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超平面／曲面のアレンジメントの組合せ論的性質

東京大学理学部情報科学科 青木保一 今井浩
津田塾大学数学科 今井桂子

(Yasuichi Aoki, Hiroshi Imai, Keiko Imai)
Abstract

In this paper, we first prove that the arboricity of the dual graph of an
arrangement of hyperplanes in d-dimensional Euclidian space is $d$ . The
result is extended partiaUy to the arrangement of hypersurfaces. Also,
we introduce a new measure of the complexity of the dual graph of an
arrangement, and bound it by only using the property of the graph. This
bound can be used in the analysis of a computationally robust algorithm
for Voronoi diagrams and also to obtain another optimal randomized al-
gorithm for finding the intersections among line segments and curves.

1 Introduction
The study of the complexity of arrangements is one of the most important sub-
jects in computational geometry, because many geometric structures such as
Voronoi diagrams are represented as structures on arrangements. The number
of faces in an arrangement is a popular measure of the complexity of the arrange-
ment. There, however, exist many cases in which it is difficult to evaluate the
number of faces, for example, in the zone of the arrangement of hypersurfaces.
In this paper, we study the arboricity of the dual graph of an arrangement,
and introduce a new measure for the complexity of the arrangement. Since this
measure is essentially based on graphs, there arise pure graph-theoretic prob-
lems related to the measure. We also obtain interesting results concerning these
graph problems. The result on this new measure of the complexity of arrange-
ments can be utilized to devise efficient algorithms for geometric problems.

A dual graph of an arrangement is the graph whose vertex set consists of
cells of the arrangement and whose edge set contains an edge $xy$ if and only if
the cells $x$ and $y$ are adjacent in the arrangement. In Section 2, we consider
the arboricity of the dual graph of an arrangement of hyperplanes. This re-
sult can be extended to the special case of the arrangement of hypersurfaces
in d-dimensional Euclidian space. In Section 3, we introduce $D(G)$ , which is
the sum of smaller endvertex degree over edges of the undirected graph $G$ , as
a measure of the complexity of $G$ . Chiba and Nishizeki [2] show that $D(G)$

is at most $2a(G)|E|$ where $a(G)$ is the arboricity of $G$ (the minimum number
of trees covering $G$). We investigate the bound for $D(G)$ in more detail, and
give more refined bound for $D(G)$ . We also study this bound for some special
families of graphs. In Section 4, we evaluate the complexity of the arrange-
ment by means of the measure $D(G)$ of the dual graph $G$ of an arrangement.
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This evaluation can be used in the analysis of a computationally robust divide-
and-conquer algorithm for constructing the Delaunay triangulation (Oishi and
Sugihara [8]). Furthermore, this can be directly used to develop an optimal
randomized algorithm for constructing the intersections (or arrangements) of
line segments and curves. In Section 4, we provide only an outline of this algo-
rithm. Although such optimal (randomized) algorithms are already known to
exist (Chazelle, Edelsbrunner [1], Mulmuley [6]), this indicates the usefulness of
the new measure in developing new geometric algorithms.

In the following sections, hypersurfaces are considered to be topologically
isomorphic to hyperplanes, that is, the word “hypersurface“ means a hypersur-
face with no self intersections, with no holes (i.e. every topological circle in the
hypersurface can be pontinuously transformed in the hypersurface to a point)
and unbounded (i.e. not contained in a hypersphere). All graphs in this paper
are considered to be undirected and may have multiple edges and loop edges, if
not mentioned.

