker(lr) = T ker(lr) as the ker(kr) are pairwise coprime

i=1 i=1
(3)

cJ.

Hence ?F.= { I« Ur | dim Ur/l < @ } Then
4 d' @d,r o~ Ur' Y Dist(Gr)',

hence we have an injective homomorphism gr : F[Gr] — o' [U] ed,r of

Hopf algebras over I' by (A.3). If T is the algebraic closure of I',
then

_ 8 eri=

F[Gr] ®r r » 4 U] QA,F ®r r
(5) 2 | ? |
[ 4' (W1 8,.T
r 8_
r

with 8_ invertible by (4) and (A.3). Hence gr is already invertible,
r

as desired.
(A.5) Remark. By (A.4)(5) we see that for any field K of

characteristic O
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in Th.A.3.
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