2 Arboricity of the Dual Graph of an Arrange-
ment

Let $H$ be a finite set of hyperplanes or a finite set of hypersurfaces in $E^{d}$ , and
the arrangement of $H$ is denoted by $A(H)$ . For faces $x$ of $A(H),$ $\dim(x)$ denotes
the dimension of $x$ . For a face $x$ and $y$ of $\mathcal{A}(H)$ , the relation denoted by $y\succ ix$

means $\dim(x)=\dim(y)-i$ and the boundary of $y$ contains $x(y$ is incident to
$x)$ , and $y\succ x$ means existence of the relation $y\succ ix$ for some positive integer
$i\leq d$ . The number of k-faces of an arrangement $A(H)$ is denoted by $f_{k}(A(H))$

and will be simply denoted by $f_{k}(H)$ . Let $T$ be a finite set of points in $E^{d}$ , and
$A(H)|T$ , which is a subset of faces of $A(H)$ , is defined as follows:

$\ovalbox{\tt\small REJECT}=\{x\in \mathcal{A}(H)|\dim(x)=d, x\cap T\neq\phi\}$ ,
$F_{i}=\{x\in A(H)|\dim(x)=i, x\cap T\neq\phi\}$

$\cup$ {$x\in A(H)|\dim(x)=i,A(H)\cap F_{1+1}\ni y$ for $\forall y\succ 1x$ } $(i<d)$ ,
$d$

$A(H)|T=\cup F_{i}$ .
$i=0$

In other words, $A(H)|T$ is recursively defined by above two conditions on the
decreasing order of the dimension of its faces. The number of k-faces in $\mathcal{A}(H)|T$

is denoted by $f_{k}(\mathcal{A}(H)|T)$ and simply denoted by $f_{k}(H|T)$ . For $h\in H$ , the
intersection of $A(H)$ with $h,$ $\{h’\cap h|h’\in A(H)-h\}$ forms a $(d-1)$-dimensional
arrangement in $h$ , and this intersection arrangement is denoted by $A(H/h)$ .
In this section, $f_{k}(H/h|T)$ is interpreted as $f_{k}(A(H)|T\cap \mathcal{A}(H/h))$ instead of
$f_{k}(A(H/h)|T)$ for some $T\subseteq h$ . Now we show the following lemma:
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Lemma 1 Let $H$ be a finite set of hyperplanes in $Ed,$ $h\in H$ , and $T$ be a finite
set of points. Then,

$f_{d}(H|T)$ $=$ $f_{d}(H-h|T)+f_{d}$一 1 $(H/h|T)$ , (1)
$f_{k}(H|T)$ $\leq$ $f_{k}(H-h|T)+f_{k}(H/h|T)+f_{k-1}(H/h|T)$ for $k<d$ . (2)

Proof. A face $f$ in A(H–h)\S T is one of the following three types.

Type(A) $f$ is not intersected by $h$ , or $f$ is contained in $h$ .
Type(B) $f$ is separated by the $(\dim(f)-1)$-face $g=f\cap h$ into two faces,

and at least one of these two faces is not in $A(H|T)$ .
Type(C) $f$ is separated by the $(\dim(f)-1)$-face $g=f\cap h$ into two faces,

and both of these two faces are in $A(H|T)$ .

Every cell in $\mathcal{A}(H)|T$ is contained in some cell in $A(H-h)|T$ . The cells of
Type(A) and Type(B) are counted once in $f_{d}(H|T)$ , and the cells of Type(C)
are counted twice in $f_{d}(H|T)$ . For each cell $f$ of Type(C), the $(d-1)$-face $g$ is
in $A(H/h)|T$ and counted also in $f_{d-1}(H/h|T)$ . Thus the equality holds in (1).

For $k<d$ , every k-face in $A(H)|T$ is either one of k-faces in $\mathcal{A}(H/h)|T$ or
contained in some k-face in $\mathcal{A}(H-h)|T$ . The k-faces of Type(A) and Type(B)
are counted at most once in $f_{k}(H|T)$ . Note that there exist the case in which
the k-face $f$ in $A(H-h)|T$ is not counted in $f_{k}(H|T)$ illustrated in Figure 2.1.
The k-faces of Type(C) are counted twice in $f_{d}(H|T)$ , and for each k-face $f$ of
Type(C), the $(k-1)$-face $g$ is in $\mathcal{A}(H/h)|T$ and counted also in $f_{k-1}(H/h|T)$ .
Thus the inequality holds in (2), and the lemma is proved. $\square$

Using Lemma 1, we prove the following lemma.

Lemma 2 Let $H$ be a finite set of hyperplanes in $E^{d}$ , and $T$ be a finite set of
points and $f_{d}(H|T)\geq 1$ . Then,

$f_{d-1}(H|T)\leq d(f_{d}(H|T)-1)$ . (3)

Proof. We prove the inequality (3) by double induction on $d$ and the cardinality
of $H$ . It is easy to show (3) for $H=\phi$ . Thus we consider the case that $H\neq\phi$ .
For $h\in H$ , using the inequality (2) in Lemma 1, we get

$f_{d-1}(H|T)\leq f_{d-1}(H-h|T)+f_{d-1}(H/h|T)+f_{d-2}(H/h|T)$. (4)

By the induction hypothesis on the cardinality of $h$ , we get

$f_{d-1}(H-h|T)\leq d(f_{d}(H-h|T)-1)$ . (5)

By the induction hypothesis on $d$ , we get

$f_{d-2}(H-h|T)\leq(d-1)(f_{d-1}(H/h|T)-1)$ . (6)
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$h$

Figure 2.1. An example of $A(H)$ for 2-dimensional case. The dots show the
points of $T$ and the bold lines show the faces counted in $A(H-h)$ but not
counted in $A(H)|T$ .

Using (4),(5),(6), we get

$f_{d-1}(H|T)\leq d(f_{d}(H-h|T)+f_{d-1}(H/h|T)-1)-(d-1)$ (7)

Applying (1) in Lemma 1 to (7),

$f_{d-1}(H|T)\leq d(f_{d}(H|T)-1)-(d-1)\leq d(f_{d}(H|T)-1)$ (8)

Thus (3) is proved. $\square$

Now we extend Lemma2 to the arrangement of hypersurfaces. To assure the
same result as in Lemma 2, we need to limit the arrangement of hypersurfaces
to a special family. The cell of an arrangement of hypersurfaces is called “re-
ducible” if every topological circle in the cell can be continuously transformed in
the cell to a point. The arrangement of hypersurfaces in $E^{d}$ is called “reducible”
if every cell in the arrangement is reducible.

Lemma 3 Let $H$ be a finite set of hypersurfaces in $E^{d},$ $T$ be a finite set of
points, and $f_{d}(H|T)\geq 1$ . If $\mathcal{A}(H)$ is reducible, then,

$f_{d-1}(H|T)\leq d(f_{d}(H|T)-1)$ . (9)

Proof. To prove the inequality (9) by the $s$ame double induction as in Lemma2,
it is enough to show the following two inequalities for $h\in H$ :

$f_{d}(H|T)$ $\geq$ $f_{d}(H-h|T)+f_{d}$一 1 $(H/h|T)$ , (10)
$f_{d-1}(H|T)$ $\leq$ $f_{d-1}(H-h|T)+f_{d-1}(H/h|T)+f_{d-2}(H/h|T)$ . (11)
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Suppose a point set $T’$ such that $T’\supseteq T$ and all points in $T’-T$ are contained
in facets of $\mathcal{A}(H)$ . Since $f_{d-1}(H|T)\leq f_{d-1}(H|T‘)$ and $f_{d}(H|T)=f_{d}(H|T’)$ , we
can use $T’$ instead of $T$ . Thus, in the proof of this lemma, we can add to $T$ new
points in some facets of $\mathcal{A}(H)$ . For convenience, we also use $T$ for the point set
after addition.

We need to consider the case that a cell $c$ in $A(H-h)|T$ is separated by $h$

into more than two cells, say $c_{i}$ for $i=1,2,$ $\ldots,$
$n$ . In this case, each facet in $h\cap c$ ,

say $f_{j}$ for $j=1,2,$ $\ldots,$
$m$ , separate $c$ into exactly two parts. The dual graph $G$

of these cells generated by the separation of $c$ is described as follows:
$\bullet$ $V(G)=\{c_{j}\in A(H)\cap c|i=1,\cdot 2, \ldots, n\}$ ,
$\bullet$ $E(G)=\{f_{j}\in A(H/h)\cap c|j=1,2, \ldots,m\}$ ,
$\bullet$ $f_{j}$ and $c_{i}$ is incident iff they are incident in $A(H)$ .

If $G$ has a cycle, we can draw the associated topological circle in the cell $c$

such that the intersection of each facet $f_{j}$ and the topological circle is one point
or empty. This topological circle can not be continuously transformed to a
point, because each segment of the topological circle contained in $c_{i}$ has its two
endpoints on different facets and the continuous transformation can only move
these endpoints in the facet the point is contained. This contradict that the
arrangement is reducible. Therefore $G$ has no cycle. Let $C$ be the subset of
$V(G)$ such that $C\in v$ iff the cell $v$ contains a point of $T$ . Since $G$ has no cycle,
the subgraph $G’$ of $G$ induced by $C$ is a forest. Hence we get,

$|A(H)|T\cap c|$ $=$ $|V(G’)|=|C|$

$|A(H/h)|T\cap c|$ $=$ $|E(G’)|\leq|C|-1$

Above discussion shows that the cell in $A(H-h)$ which is intersected by $h$

and counted $p$ times in $f_{d}(H|T)$ has at most $p-1$ facets counted in $f_{d-1}(H/h|T)$ .
It is obvious that the cells not intersected by $h$ are counted once in $f_{d}(H|T)$ .
Since every cell in $A(H)|T$ is contained in some cell in $A(H-h)|T$ , the inequality
holds in (10).

Every facet in $A(H)|T$ is either one of facets in $\mathcal{A}(H/h)|T$ or contained in
some facets in $A(H-h)|T$ . The facets in $A(H-h)|T$ which are not intersected by
$h$ are counted at most once in $f_{k}(H|T)$ . For each facets $f_{1}$ in $A(H)\cap A(H-h)|T$

we add to $T$ a new point in the facet. Then, for $T$ after addition, each facet $f_{1}$

in $A(H)|T$ which are separated by $h$ from the facet $f$ in $A(H)|T$ has at least
one incident $(d-2)$-face $g$ in $f\cap h$ , because both two facets incident to $g$ in $f$

are in $A(H|T)$ . Hence the facets in $A(H-h)|T$ which are intersected by $h$ and
counted $p$ tim$es$ in $f_{d}(H|T)$ has at least p–l facets counted in $f_{d-1}(H/h|T)$ .
Therefore the inequality holeds in (11). By the same double induction using
(10) and (11) as in Lemma 2, the inequality (9) is proved. $\square$

To obtain the arboricity of the dual graph of these arrangement, we use
following Nash-Williams’ theorem.
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Theorem 1 (Nash-Williams [7]) For a graph $G$ ,

$a(G)= \max\{r\frac{|E(S)|}{|V(S)|-1}\rceil|S\subset G,$ $|V(S)|\geq 2\}$ .

It is easy to show that there exists the d-dimensional arrangement $A(H)$ of
hyperplanes $H$ such that

$f_{d-1}(H)>(d-1)(f_{d}(H)-1)$ .
For example, suppose linearly independent $d$ axes in $E^{d}$ and let $H$ be the set of
enough large number of hyperplanes vertical to each one axi$s$ .

Therefore, by Theorem 1, it is shown that the arboricity of the dual graph
$G$ of d-dimensional arrangement of hypersurfaces is more than or equal to $d$ .
Now we prove the following theorem.

Theorem 2 The arboricity of the dual graph of a reducible d-dimensional ar-
rangement of hypersurfaces is $d$ .

Proof. Let $H$ be a finite set of hypersurfaces in $E^{d}$ . We consider the dual graph
$G$ of the arrangement $A(H)$ . For each subgraph $S$ of $G$ satisfying $|V(S)|\geq 2$ ,
we take $T$ such that $T$ has a point in each cell which correspond to a vertex of
the graph $S$ . Then $|f_{d-1}(H|T)|=|E(S)|$ , and by Lemma 3 and Theorem 1, the
statement of the theorem is proved. $O$

The following corollary is directly obtained from this theorem.

Corollary 1 The arboricity of the dual graph of a d-dimensional arrangement
of hyperplanes is $d$ .

3 The sum of smaller endvertex degree over
edges

For an undirected graph $G=(V, E)$ with vertex set $V$ and edge set $E$ , let us
define $D(G)$ by

$D(G)= \sum_{\epsilon=(u,v)\in E}$
min{deg(u), $deg(v)$ },

where $\deg(v)$ is the degree of a vertex $v$ .

Theorem 3 (Chiba, Nishizeki [2]) For a gmph $G$ ,

$D(G)\leq 2a(G)|E|$
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We improve this result in more detail to obtain tight bounds for the special
familie$s$ of graphs, and the following theorem is our result.

Theorem 4 For a planar undirected graph $G=(V, E)$, which is simple and
connected, with more than 12 vertices, $D(G)\leq 6|E|-36$ . For a planar graph
$G’=(V’, E’)$ with more than $1\theta$ vertices and without any cycle of length $S$,
$D(G’)\leq 4|E’|-16$ . For an outerplanar graph $G”=(V^{\prime l}, E")$ with more than 5
vertices, $D(G”)\leq 4|E’’|-12$ . Also, there exist graphs $G,$ $G’$ and $G$“ satisfying
$D(G)=6|E|-36,$ $D(G’)=4|E’|-16$ and $D(G”)=4|E^{u}|-12$ .

Proof of the upper bound We first prove the upper bound. Let
$G=(V, E)$ be a simple planar graph. In considering the upper bound for
$D(G)$ , we can assume $G$ is edge maximal, because adding edges to $G$ does not
reduce the value of $D(G)$ . We denote the maximum degree of $G$ by $\Delta$ . For each
$i=1,$ $\ldots,$

$\Delta$ , define $V$; to be the set of vertices whose degree is $iE_{i}$ to be the
set of edges whose smaller endpoint degree is $i$ , and let $\tilde{V}_{*}=\bigcup_{j=i}V_{j}$ , and letA
$\tilde{E}_{i}=\bigcup_{j=i}^{\Delta}E_{j}$ . We also define the integer function $c(k)$ for every positive integer
$k$ as follows:

$c(1)=3,$ $c(2)=5,$ $c(k)=6$ for $k\geq 3$ .
Since each subgraph $H$ of $G$ is also planar, we can obtain $|E(H)|\leq 3|V(H)|$

$-c(|V(H)|)$ for all subgraph $H$ of $G$ by using Euler’s relation. Then we have

$D(G)$ $=$ $\sum_{1=1}^{\Delta}i|E_{i}|=\sum_{i=1}^{\Delta}\sum_{j=:}^{\Delta}|E_{i}|=\sum_{i=1}^{\Delta}|\tilde{E}_{i}|$

$\leq$ $\sum_{i=1}^{\Delta}3|\tilde{V}_{i}|-\sum_{i=1}^{\Delta}c(|\tilde{V};|)=3\sum_{1=1}^{\Delta}\sum_{j=i}^{\Delta}|V_{i}|-\sum_{i=1}^{\Delta}c(|\tilde{V}_{i}|)$

$=$ 3 $\sum_{=:1}^{\Delta}i|V_{i}|-\sum_{i=1}^{\Delta}c(|\tilde{V}_{1}|)=6|E(G)|-\sum_{i=1}^{\Delta}c(|\tilde{V}:|)$ .

Now we denote the second maximum degree and the third maximum degree
by $\Delta_{2}$ and $\Delta_{3}$ , respectively. Then we get

$\sum_{*=1}^{\Delta}c(|\tilde{V}_{i}|)$ $\geq$ $\Delta c(1)+\Delta_{2}\{c(2)-c(1)\}+\Delta_{3}\{c(3)-c(2)\}$

$=$ $3\Delta+2\Delta_{2}+\Delta_{3}$

Using that $G$ is edge maximal planar graph with more than 3 vertices, we
can show that $|E(G)|=3|V(G)|-6$ and that $\Delta\geq\Delta_{2}\geq\Delta_{3}\geq 3$ .

Now we prove the case $|V(G)|>14$ . If $\Delta>8$ or $\Delta_{2}>6$ or A3 $>5$ ,
then $3\Delta+2\Delta_{2}+\Delta_{3}\geq 36$ . Hence we can assume $\Delta\leq 8$ and $\Delta_{2}\leq 6$ and
$\Delta_{3}\leq 5$ . If $A_{3}<5$ , then $6|V(G)|-12=2|E(G)|\leq\Delta_{3}(|V(G)|-2)+\Delta_{2}+$
$\Delta\leq 4(|V(G)|-2)+14$ , therefore I $V(G)|\leq 9$ . As $|V(G)|>14$ , we can assume
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$\Delta_{3}=5$ . If $\Delta>6$ , then $3\Delta+2\Delta_{2}+\Delta_{3}\geq 36$ . Thus we can assume that $\Delta=6$ .
And we get $6|V(G)|-12\leq\Delta_{3}(|V(G)|-2)+\Delta_{2}+\Delta=5(|V(G)|-2)+\Delta_{2}+6$,
that is, $|V(G)|\leq 8+\Delta_{2}\leq 14$ . This implies that $3\Delta+2\Delta_{2}+\Delta_{3}\geq 36$ for
$|V(G)|>14$ . We thus have the upper bound for $D(G)$ in the theorem. Note
that this proof also indicates that the exceptional case for $|V(G)|=14$ must
consist of 2 adjacent vertices with degree 6 and other 12 vertices with degree 5.
This, however, can not be planar. Also the case $|V(G)|=13$ can not be planar,
and we can obtain the bound for $|V(G)|>12$ .

Now, suppose that $G$ does not have any cycle of length 3. We redefine the
integer function $c(k)$ for every positive integer $k$ as follows:

$c(1)=2,$ $c(2)=3,$ $c(k)=4$ for $k\geq 3$ .
Then, Euler’s relation states that, for any subgraph $H$ of $G$ ,

$|E(H)|\leq 2|V(H)|-c(|V(H)|)$ .

Applying the above arguments to this case, we can obtain the upper bound. We
will give an outline of the proof. First we get

$D(G) \leq 4|E(G)|-\sum_{i=1}^{\Delta}c(|\tilde{V}_{j}|)\leq 4|E(G)|-2\Delta-\Delta_{2}-\Delta_{3}$.

To show $2\Delta+\Delta_{2}+\Delta_{3}\geq 16$ , we can assume $\Delta\leq 5$ and $\Delta_{2}\leq 4$ and $\Delta_{3}\leq 3$ .
Using the same argument, it is shown that $\Delta_{3}=3$ and $\Delta=4$ , and we get
$|V(G)|\leq 6+\Delta_{2}\leq 10$ . We thus have the upper bound for $D(G’)$ in the
theorem.

Finally, suppose that $G$ is outerplanar. We redefine the integer function $c(k)$

for every positive integer $k$ as follows:

$c(1)=2,$ $c(k)=3$ for $k\geq 2$ .

Then, for any subgraph $H$ of $G$ ,

$|E(H)|\leq 2|V(H)|-c(|V(H)|)$ .

Now we prove the case $|V(G)|>7$ . Applying the same arguments to this case,
we can obtain the upper bound. We will give an outline of the proof. Here we
get

$D(G) \leq 4|E(G)|-\sum_{i=1}^{\Delta}c(|\tilde{V}_{2}|)\leq 4|E(G)|-2\Delta-\Delta_{2}$ .

To show $2\Delta+\Delta_{2}\geq 12$ , we can assume $\Delta\leq 4$ and $\Delta_{2}\leq 3$ . The same argument
shows that $\Delta_{2}=3$ and $\Delta=4$ , and we get $|V(G)|\leq 7$ . The case $|V(G)|=7$ and
I $V(G)|=6$ can not be outerplanar. We thus have the upper bound for $D(G^{n})$
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(a1) (a2)

(b) (c)

Figure 3.1. (a1) $T_{1},$ $(a2)P_{2},$ $(b)S_{2}$ and (c) $R_{2}$
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in the theorem.

Proof of the lower bound We next consider lower bounds of the
summation in the theorem for planar graphs. Consider a regular tetrahedron
$T_{0}$ whose edges are of unit length. Each face is a regular triangle, and there
are 4 faces, 6 edges and 4 vertices of degree 3. By connecting the midpoints of
the edges, each triangle may be partitioned into four regular subtriangles; by
repeating this process $k$ times (denote the resultant polyhedron by $T_{k}$ ), each
original triangle is divided into $4^{k}$ regular subtriangles with edges of length
$2^{-k}$ . Figure 3.1(al) depicts $T_{1}$ . Then, in the interior of each original face,
there are $1+2^{2k-1}-3\cdot 2^{k-1}$ vertices of degree 6. Hence, in total, among
$n=4(1+2^{2k-1}-3\cdot 2^{k-1})+6(2^{k}-1)+4=2+2^{2k+1}$ vertices, only 4 vertices
have degree 3 and the others degree 6, and no edge connects vertices of degree 3.
Therefore, for such $n=2+2\cdot 4^{k}$ and $m=6\cdot 4^{k}$ with $k=2,3,$ $\ldots$ , there exists
a planar graph with $n$ vertices and $m$ edges for which the summation in the
theorem is $6m-36$ . We can construct another series of graphs which attain the
lower bound. $P_{1}$ is a triangle. $P_{i+1}$ is constructed from $P_{1}$ by adding new larger
triangle surrounding $P_{2}$ and connect each new vertices in the larger triangle
to the corresponding two vertices on the outer triangle of $P:$ . Figure 3.1(a2)
illustrates $P_{2}$ . $P_{i}$ has $n=3i$ vertices and $m=9i-6$ edges. $D(P_{i})=6m-36$
for $i\geq 3$ .

To obtain a lower bound for planar graphs without cycle of length 3, con-
struct the following series of graphs. $S_{0}$ is a $s$quare. We regard a pair of diagonal
vertices in $S_{0}$ as new vertices. $S_{1+1}$ is constructed from $S_{i}$ by adding two new
vertices and connect each of them with the new vertices in $S_{1}$ . Figure 3.1(b)
illustrates $S_{2}$ . $S_{i}$ has $n=4+2i$ vertices and $m=4+4i$ edges. $D(S_{i})=4m-16$
for $i\geq 1$ .

To obtain a lower bound for outerplanar graphs, construct the following
series of graphs. $R_{1}$ is a square with a diagonal. $R_{i+1}$ is constructed from $R$: by
adding two new vertices to make a copy of $R_{1}$ outside on the right edge of $R_{4}\cdot$ .
Figure 3.1(c) illustrates $R_{2}$ . $R$; has $n=2+2i$ vertices and $m=1+4i$ edges.
$D(S_{i})=4m-12$ for $i\geq 2$ . $\square$

4 An Optimal Randomized Algorithm for Ar-
rangements of Curves

In this paper, we will describe an $O(N^{2})$-time randomized algorithm for con-
structing an arrangement of $N$ lines, without using the zone theorem for lines.
This illustrates, for the problem of constructing an arrangement of $N$ curves
such that any two curves intersect at a constant number of points, how a simple
incremental algorithm using a careful search technique with $O(N^{2})$ randomized
time complexity may be devised based on the inequality in Theorem.
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Figure 4.1. (a) A simple incremental algorithm and (b) an incremental algo-
rithm which chooses shorter paths

An incremental algorithm for constructing the arrangement of $N$ lines $l_{1},$ $l_{2}$ ,
. . ., $l_{N}$ works roughly as follows: at the first stage, construct atrivial arrange-
ment of one line $l_{1}$ ; at the $ith$ stage $(i=2,3, \ldots, N)$ , add line $l_{i}$ to the ar-
rangement of lines $l_{1},$

$\ldots,$
$l_{i-1}$ , which has been computed already, to obtain the

arrangement of lines $l_{1},$
$\ldots,$

$l_{i-1},$ $l_{i}$ . Here, the arrangement is represented by a
standard data structure for planar subdivisions.

The main step here is to add $l_{i}$ to the arrangement $A_{i-1}$ of $l_{1},$
$\ldots,$

$l_{i-1}$ . To
do this, we find an edge $e$ of the arrangement $A_{i-1}$ that is just above $l_{i}$ at
$x=-\infty$ , and acell $c$ intersecting $l$;at $x=-\infty$ . This can be done in linear
time by finding, from among the lines $l_{1},$

$\ldots,$
$l_{i-1}$ , the line of largest slope less

than that of $l_{i}$ . We then traverse $A_{i-1}$ along $l_{i}$ by following edges of the cell $c$

in clockwise order, starting with $e$ , to find anew intersection point of $l_{i}$ with an
edge $e’$ of the cell. We iterate for $e$ $:=e’$ and $c:=cell$ adjacent to $c$ at $e’$ until a
cell is found intersecting $l_{i}$ at $x=+\infty$ . See Figure 4.1(a).

The time complexity of adding $l_{i}$ to $A_{i-1}$ is proportional to the number
of edges of cells in $A_{i-1}$ intersecting $l_{\dot{*}}$ (these cells form azone of $l_{i}$ , and this
number is the complexity of the zone). The well-known zone theorem for lines
(e.g., [3]) states that the complexity of this zone is $O(i)$ . Hence, it takes $O(i)$

time to insert $l_{i}$ to $A_{i-1}$ to construct $A_{i}$ , and in total the arrangement of $N$ lines
can be constructed in $O(N^{2})$ time. Note that this time complexity is worst-case
optimal, since the size of asimple arrangement $is\ominus(N^{2})$ .

In the above algorithm, of the cells intersecting $l;$ , only the portion above $l$;
is traversed. Instead of this, we may traverse edges of the upper and lower parts
of acell intersecting $l$;one by one simultaneously so that anew intersection
point of $l_{i}$ with the cell may be found in time proportional to the length of the
shorter of the two paths (upper and lower) from the old intersection point to
the new one. See Figure 4.1(b). This way of traversing cells is sometimes used
in other geometric algorithms.
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Now, let $e(l_{j})$ be the number of edges traversed in adding $l_{j}$ to the ar-
rangement of lines $\{l_{1}, \ldots, l_{i}\}-\{l_{i}\}$ with choosing shorter paths as above
$(j=1, \ldots, i)$ . Consider the dual graph of the arrangement of $l_{1},$

$\ldots,$
$l_{i}$ as a

planar graph. This dual graph has at most $i^{2}$ edges, and does not have any
cycle of length 3. Hence, applying the Theorem, it is seen that

$\sum_{i=1}^{:}e(l_{j})\leq 2\cdot 4i^{2}$ .

By randomizing the order of insertion of lines in this modified incremental algo-
rithm, the number of edges traversed in adding the ith line is at most $8i$ on the
average. This implies that in total this algorithm constructs the arrangement
of $N$ lines in $O(N^{2})$ average time.

This idea can be carried over for the case of the arrangement of curves,
for which we need some of the techniques developed in $[4, 6]$ , say the vertical
decomposition of the arrangement. Besides these applications and that of [8],
Theorem could be useful in the analysis of other geometric and graph problems.
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